PCSX-Redux

None

Table of contents

Table of contents

1. Home 4
2. PCSX-Redux menus 5
2.1 File 6
2.2 Emulation 7
2.3 Configuration 7
2.4 Debug 8
2.5 Help 8
2.6 GPU information 8
3. Compiling PCSX-Redux 10
3.1 Getting the sources 10
3.2 Windows 10
3.3 Linux 11
3.4 Compiling PSX code 12
4. Command Line Flags 14
5. Debugging 18
5.1 Debugging with PCSX-Redux 18
5.2 GDB server 19
5.3 Connecting Ghidra to PCSX-Redux 28
5.4 Misc Features 31
5.5 VRAM viewer 34
5.6 GPU Logger 35
6. Mips APL 37
6.1 Description 37
6.2 Functions 38
7. Web server 41
7.1 Activation 41
7.2 REST API 41
8. Lua 44
8.1 Introduction 44
8.2 Loaded libraries 46
8.3 Redux basic API 48
8.4 Rendering 57
8.5 File API 67
8.6 Webserver Lua API 76
8.7 Memory and registers 77

-2/94 -

8.8 Events

8.9 Breakpoints

8.10 Inline assembler
8.11 Handling of PSX binaries
8.12 Case studies

. Openbios

9.1 Purposes of Openbios
9.2 Building

9.3 Status

9.4 Organization

9.5 Technicalities

9.6 Commentary

9.7 Legality

-3/94 -

Table of contents

80

84

87

88

92

1. Home

1. Home

Welcome to the PCSX-Redux emulator documentation.

You can get the emulator for various platforms here: https://github.com/grumpycoders/
pcsx-redux#where

To discuss this emulator specifically, please join our Discord server:

PCSX-Redux
57 ONLINE a JISCORD >

To discuss PlayStation 1 development, hacking, and reverse engineering in general,
please join the PSX.Dev Discord server:

PSX.Dev
758 ONLINE a DISCORD >

Compiling PCSX-Redux
Menus

Command line arguments
Debugging with PCSX-Redux
Internal MIPS api

Web Server

Lua API

OpenBios

- 4/94 -

https://github.com/grumpycoders/pcsx-redux
https://github.com/grumpycoders/pcsx-redux#where
https://github.com/grumpycoders/pcsx-redux#where
https://discord.gg/KG5uCqw
https://discord.gg/KG5uCqw
https://discord.gg/QByKPpH
https://discord.gg/QByKPpH

2. PCSX-Redux menus

2. PCSX-Redux menus

The menu bar holds some informations :

File Emulation Configuration Debug He CPU: Interpreted GAME ID: S(37 48,64 FPS (20,56 ms)

e CPU mode
e Game ID

e ImGui FPS counter (not psx internal fps)

-5/94 -

2.1 File

2.1 File

File Emulation Configuratio

Open ISO

Close IS0

Load binary

Dump save sktate proto schema
Save sktate slots
Load sktate slots
Save global state
Load global state
Open LID

Close LID

Open and close LID

Memory Card 1 inserted

Memory Card 2 inserted
Reboot
Quit

e Open ISO
e Close ISO

Load Binary

Dump save state proto schema

Save state slots

Load state slots

e Save global state
¢ Load global state
e Open Lid : Simulate open lid

e Close Lid : Simulate closed lid

Open and Close Lid : Simulate opening then closing the lid

MC1 inserted: Insert or remove Memory Card 1

MC2 inserted: Insert or remove Memory Card 2

Reboot : Restart emulator

Quit

-6/94 -

2.2 Emulation

2.2 Emulation

Emulation Con

Sktark
Pause
Sof b Reset

Hard Reset

e Start (F5): Start execution
e Pause (F6): Pause execution

e Soft reset (F8): Calls Redux's CPU reset function, which jumps to the BIOS entrypoint
(OxBFC00000), resets some COPO registers and the general purpose registers, and
resets some IO. Does not clear vram.

e Hard reset (Shift-F8): Similar to a reboot of the PSX.

2.3 Configuration

Configuraktion Debug

Emulation
GPU

SPU

UI
Controls

Shader presets

Configure Shaders

e Emulation : Emulation settings

e GPU : Graphics Processing Unit settings

e SPU : Sound Processing Unit settings

e UI : Change user interface settings (such as font size, language or UI theme)
e Controls : Edit KB/Pad controls

e Shader presets : Apply a shader preset

e Configure shaders : Show shader editor

-7/94 -

2.4 Debug

2.4 Debug

Debug Help CPU: Interpreted

Show Logs v
Show Lua Console

Show Lua Inspector

Show Lua editor

YRAM viewers

Show Registers

Show Assembly

Show Breakpoints
Breakpoint on vsync
Memory Editors

Show Interrupts Scaler
Kernel Events

Kernel Calls

First Chance Exceptions
Show SPU debug

Start GPU dump

Stop GPU dump

Show types

Show source

Fullscreen render

Show Output Shader Editor
Show Offscreen Shader Editor

Show raw DWARF info

2.5 Help

e Show ImGui demo

e About

2.6 GPU information

The 'About' dialog available in the 'Help' menu has an 'OpenGL information' tab that
displays information on the GPU currently used by the program, such as the supported
OpenGL extensions.

-8/94 -

2.6 GPU information

¥ abouk
PCSX-Redux

Authors OpenGL information

Core profile: yes

Yendor: MVIDIA Corporaktion

Renderer: NVIDIA GeForce GTX 1050/PCle/SSE2

Yersion: 3.2.0 NVIDIA 470,63, 01

Shading language version: 1,50 NVIDIA via Cg compiler
Extensions:

GL_AMD_mulEi_draw_indirect
GL_AMD_seamless_cubemap_per_texture
GL_AMD_vertex_shader_viewport_index
GL_AMD_vertex_shader_layer

GL_ARB_arrays_of_arrays
GL_#RB_base_instance
GL_ARB_bindless_texture
GL_ARB_blend_func_extended
GL_ARB_buffer_storage

fall ANE Alasn hufFfanm ~Akhsmaak

-9/94 -

3. Compiling PCSX-Redux

3. Compiling PCSX-Redux

3.1 Getting the sources

The only location for the source is on github. Clone recursively, as the project uses
submodules:

git clone https://github.com/grumpycoders/pcsx-redux.git —--recursive .

3.2 Windows

Install Visual Studio 2019 Community Edition.
Open the file vsprojects\pcsx-redux.sln, select pcsx-redux -> pcsx-redux, right
click, set as Startup Project, and hit ¥7 to build.

The project follows the open-and-build paradigm with no extra step, so no specific
dependency ought to be needed, as NuGet will take care of downloading them
automatically for you on the first build.

Note: If you get an error saying
hresult e fail has been returned from a call to a com component , you might

need to delete the .suo file in vsproject/vs, restart Visual Studio and retry.

Openbios

Using Visual Studio Code, one can use the task "make_openbios" to compile: CTRL-P
then task make openbios to compile.

-10/94 -

https://github.com/grumpycoders/pcsx-redux/
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&rel=16
https://www.nuget.org/
https://code.visualstudio.com/

3.3 Linux

3.3 Linux

3.3.1 Compiling with Docker

Run ./dockermake.sh . You need docker for this to work.

Debian derivative; Ubuntu, Mint...
sudo apt install docker
Arch derivative; Manjaro...

sudo pacman -S docker

You will also need a few libraries on your system for this to work. Check the Dockerfile
for a list of library packages to install.

