mirror of
https://github.com/grumpycoders/pcsx-redux.git
synced 2025-04-02 10:41:54 -04:00
1051 lines
32 KiB
C
1051 lines
32 KiB
C
|
|
#include <limits.h>
|
|
|
|
|
|
#include "lua.h"
|
|
#include "lauxlib.h"
|
|
|
|
#include "lptypes.h"
|
|
#include "lpcode.h"
|
|
#include "lpcset.h"
|
|
|
|
|
|
/* signals a "no-instruction */
|
|
#define NOINST -1
|
|
|
|
|
|
|
|
static const Charset fullset_ =
|
|
{{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}};
|
|
|
|
static const Charset *fullset = &fullset_;
|
|
|
|
|
|
/*
|
|
** {======================================================
|
|
** Analysis and some optimizations
|
|
** =======================================================
|
|
*/
|
|
|
|
|
|
/*
|
|
** A few basic operations on Charsets
|
|
*/
|
|
static void cs_complement (Charset *cs) {
|
|
loopset(i, cs->cs[i] = ~cs->cs[i]);
|
|
}
|
|
|
|
static int cs_disjoint (const Charset *cs1, const Charset *cs2) {
|
|
loopset(i, if ((cs1->cs[i] & cs2->cs[i]) != 0) return 0;)
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
** Visit a TCall node taking care to stop recursion. If node not yet
|
|
** visited, return 'f(sib2(tree))', otherwise return 'def' (default
|
|
** value)
|
|
*/
|
|
static int callrecursive (TTree *tree, int f (TTree *t), int def) {
|
|
int key = tree->key;
|
|
assert(tree->tag == TCall);
|
|
assert(sib2(tree)->tag == TRule);
|
|
if (key == 0) /* node already visited? */
|
|
return def; /* return default value */
|
|
else { /* first visit */
|
|
int result;
|
|
tree->key = 0; /* mark call as already visited */
|
|
result = f(sib2(tree)); /* go to called rule */
|
|
tree->key = key; /* restore tree */
|
|
return result;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Check whether a pattern tree has captures
|
|
*/
|
|
int hascaptures (TTree *tree) {
|
|
tailcall:
|
|
switch (tree->tag) {
|
|
case TCapture: case TRunTime:
|
|
return 1;
|
|
case TCall:
|
|
return callrecursive(tree, hascaptures, 0);
|
|
case TRule: /* do not follow siblings */
|
|
tree = sib1(tree); goto tailcall;
|
|
case TOpenCall: assert(0);
|
|
default: {
|
|
switch (numsiblings[tree->tag]) {
|
|
case 1: /* return hascaptures(sib1(tree)); */
|
|
tree = sib1(tree); goto tailcall;
|
|
case 2:
|
|
if (hascaptures(sib1(tree)))
|
|
return 1;
|
|
/* else return hascaptures(sib2(tree)); */
|
|
tree = sib2(tree); goto tailcall;
|
|
default: assert(numsiblings[tree->tag] == 0); return 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Checks how a pattern behaves regarding the empty string,