3.3.2 Compiling with make

e Debian derivatives (for full emulator compilation):

1 sudo apt-get install -y build-essential git make pkg-config clang g++ g++-mipsel-
linux—-gnu cpp-mipsel-linux-gnu binutils-mipsel-linux-gnu libfreetype-dev libavcodec-
dev libavformat-dev libavutil-dev libcurl4-openssl-dev libglfw3-dev libswresample-

dev libuvl-dev zliblg-dewv

e Arch derivatives :

1 sudo pacman -S clang git make pkg-config ffmpeg libuv zlib glfw-x11 curl xorg-server-—
xvfb

You can then just enter the 'pcsx-redux’ directory and compile without using docker with
make .

If you have a different mips compiler, you'll need to override some variables, such as
PREFIX=mipsel-none-elf FORMAT=elf32-littlemips.

Openbios

Building OpenBIOS on Linux can be done with docker : ./dockermake.sh openbios,

or using make , with the g++-mipsel-linux-gnu package installed ; make openbios .

- 11/94 -

https://en.wikipedia.org/wiki/Docker_(software)
https://github.com/grumpycoders/pcsx-redux/blob/main/tools/build/Dockerfile#L22

3.3.3 MacOS

3.3.3 MacOS

You need MacOS Catalina with the latest XCode to build, as well as a few homebrew
packages.
Run the brew installation script to get all the necessary dependencies.

Run make to build.

Compiling OpenBIOS will require a mips compiler, that you can generate using the
following commands:

Openbios

1 brew install ./tools/macos-mips/mipsel-none-elf-binutils.zrb

2 brew install ./tools/macos-mips/mipsel-none-elf-gcc.rb

Then, you can compile OpenBIOS using make -C ./src/mips/openbios .

3.4 Compiling PSX code
If you're only interested in compiling psx code, you can clone the PCSX-Redux repo;

1 git clone https://github.com/grumpycoders/pcsx—-redux.git —--recursive

then install a mips toolchain and get the converted PsyQ libraries in the
pcsx-redux/src/mips/psyq/ folder as per these instructions.

You can also find the pre-compiled converted Psyq libraries online.

3.4.1 Getting the toolchain on Windows

Download the MIPS toolchain here : https://static.grumpycoder.net/pixel/mips/g++-
mipsel-none-elf-10.3.0.zip
and add the bin folder to your $PATH.

You can test it's working by launching a command prompt and typing
mipsel-none-elf-gcc.exe --version . If you get a message like mipsel-none-gnu-
gcc (GCc) 10.3.0, thenit's working !

-12/94 -

https://brew.sh/
https://github.com/grumpycoders/pcsx-redux/blob/main/.github/scripts/install-brew-dependencies.sh
https://github.com/ABelliqueux/pcsx-redux/blob/main/src/mips/psyq/README.md
https://github.com/ABelliqueux/nolibgs_hello_worlds/blob/main/README.md#nugget--psyq-setup
http://static.grumpycoder.net/pixel/mips/g++-mipsel-none-elf-10.3.0.zip
http://static.grumpycoder.net/pixel/mips/g++-mipsel-none-elf-10.3.0.zip
https://stackoverflow.com/questions/44272416/how-to-add-a-folder-to-path-environment-variable-in-windows-10-with-screensho#44272417
https://www.lifewire.com/how-to-open-command-prompt-2618089

3.4.2 Getting the toolchain on GNU/Linux

3.4.2 Getting the toolchain on GNU/Linux

Debian derivative; Ubuntu, Mint...

1 sudo apt install g+t+-mipsel-linux-gnu cpp-mipsel-linux-gnu binutils-mipsel-linux-gnu

Arch derivative; Manjaro...

The mipsel environment can be installed from AUR : cross-mipsel-linux-gnu-binutils and
cross-mipsel-linux-gnu-gcc using your AURhelper of choice:

1 trizen -S cross-mipsel-linux-gnu-binutils cross-mipsel-linux-gnu-gcc

-13/94 -

https://wiki.archlinux.org/index.php/Aur
https://aur.archlinux.org/packages/cross-mipsel-linux-gnu-binutils/
https://aur.archlinux.org/packages/cross-mipsel-linux-gnu-gcc/
https://wiki.archlinux.org/index.php/AUR_helpers

4. Command Line Flags

4. Command Line Flags

You can launch pcsx-redux with the following command line parameters:

- 14/94 -

4. Command Line Flags

The parsing code doesn't care about the number of dashes in the parameter’'s
flag, so '-' can be used as well as '--', or any humber of dashes.

-15/94 -

Flag
—dumpproto
—run
-stdout
-lua_ stdout
-logfile
-bios

-testmode

-exe
-loadexe
-iso
-loadiso
-memcardl
-memcard?2
-pcdrv
-pcdrvbase
-safe
-resetui
-kiosk
-no-kiosk
-interpreter
—-dynarec
—-debugger
-no-debugger
-fastboot
-no-fastboot
—gdb

-no-gdb
—-gdb-port
—-trace
-no-trace
-no-gui-log

—archive

4. Command Line Flags

Meaning

Dump the protobuf schemas for PCSX-Redux on stdout and exit immediately.
Begin execution immediately on startup.

Redirect log output to stdout.

Redirect Lua's console output to stdout.

Specify a file to log output to.

Specify a BIOS file.

Interpret internal API's pcsx exit () command as a request to exit the emulator instead of pausing, and
close the emulator. Implies -safe, -no-gui-log, and will also disable first chance exceptions. Use only
when doing unit testing.

Load a PSX exe.

Load a PSX exe.

Load a PSX disk image (iso, bin/cue).

Load a PSX disk image (iso, bin/cue).

Specify a memory card file to use as memory card slot 1.

Specify a memory card file to use as memory card slot 2.

Enable the pcdrv device interface. (Access PC filesystem through SIO).
Specify base directory for pcdrv.

Resets configuration to defaults.

Resets the UI to its defaults.

Enables kiosk mode, disabling UI interaction. Will change the saved setting.
Disables kiosk mode, allowing the user to interact with the UI. Will change the saved setting.
Use the interpreter CPU core.

Use the dynamic recompiler CPU core.

Activates the debugger. Will change the saved setting.

Deactivates the debugger. Will change the saved setting.

Skips the BIOS logo and boot animation. Will change the saved setting.
Shows the BIOS logo and boot animation. Will change the saved setting.
Activates the gdb server. Will change the saved setting.

Deactivates the gdb server. Will change the saved setting.

Sets the TCP port the gdb server is listening on. Will change the saved setting.
Activates the CPU trace logging. Will change the saved setting.

Deactivates the CPU trace logging. Will change the saved setting.

Fully disables logs to be sent to the GUI.

Specifies a .zip file to load for the Support.extra.dofile function.

-16/94 -

Flag
-dofile
-exec
-luacov

-portable

4. Command Line Flags

Meaning

Specifies a Lua file to load through the support.extra.dofile function.

Specifies a Lua string to execute.

Enables Lua code coverage report. Requires the luacov Lua module to be installed.

Enables portable mode. Settings and saves will be stored in the same directory as the executable, or in the
directory specified by the optional argument to this flag.

-17/94 -

5. Debugging

5. Debugging

5.1 Debugging with PCSX-Redux

PCSX-Redux has strong debugging capabilities. It has a built-in GDB server, which
allows you to connect to it with a GDB client, such as gdb itself when targeting MIPS, a
vscode connector, IDA Pro, or Ghidra, and debug the MIPS CPU. See debugging with
Ghidra for more information on debugging with Ghidra.

There are also built-in debugging tools, available in the Debug menu. Most of the CPU
debugging features will require switching the Dynarec off from the Emulation
configuration menu, as the Dynarec is not compatible with the debugging features.
Additionally, the debugger needs to be enabled, also in the Emulation configuration

menu.

The GPU debugging tools can work with the Dynarec enabled, and thus will be much
faster than when the interpreter is used.

-18/94 -

5.2 GDB server

5.2 GDB server

The GDB server allows you to set breakpoints and control your PSX program's execution
from your gdb compatible IDE.

5.2.1 Enabling the GDB server

File Emulation Configuration Debug Help CPU: Interpreted GAME ID:

Emulation v

GPU

SPU

UI

Conktrols ¥ Emulation Configuration X
Shader presets >

Configure Shaders 1 Idle Swap I

Resekt Scaler
1.000 Speed Scale
+ Enable Xa& decoder
Always enable SPU IRQ
Decode MDEC videos in B&Ww
+" Dynarec CPU
aMB
Aukto ¥ System Type
Little Endian ¥ CDDA
+" Fast boot
fhome/arthus/. config/pesx-ri BIOS file
Enable Debugger
Enable GDB Server
+" GDB send manifest
TTY ¥ PCSX Logs t
3333 - + GDB Server
GDB Server Trace
Enable Web Server

8080 - + Web Server

-

In PCSX-Redux: Configuration > Emulation > Enable GDB server.

Make sure the debugger is also enabled.

-19/94 -

5.2.2 GDB setup

F:%\reduxh\openbios.bin

Enable Debugger
Enable GDB Server

3333

5.2.2 GDB setup

You need gdb-multiarch on your system :

Windows

Download a pre-compiled version from here : https://static.grumpycoder.net/pixel/gdb-

multiarch-windows/

GNU/Linux

DEBIAN BASED

Install via your package manager :

1 # Debian derivative; Ubuntu, Mint...
2 sudo apt install gdb-multiarch

ARCH BASED

On Arch based distributions, multiarch is now enabled by default in regular builds and
you don't need to install a specific version anymore.
You can install the 'gdb' package with pacman

1 sudo pacman -S gdb

5.2.3 IDE setup
MS VScode

e Install the Native debug extension :
https://marketplace.visualstudio.com/items?itemName=webfreak.debug

-20/94 -

https://static.grumpycoder.net/pixel/gdb-multiarch-windows/
https://static.grumpycoder.net/pixel/gdb-multiarch-windows/
https://gitlab.archlinux.org/archlinux/packaging/packages/gdb/-/blob/main/PKGBUILD?ref_type=heads#L50
https://marketplace.visualstudio.com/items?itemName=webfreak.debug

5.2.3 IDE setup

e Adapt your launch.json file to your environment :

A sample lanuch.json file is available here.

This should go in your-project/.vscode/ .

You need to adapt the values of "executable", "gdbpath" and "autorun" according

to your system :

EXECUTABLE

This is the path to your .elf executable :

1 "executable": "HelloWorld.elf",

https://github.com/grumpycoders/pcsx-redux/blob/
a3bebd490388130e924124cdfeff3bc46b6149d9/.vscode/launch.json#L153

GDBPATH

This the path to the gdb-multiarch executable:

1 "gdbpath": "/usr/bin/gdb-multiarch",

https://github.com/grumpycoders/pcsx-redux/blob/
a3bebd490388130e924124cdfeff3bc46b6149d9/.vscode/launch.json#L154-1L157

AUTORUN

"autorun": [
"monitor reset shellhalt",

[...]
"load your-file.elf",

Sw NN

Make sure that "load your-file.elf" corresponds to the "target" value.

https://github.com/grumpycoders/pcsx-redux/blob/
a3bebd490388130e924124cdfeff3bc46b6149d9/.vscode/launch.json#L159-L165

-21/94 -

https://github.com/grumpycoders/pcsx-redux/blob/main/.vscode/launch.json
https://github.com/grumpycoders/pcsx-redux/blob/a3bebd490388130e924124cdfeff3bc46b6149d9/.vscode/launch.json#L153
https://github.com/grumpycoders/pcsx-redux/blob/a3bebd490388130e924124cdfeff3bc46b6149d9/.vscode/launch.json#L153
https://github.com/grumpycoders/pcsx-redux/blob/a3bebd490388130e924124cdfeff3bc46b6149d9/.vscode/launch.json#L154-L157
https://github.com/grumpycoders/pcsx-redux/blob/a3bebd490388130e924124cdfeff3bc46b6149d9/.vscode/launch.json#L154-L157
https://github.com/grumpycoders/pcsx-redux/blob/a3bebd490388130e924124cdfeff3bc46b6149d9/.vscode/launch.json#L159-L165
https://github.com/grumpycoders/pcsx-redux/blob/a3bebd490388130e924124cdfeff3bc46b6149d9/.vscode/launch.json#L159-L165

5.2.3 IDE setup

By default, using localhost should work, but if encountering trouble, try using your

computer's local IP (e.g; 192.168.x.x, 10.0.x.x, etc.)

https://github.com/grumpycoders/pcsx-redux/blob/
a3bebd490388130e924124cdfeff3bc46b6149d9/.vscode/launch.json#L150

C main.c > @ main(

main() {
printf(“Hellc
while (1);

DEBUG CONSOLE

ytion): undefined
p

Emulation

Emulation

PAUSED ON BREAKPOINT

main.c 11

Geany

Make sure you installed the official plugins and enable the Scope debugger .

To enable the plugin, open Geany, go to Tools > Plugin manager and enable Scope

Debugger .

You can find the debugging facilities in the Debug menu ;

-22/94 -

https://github.com/grumpycoders/pcsx-redux/blob/a3bebd490388130e924124cdfeff3bc46b6149d9/.vscode/launch.json#L150
https://github.com/grumpycoders/pcsx-redux/blob/a3bebd490388130e924124cdfeff3bc46b6149d9/.vscode/launch.json#L150
https://www.geany.org/download/releases/#geany-plugins-releases

File Edit Search view Document Project Build Tools Help

Setup Program
Recent Programs

{ SIS » untitled

No symbols found
Run/continue

Program Terminal Threads Breakpoints Stack Locals Watches

[

status compiler Messages scribble Terminal Tasks Debug

ligne:1/1 col:0 sel:0 INS SP mode:LF codage:UTF-8

Debug Console

Markdown Preview

type de fichier : None portée : unknown

5.2

You can find the plugin's documentation here : https://plugins.geany.org/scope.html

.GDBINIT

5

3

IDE setup

Create a .gdbinit file at the root of your project with the following content, adapting

the path to your elf file and the gdb server's ip.

target remote localhost:3333

symbol-file load /path/to/your/executable.elf
monitor reset shellhalt

load /path/to/your/executable.elf

S NN

PLUGIN CONFIGURATION

In Geany : Debug > Setup Program

-23/94 -

https://plugins.geany.org/scope.html

5.2.3 IDE setup

Program options
Executable: /path/to/your/file.elf

Arguments:

Environment:

working dir: /path/to/your/

Load script: /path/to/your/.gdbinit
& Auto run program/exit gdb Non-stop mode
& Temporary breakpoint on load at: ~ main|

Delete all breakpoints, watches, inspects and registers

CLion

Open the Run/Debug Configurations menu, which you can find here:

“o Debugger v

Zo Debugger
hello_world

clean
P All Configurations...

Edit Configurations...