|
|
** in one of two different ways:
|
|
** A pattern is *nullable* if it can match without consuming any character;
|
|
** A pattern is *nofail* if it never fails for any string
|
|
** (including the empty string).
|
|
** The difference is only for predicates and run-time captures;
|
|
** for other patterns, the two properties are equivalent.
|
|
** (With predicates, &'a' is nullable but not nofail. Of course,
|
|
** nofail => nullable.)
|
|
** These functions are all convervative in the following way:
|
|
** p is nullable => nullable(p)
|
|
** nofail(p) => p cannot fail
|
|
** The function assumes that TOpenCall is not nullable;
|
|
** this will be checked again when the grammar is fixed.
|
|
** Run-time captures can do whatever they want, so the result
|
|
** is conservative.
|
|
*/
|
|
int checkaux (TTree *tree, int pred) {
|
|
tailcall:
|
|
switch (tree->tag) {
|
|
case TChar: case TSet: case TAny: case TUTFR:
|
|
case TFalse: case TOpenCall:
|
|
return 0; /* not nullable */
|
|
case TRep: case TTrue:
|
|
return 1; /* no fail */
|
|
case TNot: case TBehind: /* can match empty, but can fail */
|
|
if (pred == PEnofail) return 0;
|
|
else return 1; /* PEnullable */
|
|
case TAnd: /* can match empty; fail iff body does */
|
|
if (pred == PEnullable) return 1;
|
|
/* else return checkaux(sib1(tree), pred); */
|
|
tree = sib1(tree); goto tailcall;
|
|
case TRunTime: /* can fail; match empty iff body does */
|
|
if (pred == PEnofail) return 0;
|
|
/* else return checkaux(sib1(tree), pred); */
|
|
tree = sib1(tree); goto tailcall;
|
|
case TSeq:
|
|
if (!checkaux(sib1(tree), pred)) return 0;
|
|
/* else return checkaux(sib2(tree), pred); */
|
|
tree = sib2(tree); goto tailcall;
|
|
case TChoice:
|
|
if (checkaux(sib2(tree), pred)) return 1;
|
|
/* else return checkaux(sib1(tree), pred); */
|
|
tree = sib1(tree); goto tailcall;
|
|
case TCapture: case TGrammar: case TRule: case TXInfo:
|
|
/* return checkaux(sib1(tree), pred); */
|
|
tree = sib1(tree); goto tailcall;
|
|
case TCall: /* return checkaux(sib2(tree), pred); */
|
|
tree = sib2(tree); goto tailcall;
|
|
default: assert(0); return 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** number of characters to match a pattern (or -1 if variable)
|
|
*/
|
|
int fixedlen (TTree *tree) {
|
|
int len = 0; /* to accumulate in tail calls */
|
|
tailcall:
|
|
switch (tree->tag) {
|
|
case TChar: case TSet: case TAny:
|
|
return len + 1;
|
|
case TUTFR:
|
|
return (tree->cap == sib1(tree)->cap) ? len + tree->cap : -1;
|
|
case TFalse: case TTrue: case TNot: case TAnd: case TBehind:
|
|
return len;
|
|
case TRep: case TRunTime: case TOpenCall:
|
|
return -1;
|
|
case TCapture: case TRule: case TGrammar: case TXInfo:
|
|
/* return fixedlen(sib1(tree)); */
|
|
tree = sib1(tree); goto tailcall;
|
|
case TCall: {
|
|
int n1 = callrecursive(tree, fixedlen, -1);
|
|
if (n1 < 0)
|
|
return -1;
|
|
else
|
|
return len + n1;
|
|
}
|
|
case TSeq: {
|
|
int n1 = fixedlen(sib1(tree));
|
|
if (n1 < 0)
|
|
return -1;
|
|
/* else return fixedlen(sib2(tree)) + len; */
|
|
len += n1; tree = sib2(tree); goto tailcall;
|
|
}
|
|
case TChoice: {
|
|
int n1 = fixedlen(sib1(tree));
|
|
int n2 = fixedlen(sib2(tree));
|
|
if (n1 != n2 || n1 < 0)
|
|
return -1;
|
|
else
|
|
return len + n1;
|
|
}
|
|
default: assert(0); return 0;
|
|
};
|
|
}
|
|
|
|
|
|
/*
|
|
** Computes the 'first set' of a pattern.
|
|
** The result is a conservative aproximation:
|
|
** match p ax -> x (for some x) ==> a belongs to first(p)
|
|
** or
|
|
** a not in first(p) ==> match p ax -> fail (for all x)
|
|
**
|
|
** The set 'follow' is the first set of what follows the
|
|
** pattern (full set if nothing follows it).
|
|
**
|
|
** The function returns 0 when this resulting set can be used for
|
|
** test instructions that avoid the pattern altogether.
|
|
** A non-zero return can happen for two reasons:
|
|
** 1) match p '' -> '' ==> return has bit 1 set
|
|
** (tests cannot be used because they would always fail for an empty input);
|
|
** 2) there is a match-time capture ==> return has bit 2 set
|
|
** (optimizations should not bypass match-time captures).
|
|
*/
|
|
static int getfirst (TTree *tree, const Charset *follow, Charset *firstset) {
|
|
tailcall:
|
|
switch (tree->tag) {
|
|
case TChar: case TSet: case TAny: case TFalse: {
|
|
tocharset(tree, firstset);
|
|
return 0;
|
|
}
|
|
case TUTFR: {
|
|
int c;
|
|
clearset(firstset->cs); /* erase all chars */
|
|
for (c = tree->key; c <= sib1(tree)->key; c++)
|
|
setchar(firstset->cs, c);
|
|
return 0;
|
|
}
|
|
case TTrue: {
|
|
loopset(i, firstset->cs[i] = follow->cs[i]);
|
|
return 1; /* accepts the empty string */
|
|
}
|
|
case TChoice: {
|
|
Charset csaux;
|
|
int e1 = getfirst(sib1(tree), follow, firstset);
|
|
int e2 = getfirst(sib2(tree), follow, &csaux);
|
|
loopset(i, firstset->cs[i] |= csaux.cs[i]);
|
|
return e1 | e2;
|
|
}
|
|
case TSeq: {
|
|
if (!nullable(sib1(tree))) {
|
|
/* when p1 is not nullable, p2 has nothing to contribute;
|
|
return getfirst(sib1(tree), fullset, firstset); */
|
|
tree = sib1(tree); follow = fullset; goto tailcall;
|
|
}
|
|
else { /* FIRST(p1 p2, fl) = FIRST(p1, FIRST(p2, fl)) */
|
|
Charset csaux;
|
|
int e2 = getfirst(sib2(tree), follow, &csaux);
|
|
int e1 = getfirst(sib1(tree), &csaux, firstset);
|
|
if (e1 == 0) return 0; /* 'e1' ensures that first can be used */
|
|
else if ((e1 | e2) & 2) /* one of the children has a matchtime? */
|
|
return 2; /* pattern has a matchtime capture */
|
|
else return e2; /* else depends on 'e2' */
|
|
}
|
|
}
|
|
case TRep: {
|
|
getfirst(sib1(tree), follow, firstset);
|
|
loopset(i, firstset->cs[i] |= follow->cs[i]);
|
|
return 1; /* accept the empty string */
|
|
}
|
|
case TCapture: case TGrammar: case TRule: case TXInfo: {
|
|
/* return getfirst(sib1(tree), follow, firstset); */
|
|
tree = sib1(tree); goto tailcall;
|
|
}
|
|
case TRunTime: { /* function invalidates any follow info. */
|
|
int e = getfirst(sib1(tree), fullset, firstset);
|
|
if (e) return 2; /* function is not "protected"? */
|
|
else return 0; /* pattern inside capture ensures first can be used */
|
|
}
|
|
case TCall: {
|
|
/* return getfirst(sib2(tree), follow, firstset); */
|
|
tree = sib2(tree); goto tailcall;
|
|
}
|
|
case TAnd: {
|
|
int e = getfirst(sib1(tree), follow, firstset);
|
|
loopset(i, firstset->cs[i] &= follow->cs[i]);
|
|
return e;
|
|
}
|
|
case TNot: {
|
|
if (tocharset(sib1(tree), firstset)) {
|
|
cs_complement(firstset);
|
|
return 1;
|
|
} /* else */
|
|
} /* FALLTHROUGH */
|
|
case TBehind: { /* instruction gives no new information */
|
|
/* call 'getfirst' only to check for math-time captures */
|
|
int e = getfirst(sib1(tree), follow, firstset);
|
|
loopset(i, firstset->cs[i] = follow->cs[i]); /* uses follow */
|
|
return e | 1; /* always can accept the empty string */
|
|
}
|
|
default: assert(0); return 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** If 'headfail(tree)' true, then 'tree' can fail only depending on the
|
|
** next character of the subject.
|
|
*/
|
|
static int headfail (TTree *tree) {
|
|
tailcall:
|
|
switch (tree->tag) {
|
|
case TChar: case TSet: case TAny: case TFalse:
|
|
return 1;
|
|
case TTrue: case TRep: case TRunTime: case TNot:
|
|
case TBehind: case TUTFR:
|
|
return 0;
|
|
case TCapture: case TGrammar: case TRule: case TXInfo: case TAnd:
|
|
tree = sib1(tree); goto tailcall; /* return headfail(sib1(tree)); */
|
|
case TCall:
|
|
tree = sib2(tree); goto tailcall; /* return headfail(sib2(tree)); */
|
|
case TSeq:
|
|
if (!nofail(sib2(tree))) return 0;
|
|
/* else return headfail(sib1(tree)); */
|
|
tree = sib1(tree); goto tailcall;
|
|
case TChoice:
|
|
if (!headfail(sib1(tree))) return 0;
|
|
/* else return headfail(sib2(tree)); */
|
|
tree = sib2(tree); goto tailcall;
|
|
default: assert(0); return 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Check whether the code generation for the given tree can benefit
|
|
** from a follow set (to avoid computing the follow set when it is
|
|
** not needed)
|
|
*/
|
|
static int needfollow (TTree *tree) {
|
|
tailcall:
|
|
switch (tree->tag) {
|
|
case TChar: case TSet: case TAny: case TUTFR:
|
|
case TFalse: case TTrue: case TAnd: case TNot:
|
|
case TRunTime: case TGrammar: case TCall: case TBehind:
|
|
return 0;
|
|
case TChoice: case TRep:
|
|
return 1;
|
|
case TCapture:
|
|
tree = sib1(tree); goto tailcall;
|
|
case TSeq:
|
|
tree = sib2(tree); goto tailcall;
|
|
default: assert(0); return 0;
|
|
}
|
|
}
|
|
|
|
/* }====================================================== */
|
|
|
|
|
|
|
|
/*
|
|
** {======================================================
|
|
** Code generation
|
|
** =======================================================
|
|
*/
|
|
|
|
|
|
/*
|
|
** size of an instruction
|
|
*/
|
|
int sizei (const Instruction *i) {
|
|
switch((Opcode)i->i.code) {
|
|
case ISet: case ISpan: return 1 + i->i.aux2.set.size;
|
|
case ITestSet: return 2 + i->i.aux2.set.size;
|
|
case ITestChar: case ITestAny: case IChoice: case IJmp: case ICall:
|
|
case IOpenCall: case ICommit: case IPartialCommit: case IBackCommit:
|
|
case IUTFR:
|
|
return 2;
|
|
default: return 1;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** state for the compiler
|
|
*/
|
|
typedef struct CompileState {
|
|
Pattern *p; /* pattern being compiled */
|
|
int ncode; /* next position in p->code to be filled */
|
|
lua_State *L;
|
|
} CompileState;
|
|
|
|
|
|
/*
|
|
** code generation is recursive; 'opt' indicates that the code is being
|
|
** generated as the last thing inside an optional pattern (so, if that
|
|
** code is optional too, it can reuse the 'IChoice' already in place for
|
|
** the outer pattern). 'tt' points to a previous test protecting this
|
|
** code (or NOINST). 'fl' is the follow set of the pattern.
|
|
*/
|
|
static void codegen (CompileState *compst, TTree *tree, int opt, int tt,
|
|
const Charset *fl);
|
|
|
|
|
|
static void finishrelcode (lua_State *L, Pattern *p, Instruction *block,
|
|
int size) {
|
|
if (block == NULL)
|
|
luaL_error(L, "not enough memory");
|
|
block->codesize = size;
|
|
p->code = (Instruction *)block + 1;
|
|
}
|
|
|
|
|
|
/*
|
|
** Initialize array 'p->code'
|
|
*/
|
|
static void newcode (lua_State *L, Pattern *p, int size) {
|
|
void *ud;
|
|
Instruction *block;
|
|
lua_Alloc f = lua_getallocf(L, &ud);
|
|
size++; /* slot for 'codesize' */
|
|
block = (Instruction*) f(ud, NULL, 0, size * sizeof(Instruction));
|
|
finishrelcode(L, p, block, size);
|
|
}
|
|
|
|
|
|
void freecode (lua_State *L, Pattern *p) {
|
|
if (p->code != NULL) {
|
|
void *ud;
|
|
lua_Alloc f = lua_getallocf(L, &ud);
|
|
uint osize = p->code[-1].codesize;
|
|
f(ud, p->code - 1, osize * sizeof(Instruction), 0); /* free block */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Assume that 'nsize' is not zero and that 'p->code' already exists.