Then, add a new Remote Debug configuration:

5.2.3 IDE setup

D e

Add New Configuration
Embedded GDB Server

e Google Test
¥ Grunt;js
Gulp.js
| HTTP Request
i JavaScript Debug
Jest
Karma
Makefile Application
¥, Makefile Target
Mocha
Node.js
Nodeunit
npm
@) NW.js
{&} OpenOCD Download & Run
@ Protractor
React Native
T Remote Debug
El‘g Remote GDB Server
Shell Script

sx -€db -exe /I

Finally, set your new configuration up:

-25/94 -

5.2.3 IDE setup

Run/Debug Configurations

Name: Debugger Allow multiple instances Store as project file

Debugger: gdb-multiarch

‘targetremote’ args: localhost:3333

Symbol file: /home/johnythecarrot/Documents/PS1/Testing/hello_world/hello_world.elf

Sysroot:

Path mappings:

Remote

v Before launch

Show this page [Activate toolwindow

.GDBINIT

Create a .gdbinit file at the root of your project with the following content, adapting
the path to your elf file.

define target remote

target extended-remote $arg0

symbol-file /path/to/your/executable.elf
monitor reset shellhalt

load /path/to/your/executable.elf

end

o U W N

-26/94 -

5.2.4 Beginning Debugging

5.2.4 Beginning Debugging

Launch pcsx-redux, then run the debugger from your IDE. It should load the e1f file,
and execute until the next breakpoint.

Starting debugging in Geany
Your browser does not support the video tag.

Source :
https://archive.org/details/pcsx_redux_geany_gdb

5.2.5 Additional tools

https://github.com/cyrus-and/gdb-dashboard/

-27/94 -

https://archive.org/details/pcsx_redux_geany_gdb
https://github.com/cyrus-and/gdb-dashboard/

5.3 Connecting Ghidra to PCSX-Redux

5.3 Connecting Ghidra to PCSX-Redux

Since version 10.3, Ghidra now supports debugging MIPS targets. This allows for a much
more powerful reverse engineering experience than what was previously possible with
the GDB server. This document will explain how to set up Ghidra to debug PCSX-Redux,
as it is not entirely straightforward.

5.3.1 Prerequisites

e A gdb "multiarch" binary is required. For Windows, you can get it from here. For Linux,
you can get it from your distribution's package manager; on Ubuntu and Debian, this is
the package gdb-multiarch . And for MacOS, you can use the brew package manager

to install it; this is the package gdb .
e Ghidra 10.3 or newer. You can get it from here.

e PCSX-Redux either configured to disable Dynarec, enable the debugger, and enable the
gdb server, or started using the following command-line arguments: -interpreter -

debugger -gdb.

e The following file downloaded somewhere on your computer, naming it
ghidra debugger scripts.

5.3.2 Setting up Ghidra

Before starting Ghidra, until version 10.3.3, the MIPS CPU isn't terribly well defined. One
needs to go to the installation files of Ghidra, and edit the file chidra/Processors/
MIPS/data/languages/mips.ldef . In this file, find the lines <external name
tool="gnu" name="mips:4000"/>, and change them to

<external name tool="gnu" name="mips:3000"/>. This will allow Ghidra to properly
recognize the MIPS CPU used by the PlayStation 1. This step is no longer necessary
starting with Ghidra 10.3.3.

-28/94 -

https://static.grumpycoder.net/pixel/gdb-multiarch-windows/
https://brew.sh/
https://ghidra-sre.org/
https://raw.githubusercontent.com/grumpycoders/pcsx-redux/main/tools/ghidra_scripts/ghidra_debugger_scripts

5.3.3 Setting up Ghidra's debugger

5.3.3 Setting up Ghidra's debugger

When in the main view of Ghidra, right click on the project you want to debug, and in
the context menu, select Open With > Debugger . This will open the debugger tool
instead of the default disassembler tool.

First, identify the Debugger Targets window, and click its top right button:

This will open the debugger connector window. In the drop down, select gdb, and as
the launch command, enter the path to the gdb multiarch binary, followed by -i mi2 .
For example, on Windows, this could be

C:/gdb-multiarch/bin/gdb-multiarch.exe -i mi2 . Click Connect .

A new Interpreter window should open on the right, with the prompt (gdb) allowing
you to type commands. First, you need to source the ghidra debugger scripts file
from before. To do this, type source <path to ghidra debugger scripts> . For
example, on Windows, this could be source C:/Users/Pixel/Downloads/

ghidra debugger scripts . Then, you need to connect to the PCSX-Redux gdb server.
To do this, type target remote localhost:3333. Finally, locate the Modules tab in

-29/94 -

5.3.3 Setting up Ghidra's debugger

the right window, next to the Interpreter tab, which should look like this:
'&?Modules E (%' 2

Lifespan

Select the top linge, right click on it, and in the context menu, select Map Module to
<name of your project>. In the new window that appears, simply click ok .

At this point, Ghidra should be fully connected to PCSX-Redux, and should be able to
place breakpoint, resume or pause execution, inspect variables, etc. Please be aware
that, as of Ghidra 10.3, many features of the debugger are still work in progress, and
won't necessarily be stable.

-30/94 -

5.4 Misc Features

5.4 Misc Features

5.4.1 Mapping breakpoints

PCSX-Redux has a feature that allows mapping the memory of the console while the
software is running, and to set breakpoints on the mapped memory. This can for
instance help in finding codepath when performing certain activities when running code.

First, map the kind of action you want to discover, such as executing code, reading
memory, or writing memory. Then, run the code for some time without performing the
specific action you want to discover. Finally, activate the map breakpoint mode, and then
perform the action you want to discover. The breakpoint should be triggered when the
action is performed.

For example, say that in a game, you want to know what code is executed when you
press the "X" button. First, check the Map execution checkbox. Then, run the game for

a while without pressing the "X" button. This will map enough of the memory that's
being run in a normal way. Finally, activate the Break on execution map checkbox,

and press the "X" button. If the game takes a new codepath that hasn't been executed
yet, the breakpoint should be triggered.

Breakpoints are always checked before mapping the memory, so it's safe to keep both
checkboxes on at the same time.

Click the clear maps button to zero out all of the maps, when starting anew.

5.4.2 CPU trace dump

Setup
In PCSX-Redux, make sure Debug > Show logs is enabled.
In the 'Logs' window, hide all logs : Displayed > Hide all

To avoid unnecessary noise, you can also skip ISR during CPU traces :
Special > Skip ISR during CPU traces

-31/94 -

5.4.2 CPU trace dump

¥ Logs
Enabled Displayed Special

* Folloy Display all Zopy
- Hide all

Loading n 1.mcd

Loading n UNCATEGORI ZED 2. med

PCsX-Redy MIPS

Copyright UI

Loaded B] =199
SI01
GTE
CDROM
CDROM_IO
CPU
HARDWARE
DMa
MEMORY
IRQ
KERNEL
GDB

®-Redux authors
config/pcsx-redux/openbi

v
v
v
v
v
v
v
v
v
v
v
v
v
v
v

-32/94 -

5.4.2 CPU trace dump

¥ Logs

Enabled Displayed Special

¢ Log CD-ROM commands
CPU trace
Skip ISR during CPU traces «
Log kernel calls

/ Follow « Mono

Begin dump

To dump the CPU traces, launch pcsx-redux with the following command :

pcsx-redux -stdout -logfile log.txt

2 # Alternatively, you can use -stdout on its own and pipe the output to a file.
3

pcsx-redux -stdout >> log.txt

You can use additional flags to launch an executable/disk image in one go, e.g :

pcsx-redux -stdout -logfile tst.log -iso image.cue -run

Source

https://discord.com/channels/
642647820683444236/663664210525290507/882608398993063997

-33/94 -

https://discord.com/channels/642647820683444236/663664210525290507/882608398993063997
https://discord.com/channels/642647820683444236/663664210525290507/882608398993063997

5.5 VRAM viewer

5.5 VRAM viewer

5.5.1 Navigating

Holding the middle button, or both the left and right buttons, allows you to pan the view
around. Using the wheel allows you to zoom in and out, at the location of the mouse
cursor.