|
|
*/
|
|
static void realloccode (lua_State *L, Pattern *p, int nsize) {
|
|
void *ud;
|
|
lua_Alloc f = lua_getallocf(L, &ud);
|
|
Instruction *block = p->code - 1;
|
|
uint osize = block->codesize;
|
|
nsize++; /* add the 'codesize' slot to size */
|
|
block = (Instruction*) f(ud, block, osize * sizeof(Instruction),
|
|
nsize * sizeof(Instruction));
|
|
finishrelcode(L, p, block, nsize);
|
|
}
|
|
|
|
|
|
/*
|
|
** Add space for an instruction with 'n' slots and return its index.
|
|
*/
|
|
static int nextinstruction (CompileState *compst, int n) {
|
|
int size = compst->p->code[-1].codesize - 1;
|
|
int ncode = compst->ncode;
|
|
if (ncode > size - n) {
|
|
uint nsize = size + (size >> 1) + n;
|
|
if (nsize >= INT_MAX)
|
|
luaL_error(compst->L, "pattern code too large");
|
|
realloccode(compst->L, compst->p, nsize);
|
|
}
|
|
compst->ncode = ncode + n;
|
|
return ncode;
|
|
}
|
|
|
|
|
|
#define getinstr(cs,i) ((cs)->p->code[i])
|
|
|
|
|
|
static int addinstruction (CompileState *compst, Opcode op, int aux) {
|
|
int i = nextinstruction(compst, 1);
|
|
getinstr(compst, i).i.code = op;
|
|
getinstr(compst, i).i.aux1 = aux;
|
|
return i;
|
|
}
|
|
|
|
|
|
/*
|
|
** Add an instruction followed by space for an offset (to be set later)
|
|
*/
|
|
static int addoffsetinst (CompileState *compst, Opcode op) {
|
|
int i = addinstruction(compst, op, 0); /* instruction */
|
|
addinstruction(compst, (Opcode)0, 0); /* open space for offset */
|
|
assert(op == ITestSet || sizei(&getinstr(compst, i)) == 2);
|
|
return i;
|
|
}
|
|
|
|
|
|
/*
|
|
** Set the offset of an instruction
|
|
*/
|
|
static void setoffset (CompileState *compst, int instruction, int offset) {
|
|
getinstr(compst, instruction + 1).offset = offset;
|
|
}
|
|
|
|
|
|
static void codeutfr (CompileState *compst, TTree *tree) {
|
|
int i = addoffsetinst(compst, IUTFR);
|
|
int to = sib1(tree)->u.n;
|
|
assert(sib1(tree)->tag == TXInfo);
|
|
getinstr(compst, i + 1).offset = tree->u.n;
|
|
getinstr(compst, i).i.aux1 = to & 0xff;
|
|
getinstr(compst, i).i.aux2.key = to >> 8;
|
|
}
|
|
|
|
|
|
/*
|
|
** Add a capture instruction:
|
|
** 'op' is the capture instruction; 'cap' the capture kind;
|
|
** 'key' the key into ktable; 'aux' is the optional capture offset
|
|
**
|
|
*/
|
|
static int addinstcap (CompileState *compst, Opcode op, int cap, int key,
|
|
int aux) {
|
|
int i = addinstruction(compst, op, joinkindoff(cap, aux));
|
|
getinstr(compst, i).i.aux2.key = key;
|
|
return i;
|
|
}
|
|
|
|
|
|
#define gethere(compst) ((compst)->ncode)
|
|
|
|
#define target(code,i) ((i) + code[i + 1].offset)
|
|
|
|
|
|
/*
|
|
** Patch 'instruction' to jump to 'target'
|
|
*/
|
|
static void jumptothere (CompileState *compst, int instruction, int target) {
|
|
if (instruction >= 0)
|
|
setoffset(compst, instruction, target - instruction);
|
|
}
|
|
|
|
|
|
/*
|
|
** Patch 'instruction' to jump to current position
|
|
*/
|
|
static void jumptohere (CompileState *compst, int instruction) {
|
|
jumptothere(compst, instruction, gethere(compst));
|
|
}
|
|
|
|
|
|
/*
|
|
** Code an IChar instruction, or IAny if there is an equivalent
|
|
** test dominating it
|
|
*/
|
|
static void codechar (CompileState *compst, int c, int tt) {
|
|
if (tt >= 0 && getinstr(compst, tt).i.code == ITestChar &&
|
|
getinstr(compst, tt).i.aux1 == c)
|
|
addinstruction(compst, IAny, 0);
|
|
else
|
|
addinstruction(compst, IChar, c);