5.5.2 Lensing

Holding the CTRL key of your keyboard will bring up a lens, which will show you a locally
zoomed version of the VRAM at the location of the mouse cursor. The lens can be resized
by using the wheel while holding the CTRL key. Holding the CTRL and Shift buttons while
using the wheel will change the size of the lens. The lens can be closed by releasing the
CTRL key.

5.5.3 The various viewers

There are different viewers available from the main menu, which can be used to
visualize the VRAM in different ways. The main viewer will let you see the VRAM using
various CLUTs. The CLUT viewer will let you select a CLUT to use for the main VRAM
viewer. In order to do this, first select the 8-bits or 4-bits view in the main viewer. Then,
in the CLUT viewer, select view -> Select a CLUT . At this point, hovering the CLUT
viewer will automatically change the main viewer to use the hovered CLUT. Once the
proper view is found, simply click on the first pixel of the CLUT viewer to select the CLUT
more permanently.

The GPU logger will also select CLUTs and change the main viewer's mode automatically,
depending on the GPU commands being inspected.

-34/94 -

5.6 GPU Logger

5.6 GPU Logger

The GPU logger is a tool that allows you to see the GPU commands being executed by
the emulator, and the resulting VRAM changes. It can be used to debug the GPU, and to
understand how the executed software is rendering the scene. The logger will have a full
frame worth of primitives, and will automatically clear the log when a new frame is
started. Note that the notion of a frame may span over multiple vsyncs, if the
PlayStation software isn't running at full FPS.

Note that it can be fairly resource intensive, and may significantly slow down the
emulation, depending on the context.

The top of the GPU Logger window will have the following checkboxes:

e GPU Logging - Enable or disable the GPU logging.

e Breakpoint on vsync - Pause the emulation when a vsync occurs, allowing to inspect
the current frame.

e Replay frame - Enables the replay of the current frame. See below for details.

e Show origins - Show the data path of the primitives. This will show the origin of the
data, and the path it took to reach the GPU. For example, a sequence of primitives
may be sent to the GPU via chained DMA.

5.6.1 Understanding the logs

The top of the logger can be expanded to display rough frame statistics. These values
aren't necessarily too accurate, and are only meant to give a rough idea of the frame
complexity.

Each row of the logger displays one command sent to the GPU. The first button and
checkbox will be used for the replay system. The next three buttons and checkboxes will
be used for the highlighting system. The next column will display the command name,
and opening the tree node will expand the command parameters.

The expanded node may have buttons which will affect the main VRAM viewer, either by
selecting CLUTs, or zooming in on the corresponding region. The VRAM viewer will also
be updated when the replay system is used.

-35/9 -

5.6.2 Highlighting Primitives

5.6.2 Highlighting Primitives

The GPU logger can highlight primitives in the VRAM viewer. One or more primitives may
be selected, and the corresponding VRAM regions will be outlined. The highlighting will
be cleared when a new frame is started. The default outlined colors will be red for
written pixels, and green for read pixels. The colors can be changed in the main VRAM
viewer settings.

Checking the Highlight on hover checkbox will temporarily outline a primitive when

hovering it in the logger. This can be useful to quickly identify the corresponding
primitive in the VRAM viewer by flicking the mouse over the logger.

Checking the second checkbox in a logger node will permanently highlight the
corresponding primitive in the VRAM viewer. The [B] and [E] buttons will select the

beginning and the end of a span of primitives, and highlight them in the VRAM viewer.

5.6.3 Replay System

Once a frame has been logged properly, and the emulator is paused, the replay system
can be used to replay the frame. The replay system will constantly replay the frame as
long as it is activated, and it will update the VRAM viewer accordingly. By default, all
nodes in the logger will be selected for replaying. Unselecting the first checkbox in a
node will prevent it from being replayed, and the VRAM viewer will show what happens
when this primitive isn't executed, and potentially see what is underneath it. Clicking the

[T] button of a node will select all nodes for replaying until this node, allowing to easily
see the frame being built up to this point.

-36/94 -

6. Mips API

6. Mips API

6.1 Description

PCSX-Redux has a special API that mips binaries can use :

const)0x1£802084) = msg; }

static inline void pcsx checkKernel (int enable) { *((volatile char*)0x1£802088)

= enable; }

static _ inline int pcsx isCheckingKernel () { return *((volatile char*
const)0x1£802088) != 0; }

static _ inline int pcsx present () { return *((volatile uint32 t*
const)0x1£802080) == 0x58534350; }

Source : https://github.com/grumpycoders/pcsx-redux/blob/main/src/mips/common/

hardware/pcsxhw.h#L31-L36

(volatile char* const)0x1£802080)

1 static _ inline void pcsx putc(int c) { *(

2 static _ inline void pcsx debugbreak() { *((volatile char* const)0x1£802081)

2 static inline void pcsx execSlot (uint8 t slot) { *((volatile uint8 t*

5 const)0x1£802081) = slot; }

5 static _ inline void pcsx exit (int code) { *((volatile intl6 t* const)0x1£802082)
7 = code; }

8 static _ inline void pcsx message(const char* msg) { *((volatile char**

9

}
}

The API needs DEV8/EXP2 (1f802000 to 1f80207f), which holds the hardware register

for the bios POST status, to be expanded to 1f8020ff.

Thus the need to use a custom crt0.s if you plan on running your code on real

hardware.

The default file provided with the Nugget+PsyQ development environment does that:

1 _start:

2 1w $t2, SBUS DEV8 CTRL

’ lui $t0, 8

é lui sStl, 1

6 _check dev8:

7 bge $t2, $t0, store devs
8 nop

12 b _check dev8

- add sSt2, Stl

_store dev8:
sw $t2, SBUS_DEV8 CTRL

-37/94 -

https://github.com/grumpycoders/pcsx-redux/blob/main/src/mips/common/hardware/pcsxhw.h#L31-L36
https://github.com/grumpycoders/pcsx-redux/blob/main/src/mips/common/hardware/pcsxhw.h#L31-L36
https://psx-spx.consoledev.net/expansionportpio/#exp2-post-registers
https://github.com/pcsx-redux/nugget

6.2 Functions

Source : https://github.com/grumpycoders/pcsx-redux/blob/main/src/mips/common/
crtO/crt0.s#L36-L46

6.2 Functions

The following functions are available :

Function Usage

pcsx_putc (int c) Print ASCII character with code c to console/stdout.

pcsx_debugbreak () Break execution (Pause emulation).

pcsx_execSlot (uint8 t slot) Executes Lua function at PCsX.execSlots[slot] . The slot value can be between

1 and 255. If no Lua function exists within a slot, then this behaves the same as
pcsx_debugbreak() .

pcsx_exit (int code) Exit emulator and forward code as exit code.
pcsx_message (const char* msg) Create a Ul dialog displaying msg
pcsx_checkKernel (int enable) Enable or disable kernel checking.
pcsx_isCheckingKernel () Returns truthy if kernel checking is enabled.
pcsx_present () Returns 1 if code is running in PCSX-Redux
pcsx_initMsan () Initialize memory sanitizer system.
pcsx_resetMsan () Reset memory sanitizer system.
pcsx_msanAlloc (uint32 t size) Allocate memory with memory sanitizer.

pcsx _msanFree (void* ptr) Free memory with memory sanitizer.
pcsx_msanRealloc (void* ptr, Reallocate memory with memory sanitizer.

uint32 t size)

Example of a Ul dialog created with pcsx message ()

Notification

No BIOS loaded, emulation halted.

Set a BIOS file into the configuration, and do a hard reset of the emulator.
The distributed OpenBIOS.bin file can be an appropriate BIOS replacement.

Ok

-38/94 -

https://github.com/grumpycoders/pcsx-redux/blob/main/src/mips/common/crt0/crt0.s#L36-L46
https://github.com/grumpycoders/pcsx-redux/blob/main/src/mips/common/crt0/crt0.s#L36-L46

6.2.1 Kernel Checker

6.2.1 Kernel Checker

The kernel checking feature is used to try and catch unwanted accesses to the kernel,
which are usually a sign of a bug in the code, such as a buffer overflow or a null pointer
dereference. If the kernel checking feature is enabled, the emulator will break execution
and display a message in the console if it detects an unwanted access to the kernel. The
following actions are considered unwanted accesses to the kernel:

e Reading or writing to a kernel address from a user-mode address and while not in a
kernel-mode context such as while in the ISR. The ISR sets up a stack frame within
the kernel space, so callbacks from the kernel and into the user space will be using
kernel space as the stack. This means that a null pointer dereference in a callback
from the kernel during an interrupt or exception will not be caught by the kernel
checking feature.

e An indirect jump to a kernel address from a user-mode address and that isn't 0xa0,
0xb0, or 0xc0, and that isn'ta jr sra instruction. Direct jumps and branches to
kernel addresses should be compiler-level problems, so they are not checked for. The
jr Sra exception to the rule is because callbacks from the kernel will use §r sra to
return to the kernel. Optimizations which bypass the jr $ra instruction by using a
different register to return to the kernel during a callback will cause false positives.

The feature is disabled by default as many games and software will access the kernel in
various ways, and it can be enabled by calling pcsx checkKernel (1) . The feature can
be disabled by calling pcsx checkKernel (0) . Since many startup sequences will access
the kernel to patch it or clean it, it is recommended to enable the feature after the
startup sequence has completed. Some libraries may also access the kernel during their
normal operations. The user can simply disable the checker temporarily by toggling it
before and after calling such APIs. The kernel space is considered to be all the memory
addresses between 0x80000000 and 0x8000ffff. The BIOS is considered to be part of
the kernel space in terms of code, so any access to the RAM Kernel space from the BIOS
memory space will not trigger any of the kernel checks. The kernel checking feature is
only available in the interpreter with the debugger enabled, and it is not available in the
dynarec. Trying to enable the feature while using the dynarec, or while the debugger is
disabled, will not have any effect.

-39/94 -

6.2.2 Memory Sanitizer

6.2.2 Memory Sanitizer

The memory sanitizer system of PCSX is inspired of various similar tools. It can detect
use-after-frees, buffer overflows, and reads from uninitialized memory. Enabling the
memory sanitizer is done through the pcsx initMsan () function call. The emulator will
immediately allocate an extra 2GB of memory to store the memory sanitizer data and
metadata. Once enabled, the user can call pcsx msanAlloc() , pcsx msanFree () , and
pcsx msanRealloc () to allocate, free, and reallocate memory, working as expected

from a normal C library. The memory sanitizer will keep track of the memory allocated
and will check for the following issues:

e Use-after-frees: If the user tries to access memory that has been freed, the memory
sanitizer will break execution and display a message in the console.

e Double frees: If the user tries to free memory that has already been freed, the
memory sanitizer will break execution and display a message in the console.

e Corrupted pointer: If the user tries to free or reallocate a pointer that is not a valid
pointer, the memory sanitizer will break execution and display a message in the
console.

e Buffer overflows: If the user writes to memory before or after the allocated size, up to
1kB, the memory sanitizer will break execution and display a message in the console.

e Reads from uninitialized memory: If the user tries to read from memory that has not
been written to first, the memory sanitizer will break execution and display a message
in the console.

Internally, the memory sanitizer will allocate memory to the range
0x20000000-0x80000000, which is 1.5GB large. Note that for the use-after-free
detection to work, the memory sanitizer will never actually free anything, and so it is
possible to run out of memory if the user allocates too much memory. Calling

pcsx resetMsan () Will re-initialize the memory sanitizer back to its original state. The
memory sanitizer is available at all times, and is not affected by the debugger setting
nor the dynarec.

-40/94 -

7. Web server

/. Web server

A web server can be activated. This allows the use of a REST api to access various
features. The server only handles up to HTTP/1.1, without SSL support.

7.1 Activation

You can activate the web server by going to Configuration > Emulation > Enable

Web Server

7.2 RESTAPI

By default, the server listens for incoming connection on localhost:8080 . The port can
be changed in the same settings above.

These GET methods are available:

URL Function

/api/v1l/gpu/vram/raw Dump VRAM

/api/v1l/cpu/ram/raw Dump RAM

/api/v1/execution-flow Emulation Status
/api/v1l/cd/files?filename= Dump a file from the loaded disc image

The following POST methods are available:
/api/vl/gpu/vram/raw?x=<value>§&y=<value>&width=<value>&height=<value>

The above needs to also send a form with binary contents. This will partially update the
VRAM with the corresponding pixels. The updated rectangle has to be within the
1024x512 16bpp VRAM. The pixels need to be in 16bpp format, meaning the server is
expecting exactly width * height * 2 bytes in the form data. The server will properly
parse requests with Content-Type: multipart/form-data , but raw bytes in the

request body without this header is also acceptable. Any invalid query will result in a
400 error.

/api/vl/cpu/ram/raw?offset=<value>&size=<value>

-41/94 -

http://localhost:8080/api/v1/gpu/vram/raw
http://localhost:8080/api/v1/cpu/ram/raw
http://localhost:8080/api/v1/execution-flow
http://localhost:8080/api/v1/cd/files?filename=SYSTEM.CNF;1
http://localhost:8080/api/v1/cd/files?filename=SYSTEM.CNF;1

7.2 REST API

The above needs to also send a form with binary contents, which will update the RAM at
the specified offset. Offset is expected to be a nhumber from [0, Ox1FFFFF] in case of
running redux with 2MB RAM, or [0, Ox7FFFFF] in case the 8MB memory expansion is
enabled. The value of size + offset must not exceed the total space in the RAM.

/api/vl/assembly/symbols?function=<value>

Value Function
reset Resets the symbols loaded in redux
upload Uploads a .map file to redux

The above expects a .map file with symbols and addresses, which will be merged with
the current symbols already loaded in redux. The map file should contain a pair of
symbol address for each line. e.g Foo 80010000 would load the symbol Foo in the
address 0x80010000 .

/api/vl/cpu/cache?function=<value>

Value Function

flush Flushes the CPU cache

/api/vl/execution-flow?function=<value>&type=<value>

Value Type Function

pause = Pauses the emulator.

start - Starts/Resumes the emulator.

resume = Starts/Resumes the emulator.

reset hard Hard resets the emulator. Equivalent to a power cycle of the console.
reset soft Soft resets the emulator. Equivalent to pressing the reset button.