|
|
}
|
|
|
|
|
|
/*
|
|
** Add a charset posfix to an instruction.
|
|
*/
|
|
static void addcharset (CompileState *compst, int inst, charsetinfo *info) {
|
|
int p;
|
|
Instruction *I = &getinstr(compst, inst);
|
|
byte *charset;
|
|
int isize = instsize(info->size); /* size in instructions */
|
|
int i;
|
|
I->i.aux2.set.offset = info->offset * 8; /* offset in bits */
|
|
I->i.aux2.set.size = isize;
|
|
I->i.aux1 = info->deflt;
|
|
p = nextinstruction(compst, isize); /* space for charset */
|
|
charset = getinstr(compst, p).buff; /* charset buffer */
|
|
for (i = 0; i < isize * (int)sizeof(Instruction); i++)
|
|
charset[i] = getbytefromcharset(info, i); /* copy the buffer */
|
|
}
|
|
|
|
|
|
/*
|
|
** Check whether charset 'info' is dominated by instruction 'p'
|
|
*/
|
|
static int cs_equal (Instruction *p, charsetinfo *info) {
|
|
if (p->i.code != ITestSet)
|
|
return 0;
|
|
else if (p->i.aux2.set.offset != info->offset * 8 ||
|
|
p->i.aux2.set.size != instsize(info->size) ||
|
|
p->i.aux1 != info->deflt)
|
|
return 0;
|
|
else {
|
|
int i;
|
|
for (i = 0; i < instsize(info->size) * (int)sizeof(Instruction); i++) {
|
|
if ((p + 2)->buff[i] != getbytefromcharset(info, i))
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
** Code a char set, using IAny when instruction is dominated by an
|
|
** equivalent test.
|
|
*/
|
|
static void codecharset (CompileState *compst, TTree *tree, int tt) {
|
|
charsetinfo info;
|
|
tree2cset(tree, &info);
|
|
if (tt >= 0 && cs_equal(&getinstr(compst, tt), &info))
|
|
addinstruction(compst, IAny, 0);
|
|
else {
|
|
int i = addinstruction(compst, ISet, 0);
|
|
addcharset(compst, i, &info);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Code a test set, optimizing unit sets for ITestChar, "complete"
|
|
** sets for ITestAny, and empty sets for IJmp (always fails).
|
|
** 'e' is true iff test should accept the empty string. (Test
|
|
** instructions in the current VM never accept the empty string.)
|
|
*/
|
|
static int codetestset (CompileState *compst, Charset *cs, int e) {
|
|
if (e) return NOINST; /* no test */
|
|
else {
|
|
charsetinfo info;
|
|
Opcode op = charsettype(cs->cs, &info);
|
|
switch (op) {
|
|
case IFail: return addoffsetinst(compst, IJmp); /* always jump */
|
|
case IAny: return addoffsetinst(compst, ITestAny);
|
|
case IChar: {
|
|
int i = addoffsetinst(compst, ITestChar);
|
|
getinstr(compst, i).i.aux1 = info.offset;
|
|
return i;
|
|
}
|
|
default: { /* regular set */
|
|
int i = addoffsetinst(compst, ITestSet);
|
|
addcharset(compst, i, &info);
|
|
assert(op == ISet);
|
|
return i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Find the final destination of a sequence of jumps
|
|
*/
|
|
static int finaltarget (Instruction *code, int i) {
|
|
while (code[i].i.code == IJmp)
|
|
i = target(code, i);
|
|
return i;
|
|
}
|
|
|
|
|
|
/*
|
|
** final label (after traversing any jumps)
|
|
*/
|
|
static int finallabel (Instruction *code, int i) {
|
|
return finaltarget(code, target(code, i));
|
|
}
|
|
|
|
|
|
/*
|
|
** <behind(p)> == behind n; <p> (where n = fixedlen(p))
|
|
*/
|
|
static void codebehind (CompileState *compst, TTree *tree) {
|
|
if (tree->u.n > 0)
|
|
addinstruction(compst, IBehind, tree->u.n);
|
|
codegen(compst, sib1(tree), 0, NOINST, fullset);