/api/vl/cd/patch?filename=<value>

The above needs to also send a form with binary contents, which will patch the currently
loaded iso file with the contents of the form. The server will look for the given filename
in the iso file, and patch its contents. All changes are cumulative. If the file is not found,
a 404 error will be returned. The file name is case sensitive, and must be a valid
ISO9660 filename, which means it can only contain uppercase letters, numbers, and
underscores, and ends with ;1.

-42/94 -

For example:

7.2 REST API

1 $ curl -F file=Q@newsystem.cnf http://localhost:8080/api/vl/cd/patch?
filename=SYSTEM.CNF; 1

/api/vl/cd/patch?sector=<value>&mode=<value>

The above needs to also send a form with binary contents, which will patch the currently
loaded iso file with the contents of the form. The iso sectors starting at the given value
will be written to. The mode argument is optional, and can be of the following values:

Value
GUESS
RAW
M2_RAW
M2_FORM1

M2_FORM2

Function

Tries to guess the sector's mode. This is the default.

Writes the full sectors with no decoration, 2352 bytes per sector.

Writes 2336 bytes per sector, with the first 16 bytes being the subheader.
Writes 2048 bytes per sector. Will not update the subheader.

Writes 2324 bytes per sector. Will not update the subheader.

All changes are cumulative.

api/vl/cd/ppf?function=<value>

Value

save

clear

Function
Saves the current state of the disc image patches to a PPF file.

Clears the current list of patches.

8. Lua

8. Lua

8.1 Introduction

PCSX-Redux features a Lua API that is available through either a direct Lua console, or a
Lua editor, both available through the Debug menu. The Lua VM runs on the main
thread, the same one as the UI and the emulated MIPS CPU. As a result, care must be
taken to not stall for too long, or the UI will become unresponsive. Using coroutines to
handle long-running tasks is recommended, yielding periodically to let the UI perform
some work too. The UI is probably going to run at 60FPS or so, which gives a ballpark of
15ms per frame.

8.1.1 Lua engine

The Lua engine that's being used is LualIT 2.1.0-beta3 compiled in Lua 5.2 compatibility
mode. The Lua 5.1 user manual and LualIT user manual are recommended reads. In
particular, the bindings heavily make use of LualIT's FFI capabilities, which allows for
direct memory access within the emulator's process. This means there is little protection
against dramatic crashes the LualIT FFI engine can cause into the emulator's process,
and the user must pay extra attention while manipulating FFI objects. Despite that, the
code tries as much as possible to sandbox what the Lua code does, and will prevent
crashes on any recoverable exception, including OpenGL and ImGui exceptions.

8.1.2 Lua console

All of the messages coming from Lua should display into the Lua console directly. The
input text there is a single line execution, so the user can type one-liner Lua statements
and get an immediate result.

8.1.3 Lua editor

The editor allows for more complex, multi-line statements to be written, such as
complete functions. The editor will by default auto save its contents on the disc under
the filename pcsx.lua , which can potentially be a problem if the last statement typed
crashed the emulator, as it'll be reloaded on the next startup. It might become
necessary to either edit the file externally, or simply delete it to recover from this state.

- 44/94 -

https://www.lua.org/manual/5.1/
https://luajit.org/extensions.html

8.1.3 Lua editor
The auto-execution of the editor permits for rapid development loop, with immediate
feedback of what's done.

For complex projects however, it is recommended to split your work into sub-modules,
and use the loadfile function to load them in your main code. This implies working on
your project using an external editor.

-45/94 -

8.2 Loaded libraries

8.2 Loaded libraries
8.2.1 Basic Lua

The LualIT extensions are fully loaded, and can be used globally. The standard Lua
libraries are loaded, and are usable. The require function exists, but isn't
recommended as the loading of external DLLs might be difficult to properly accomplish.
Loading pure Lua files is fine. The f£fi table is loaded globally, there is no need to
require it, but it'll work nonetheless. As a side-effect of Luv, Lua-compat-5.3 is
loaded.

8.2.2 Dear ImGui

A good portion of ImGui is bound to the Lua environment, and it's possible for the Lua
code to emit arbitrary widgets through ImGui. It is advised to consult the user manual of
ImGui in order to properly understand how to make use of it. The list of current bindings
can be found within the source code. Some usage examples will be provided within the
case studies. Additional features and interaction is documented in the rendering page.

8.2.3 OpenGL

OpenGL is bound directly to the Lua API through FFI bindings, loosely inspired and

adapted from LualIT-OpenCL. Some usage examples can be seen in the CRT-Lottes
shader configuration page.

8.2.4 NanoVG

The NanoVG library is mostly bound to the Lua API through FFI bindings, with some
additional glue code. More explanation can be found in the rendering page.

8.2.5 Luv

For network access and interaction, PCSX-Redux uses libuv internally, and is exposed to
the Lua API through Luv, tho its loop is tied to the main thread one, meaning it'll run
only once per frame. There is another layer of network API available through the File
API, which is more convenient and faster for simple tasks.

- 46/94 -

https://luajit.org/extensions.html
https://www.lua.org/manual/5.1/manual.html#5
https://www.lua.org/manual/5.1/manual.html#5
https://github.com/keplerproject/lua-compat-5.3
https://github.com/ocornut/imgui
https://pthom.github.io/imgui_manual_online/manual/imgui_manual.html
https://github.com/grumpycoders/pcsx-redux/blob/main/third_party/imgui_lua_bindings/imgui_iterator.inl
https://github.com/malkia/luajit-opencl
https://github.com/grumpycoders/pcsx-redux/blob/eadd59e764d526636d900fada6f3dd0057035690/src/gui/shaders/crt-lottes.cc#L141-L146
https://github.com/grumpycoders/pcsx-redux/blob/eadd59e764d526636d900fada6f3dd0057035690/src/gui/shaders/crt-lottes.cc#L141-L146
https://github.com/grumpycoders/nanovg
https://libuv.org/
https://github.com/luvit/luv

8.2.6 Zlib

8.2.6 Zlib

The Zlib C-API is exposed through FFI bindings. There is another layer of Zlib API
available through the File API, which is more convenient and faster for simple tasks.

8.2.7 FFI-Reflect

The FFI-Reflect library is loaded globally as the reflect symbol. It's able to generate
reflection objects for the LualIT FFI module.

8.2.8 PPrint

The PPrint library is loaded globally as the pprint symbol. It's a more powerful print

function than the one provided by Lua, and can be used to print tables in a more
readable way.

8.2.9 Lua-Protobuf

The Lua-Protobuf library is available, but not loaded by default. All of its documented
API should be usable straight with no additional work. It has been slightly modified, but
nothing that should be visible to the user. There is some limited glue between its API
and PCSX's.

8.2.10 luafilesystem

The luafilesystem library is loaded globally as the 1fs symbol. It's a library that
provides access to the filesystem.

8.2.11 LPeg

The LPeg library is available, but not loaded by default. It's a library that provides a
pattern-matching library for Lua, which can be useful to create ad-hoc arbitrary parsers.

- 47/94 -

https://github.com/luapower/zlib
https://github.com/corsix/ffi-reflect
https://github.com/jagt/pprint.lua
https://github.com/starwing/lua-protobuf
https://github.com/lunarmodules/luafilesystem
http://www.inf.puc-rio.br/~roberto/lpeg/

8.3 Redux basic API

8.3 Redux basic API

8.3.1 Settings

All of the settings are exposed to Lua via the pPCcsxX.settings table. It contains pseudo-
tables that are reflections of the internal objects, and can be used to read and write the
settings. The exact list of settings can vary quickly over time, so making a full list here
would be fruitless. It is possible however to traverse the settings using pprint for
example. The semantic of the settings is the same as from within the GUI, with the
same caveats. For example, disabling the dynamic recompiler requires a reboot of the
emulator.