|
|
}
|
|
|
|
|
|
/*
|
|
** Choice; optimizations:
|
|
** - when p1 is headfail or when first(p1) and first(p2) are disjoint,
|
|
** than a character not in first(p1) cannot go to p1 and a character
|
|
** in first(p1) cannot go to p2, either because p1 will accept
|
|
** (headfail) or because it is not in first(p2) (disjoint).
|
|
** (The second case is not valid if p1 accepts the empty string,
|
|
** as then there is no character at all...)
|
|
** - when p2 is empty and opt is true; a IPartialCommit can reuse
|
|
** the Choice already active in the stack.
|
|
*/
|
|
static void codechoice (CompileState *compst, TTree *p1, TTree *p2, int opt,
|
|
const Charset *fl) {
|
|
int emptyp2 = (p2->tag == TTrue);
|
|
Charset cs1, cs2;
|
|
int e1 = getfirst(p1, fullset, &cs1);
|
|
if (headfail(p1) ||
|
|
(!e1 && (getfirst(p2, fl, &cs2), cs_disjoint(&cs1, &cs2)))) {
|
|
/* <p1 / p2> == test (fail(p1)) -> L1 ; p1 ; jmp L2; L1: p2; L2: */
|
|
int test = codetestset(compst, &cs1, 0);
|
|
int jmp = NOINST;
|
|
codegen(compst, p1, 0, test, fl);
|
|
if (!emptyp2)
|
|
jmp = addoffsetinst(compst, IJmp);
|
|
jumptohere(compst, test);
|
|
codegen(compst, p2, opt, NOINST, fl);
|
|
jumptohere(compst, jmp);
|
|
}
|
|
else if (opt && emptyp2) {
|
|
/* p1? == IPartialCommit; p1 */
|
|
jumptohere(compst, addoffsetinst(compst, IPartialCommit));
|
|
codegen(compst, p1, 1, NOINST, fullset);
|
|
}
|
|
else {
|
|
/* <p1 / p2> ==
|
|
test(first(p1)) -> L1; choice L1; <p1>; commit L2; L1: <p2>; L2: */
|
|
int pcommit;
|
|
int test = codetestset(compst, &cs1, e1);
|
|
int pchoice = addoffsetinst(compst, IChoice);
|
|
codegen(compst, p1, emptyp2, test, fullset);
|
|
pcommit = addoffsetinst(compst, ICommit);
|
|
jumptohere(compst, pchoice);
|
|
jumptohere(compst, test);
|
|
codegen(compst, p2, opt, NOINST, fl);
|
|
jumptohere(compst, pcommit);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** And predicate
|
|
** optimization: fixedlen(p) = n ==> <&p> == <p>; behind n
|
|
** (valid only when 'p' has no captures)
|
|
*/
|
|
static void codeand (CompileState *compst, TTree *tree, int tt) {
|
|
int n = fixedlen(tree);
|
|
if (n >= 0 && n <= MAXBEHIND && !hascaptures(tree)) {
|
|
codegen(compst, tree, 0, tt, fullset);
|
|
if (n > 0)
|
|
addinstruction(compst, IBehind, n);
|
|
}
|
|
else { /* default: Choice L1; p1; BackCommit L2; L1: Fail; L2: */
|
|
int pcommit;
|
|
int pchoice = addoffsetinst(compst, IChoice);
|
|
codegen(compst, tree, 0, tt, fullset);
|
|
pcommit = addoffsetinst(compst, IBackCommit);
|
|
jumptohere(compst, pchoice);
|
|
addinstruction(compst, IFail, 0);
|
|
jumptohere(compst, pcommit);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Captures: if pattern has fixed (and not too big) length, and it
|
|
** has no nested captures, use a single IFullCapture instruction
|
|
** after the match; otherwise, enclose the pattern with OpenCapture -
|
|
** CloseCapture.
|
|
*/
|
|
static void codecapture (CompileState *compst, TTree *tree, int tt,
|
|
const Charset *fl) {
|
|
int len = fixedlen(sib1(tree));
|
|
if (len >= 0 && len <= MAXOFF && !hascaptures(sib1(tree))) {
|
|
codegen(compst, sib1(tree), 0, tt, fl);
|
|
addinstcap(compst, IFullCapture, tree->cap, tree->key, len);
|
|
}
|
|
else {
|
|
addinstcap(compst, IOpenCapture, tree->cap, tree->key, 0);
|
|
codegen(compst, sib1(tree), 0, tt, fl);
|
|
addinstcap(compst, ICloseCapture, Cclose, 0, 0);
|
|
}
|
|
}
|
|
|
|
|
|
static void coderuntime (CompileState *compst, TTree *tree, int tt) {
|
|
addinstcap(compst, IOpenCapture, Cgroup, tree->key, 0);
|
|
codegen(compst, sib1(tree), 0, tt, fullset);
|
|
addinstcap(compst, ICloseRunTime, Cclose, 0, 0);
|
|
}
|
|
|
|
|
|
/*
|
|
** Create a jump to 'test' and fix 'test' to jump to next instruction
|
|
*/
|
|
static void closeloop (CompileState *compst, int test) {
|
|
int jmp = addoffsetinst(compst, IJmp);
|
|
jumptohere(compst, test);
|
|
jumptothere(compst, jmp, test);
|
|
}
|
|
|
|
|
|
/*
|
|
** Try repetition of charsets:
|
|
** For an empty set, repetition of fail is a no-op;
|
|
** For any or char, code a tight loop;
|
|
** For generic charset, use a span instruction.
|
|
*/
|
|
static int coderepcharset (CompileState *compst, TTree *tree) {
|
|
switch (tree->tag) {
|
|
case TFalse: return 1; /* 'fail*' is a no-op */
|
|
case TAny: { /* L1: testany -> L2; any; jmp L1; L2: */
|
|
int test = addoffsetinst(compst, ITestAny);
|
|
addinstruction(compst, IAny, 0);
|
|
closeloop(compst, test);
|
|
return 1;
|
|
}
|
|
case TChar: { /* L1: testchar c -> L2; any; jmp L1; L2: */
|
|
int test = addoffsetinst(compst, ITestChar);
|
|
getinstr(compst, test).i.aux1 = tree->u.n;
|
|
addinstruction(compst, IAny, 0);
|
|
closeloop(compst, test);
|
|
return 1;
|
|
}
|
|
case TSet: { /* regular set */
|
|
charsetinfo info;
|
|
int i = addinstruction(compst, ISpan, 0);
|
|
tree2cset(tree, &info);
|
|
addcharset(compst, i, &info);
|
|
return 1;
|
|
}
|
|
default: return 0; /* not a charset */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Repetion; optimizations:
|
|
** When pattern is a charset, use special code.
|
|
** When pattern is head fail, or if it starts with characters that
|
|
** are disjoint from what follows the repetions, a simple test
|
|
** is enough (a fail inside the repetition would backtrack to fail
|
|
** again in the following pattern, so there is no need for a choice).
|
|
** When 'opt' is true, the repetion can reuse the Choice already
|
|
** active in the stack.
|
|
*/
|
|
static void coderep (CompileState *compst, TTree *tree, int opt,
|
|
const Charset *fl) {
|
|
if (!coderepcharset(compst, tree)) {
|
|
Charset st;
|
|
int e1 = getfirst(tree, fullset, &st);
|
|
if (headfail(tree) || (!e1 && cs_disjoint(&st, fl))) {
|
|
/* L1: test (fail(p1)) -> L2; <p>; jmp L1; L2: */
|
|
int test = codetestset(compst, &st, 0);
|
|
codegen(compst, tree, 0, test, fullset);
|
|
closeloop(compst, test);
|
|
}
|
|
else {
|
|
/* test(fail(p1)) -> L2; choice L2; L1: <p>; partialcommit L1; L2: */
|
|
/* or (if 'opt'): partialcommit L1; L1: <p>; partialcommit L1; */
|
|
int commit, l2;
|
|
int test = codetestset(compst, &st, e1);
|
|
int pchoice = NOINST;
|
|
if (opt)
|
|
jumptohere(compst, addoffsetinst(compst, IPartialCommit));
|
|
else
|
|
pchoice = addoffsetinst(compst, IChoice);
|
|
l2 = gethere(compst);
|
|
codegen(compst, tree, 0, NOINST, fullset);
|
|
commit = addoffsetinst(compst, IPartialCommit);
|
|
jumptothere(compst, commit, l2);
|
|
jumptohere(compst, pchoice);
|
|
jumptohere(compst, test);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Not predicate; optimizations:
|
|
** In any case, if first test fails, 'not' succeeds, so it can jump to
|
|
** the end. If pattern is headfail, that is all (it cannot fail
|
|
** in other parts); this case includes 'not' of simple sets. Otherwise,
|
|
** use the default code (a choice plus a failtwice).
|
|
*/
|
|
static void codenot (CompileState *compst, TTree *tree) {
|
|
Charset st;
|
|
int e = getfirst(tree, fullset, &st);
|
|
int test = codetestset(compst, &st, e);
|
|
if (headfail(tree)) /* test (fail(p1)) -> L1; fail; L1: */
|
|
addinstruction(compst, IFail, 0);
|
|
else {
|
|
/* test(fail(p))-> L1; choice L1; <p>; failtwice; L1: */
|
|
int pchoice = addoffsetinst(compst, IChoice);
|
|
codegen(compst, tree, 0, NOINST, fullset);
|
|
addinstruction(compst, IFailTwice, 0);
|
|
jumptohere(compst, pchoice);
|
|
}
|
|
jumptohere(compst, test);
|
|
}
|
|
|
|
|
|
/*
|
|
** change open calls to calls, using list 'positions' to find
|
|
** correct offsets; also optimize tail calls
|
|
*/
|
|
static void correctcalls (CompileState *compst, int *positions,
|
|
int from, int to) {
|
|
int i;
|
|
Instruction *code = compst->p->code;
|
|
for (i = from; i < to; i += sizei(&code[i])) {
|
|
if (code[i].i.code == IOpenCall) {
|
|
int n = code[i].i.aux2.key; /* rule number */
|
|
int rule = positions[n]; /* rule position */
|
|
assert(rule == from || code[rule - 1].i.code == IRet);
|
|
if (code[finaltarget(code, i + 2)].i.code == IRet) /* call; ret ? */
|
|
code[i].i.code = IJmp; /* tail call */
|
|
else
|
|
code[i].i.code = ICall;
|
|
jumptothere(compst, i, rule); /* call jumps to respective rule */
|
|
}
|
|
}
|
|
assert(i == to);
|
|
}
|
|
|
|
|
|
/*
|
|
** Code for a grammar:
|
|
** call L1; jmp L2; L1: rule 1; ret; rule 2; ret; ...; L2:
|
|
*/
|
|
static void codegrammar (CompileState *compst, TTree *grammar) {
|
|
int positions[MAXRULES];
|
|
int rulenumber = 0;
|
|
TTree *rule;
|
|
int firstcall = addoffsetinst(compst, ICall); /* call initial rule */
|
|
int jumptoend = addoffsetinst(compst, IJmp); /* jump to the end */
|
|
int start = gethere(compst); /* here starts the initial rule */
|
|
jumptohere(compst, firstcall);
|
|
for (rule = sib1(grammar); rule->tag == TRule; rule = sib2(rule)) {
|
|
TTree *r = sib1(rule);
|
|
assert(r->tag == TXInfo);
|
|
positions[rulenumber++] = gethere(compst); /* save rule position */
|
|
codegen(compst, sib1(r), 0, NOINST, fullset); /* code rule */
|
|
addinstruction(compst, IRet, 0);
|
|
}
|
|
assert(rule->tag == TTrue);
|
|
jumptohere(compst, jumptoend);
|
|
correctcalls(compst, positions, start, gethere(compst));
|
|
}
|
|
|
|
|
|
static void codecall (CompileState *compst, TTree *call) {
|
|
int c = addoffsetinst(compst, IOpenCall); /* to be corrected later */
|
|
assert(sib1(sib2(call))->tag == TXInfo);
|
|
getinstr(compst, c).i.aux2.key = sib1(sib2(call))->u.n; /* rule number */
|
|
}
|
|
|
|
|
|
/*
|
|
** Code first child of a sequence
|
|
** (second child is called in-place to allow tail call)
|
|
** Return 'tt' for second child
|
|
*/
|
|
static int codeseq1 (CompileState *compst, TTree *p1, TTree *p2,
|
|
int tt, const Charset *fl) {
|
|
if (needfollow(p1)) {
|
|
Charset fl1;
|
|
getfirst(p2, fl, &fl1); /* p1 follow is p2 first */
|
|
codegen(compst, p1, 0, tt, &fl1);
|
|
}
|
|
else /* use 'fullset' as follow */
|
|
codegen(compst, p1, 0, tt, fullset);
|
|
if (fixedlen(p1) != 0) /* can 'p1' consume anything? */
|
|
return NOINST; /* invalidate test */
|
|
else return tt; /* else 'tt' still protects sib2 */
|
|
}
|
|
|
|
|
|
/*
|
|
** Main code-generation function: dispatch to auxiliar functions
|
|
** according to kind of tree. ('needfollow' should return true
|
|
** only for consructions that use 'fl'.)
|
|
*/
|
|
static void codegen (CompileState *compst, TTree *tree, int opt, int tt,
|
|
const Charset *fl) {
|
|
tailcall:
|
|
switch (tree->tag) {
|
|
case TChar: codechar(compst, tree->u.n, tt); break;
|
|
case TAny: addinstruction(compst, IAny, 0); break;
|
|
case TSet: codecharset(compst, tree, tt); break;
|
|
case TTrue: break;
|
|
case TFalse: addinstruction(compst, IFail, 0); break;
|
|
case TUTFR: codeutfr(compst, tree); break;
|
|
case TChoice: codechoice(compst, sib1(tree), sib2(tree), opt, fl); break;
|
|
case TRep: coderep(compst, sib1(tree), opt, fl); break;
|
|
case TBehind: codebehind(compst, tree); break;
|
|
case TNot: codenot(compst, sib1(tree)); break;
|
|
case TAnd: codeand(compst, sib1(tree), tt); break;
|
|
case TCapture: codecapture(compst, tree, tt, fl); break;
|
|
case TRunTime: coderuntime(compst, tree, tt); break;
|
|
case TGrammar: codegrammar(compst, tree); break;
|
|
case TCall: codecall(compst, tree); break;
|
|
case TSeq: {
|
|
tt = codeseq1(compst, sib1(tree), sib2(tree), tt, fl); /* code 'p1' */
|
|
/* codegen(compst, p2, opt, tt, fl); */
|
|
tree = sib2(tree); goto tailcall;
|
|
}
|
|
default: assert(0);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Optimize jumps and other jump-like instructions.
|
|
** * Update labels of instructions with labels to their final
|
|
** destinations (e.g., choice L1; ... L1: jmp L2: becomes
|
|
** choice L2)
|
|
** * Jumps to other instructions that do jumps become those
|
|
** instructions (e.g., jump to return becomes a return; jump
|
|
** to commit becomes a commit)
|
|
*/
|
|
static void peephole (CompileState *compst) {
|
|
Instruction *code = compst->p->code;
|
|
int i;
|
|
for (i = 0; i < compst->ncode; i += sizei(&code[i])) {
|
|
redo:
|
|
switch (code[i].i.code) {
|
|
case IChoice: case ICall: case ICommit: case IPartialCommit:
|
|
case IBackCommit: case ITestChar: case ITestSet:
|
|
case ITestAny: { /* instructions with labels */
|
|
jumptothere(compst, i, finallabel(code, i)); /* optimize label */
|
|
break;
|
|
}
|
|
case IJmp: {
|
|
int ft = finaltarget(code, i);
|
|
switch (code[ft].i.code) { /* jumping to what? */
|
|
case IRet: case IFail: case IFailTwice:
|
|
case IEnd: { /* instructions with unconditional implicit jumps */
|
|
code[i] = code[ft]; /* jump becomes that instruction */
|
|
code[i + 1].i.code = IEmpty; /* 'no-op' for target position */
|
|
break;
|
|
}
|
|
case ICommit: case IPartialCommit:
|
|
case IBackCommit: { /* inst. with unconditional explicit jumps */
|
|
int fft = finallabel(code, ft);
|
|
code[i] = code[ft]; /* jump becomes that instruction... */
|
|
jumptothere(compst, i, fft); /* but must correct its offset */
|
|
goto redo; /* reoptimize its label */
|
|
}
|
|
default: {
|
|
jumptothere(compst, i, ft); /* optimize label */
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
default: break;
|
|
}
|
|
}
|
|
assert(code[i - 1].i.code == IEnd);
|
|
}
|
|
|
|
|
|
/*
|
|
** Compile a pattern. 'size' is the size of the pattern's tree,
|
|
** which gives a hint for the size of the final code.
|
|
*/
|
|
Instruction *compile (lua_State *L, Pattern *p, uint size) {
|
|
CompileState compst;
|
|
compst.p = p; compst.ncode = 0; compst.L = L;
|
|
newcode(L, p, size/2u + 2); /* set initial size */
|
|
codegen(&compst, p->tree, 0, NOINST, fullset);
|
|
addinstruction(&compst, IEnd, 0);
|
|
realloccode(L, p, compst.ncode); /* set final size */
|
|
peephole(&compst);
|
|
return p->code;
|
|
}
|
|
|
|
|
|
/* }====================================================== */
|
|
|