8.3.2 ImGui interaction

PCSX-Redux will periodically try to call the Lua function DrawImguiFrame to allow the

Lua code to draw some widgets on screen. The function will be called exactly once per
actual UI frame draw, which, when the emulator is running, will correspond to the
emulated GPU's vsync. If the function throws an exception however, it will be disabled
until recompiled with new code.

8.3.3 Events Engine interaction & Execution Contexts

LualIT C callbacks aren't called from a safe execution context that can allow for
coroutine resuming, and luv's execution context doesn't have any error handling.

It is possible to defer executing code to the main loop of PCSX-Redux, which can (a)
resume coroutines and (b) execute code in a safe context. The function

-48/94 -

8.3.3 Events Engine interaction & Execution Contexts

PCSX.nextTick (func) will execute the given function in the next main loop iteration.
Here's some examples of how to use it:

1 local captures = {}
2 captures.current = coroutine.running ()
; captures.callback = function ()
: PCSX.nextTick (function ()
6 captures.callback:free ()
7 coroutine.resume (captures.current)
8 end)
g end
0 captures.callback = ffi.cast('void (*) ()', captures.callback)

-— use the C callback somewhere...
1 function createClient (ip, port)
i client = luv.new_ tcp()
4
5 luv.tcp connect(client, ip, port, function (err)
% PCSX.nextTick (function ()
7 assert (not err, err)
8
S luv.read start(client, function (err, chunk)
12 PCSX.nextTick (function ()
12 pprint ("received at client", {err=err, chunk=chunk})
13 assert (not err, err)
14 if chunk then
15 -- do something with the client
1o else
17 q
6 luv.close (client)
19 end
20 end)
21)
22
e pprint ("writing from client")
zé luv.write(client, "Hello")
26 luv.write (client, "World")
27

end

end)

return client

end

Of course, this can also delay processing significantly, as the main loop is usually bound
to the speed of the UI, which can mean up to 20ms of delay.

-49/94 -

8.3.4 Constants

8.3.4 Constants

The table pcsx.coNsTs contains numerical constants used throughout the rest of the

API. Keeping an up to date list here is too exhausting, and it's simpler to print them
using pprint (PCSX.CONSTS) .

8.3.5 Pads

You can access the pads API through pPCsx.SI00.slots[s].pads[p] where s is the
slot number and p is the pad number, both indexed from 1, Lua-style. So
PCSX.SIO0.slots[1].pads[1] accesses the first pad, and

PCSX.SI00.slots[2].pads[1] accesses the second pad.

Each Pad table has the following functions:

1 getButton (button) -- Returns true if the specified button is pressed.

2 setOverride (button) -- Overrides the specified button.

; clearOverride (button) -- Clears the override for the specified button.

i setAnalogMode (bool) -— Sets or clears the analog mode of this pad.
map () -—- Forces the pad to be remapped. Useful after changing pad
settings.

The button constants can be found in PCSX.CONSTS.PAD.BUTTON .
You can for instance press the button Down on the first pad using the following code:

1 PCSX.SIO0.slots[1l].pads[1l].setOverride (PCSX.CONSTS.PAD.BUTTON.DOWN)

8.3.6 Execution flow

The Lua code has the following API functions available to it in order to control the
execution flow of the emulator:

® PCSX.pauseEmulator ()
® PCSX.resumeEmulator ()
® PCSX.softResetEmulator ()

e PCSX.hardResetEmulator ()

-50/94 -

8.3.7 Messages

It's also possible to manipulate savestates using the following functions:

® PCSX.createSaveState() -— returns a slice representing the savestate
® PCSX.loadSaveState (slice)

® PCSX.loadSaveState (file)

Additionally, the following function returns a string containing the .proto file used to
serialize the savestate:

® PCSX.getSaveStateProtoSchema ()

Note that the actual savestates made from the Ul are gzip-compressed, but the
functions above don't compress or decompress the data, so if trying to reload a
savestate made from the UI, it'll need to be decompressed first, possibly through the
zReader File object.

Overall, this means the following is possible:

local compiler = require ('protoc') .new()
local pb = require('pb')

local state = PCSX.createSaveState()
compiler:load(PCSX.getSaveStateProtoSchema ())

0 J o0 OBk w N

local decodedState = pb.decode ('SaveState', Support.sliceToPBSlice (state))
print (string.format ('%$08x', decodedState.registers.pc))

8.3.7 Messages

The globals print and printError are available, and will display logs in the Lua
Console. You can also use pCsSx.log to display a line in the general Log window. All
three functions should behave the way you'd expect from the normal print function in
mainstream Lua.

-51/94 -

8.3.8 GUI

8.3.8 GUI

You can move the cursor within the assembly window and the first memory view using
the following functions:

® PCSX.GUI.jumpToPC (pc)

® PCSX.GUI. jumpToMemory (address[, width])

8.3.9 GPU

You can take a screenshot of the current view of the emulated display using the
following:

® PCSX.GPU.takeScreenShot ()

This will return a struct that has the following fields:

struct ScreenShot {
Slice data;
uintl6é t width, height;
enum { BPP_16, BPP 24 } bpp;

g w N

The slice will contain the raw bytes of the screenshot data. It's meant to be written
out using the :writeMoveSlice () method ona File object. The width and height
will be the width and height of the screenshot, in pixels. The bpp will be either BpP 16
or BPP 24, depending on the color depth of the screenshot. The size of the data Slice
will be height * width multiplied by the number of bytes per pixel, depending on the
bpp .

-52/94 -

8.3.10 Loading and executing code

8.3.10 Loading and executing code

While the basic Lua functions dofile and loadfile exist, some alternative functions

are available to load and execute code in a more flexible way.

e Support.extra.addArchive (filename) Will load the given zip file, and will make it
available to the support.extra.dofile function. It is equivalent to the -archive
command line flag. Note that if a file named autoexec.lua is found in the zip file, it

will be executed automatically.

e Support.extra.dofile (filename) will load the given file, and execute it. It is
equivalent to dofile , but will also search for the file next to the currently loaded Lua
file which is calling this function, and will also search for the file in all of the loaded zip
files, either through the command line, or through the Support.extra.addArchive

function.
e Support.extra.loadfile(filename) Will load the given file, and return a function
that can be called to execute the file. It is equivalent to loadfile , but has the same

file search algorithm as Support.extra.dofile.

e Support.extra.open (filename) will open the given file as read only, and return a
File object. It is roughly equivalent to Support.File.open , but has the same file

search algorithm as Support.extra.dofile.

If given the following directory structure:

— bar.zip
F—— test/baz.lua
L— test2/qux.lua

SN

If test/baz.lua contains the following code:

1 Support.extra.dofile('../test2/qux.lua')

Then running the following code:

i Support.extra.addArchive ('bar.zip"')
2 Support.extra.dofile ('test/baz.lua')

8.3.11 Miscellaneous

Will first load test/baz.lua from the zip file bar.zip, run it, which will in turn load
test2/qux.lua from the zip file bar.zip again, and execute it.

This allows distributing complex "mods" as zip files, which can be loaded and executed
from the command line or the console.

8.3.11 Miscellaneous

e PCSX.quit ([code]) schedules the emulator to quit. It's not instantaneous, and will
only quit after the current block of Lua code has finished executing, which will be
before the next main loop iteration. The code parameter is optional, and will be the
exit code of the emulator. If not specified, it'll default to 0.

e PCSX.getCPUCycles () returns an unsigned 64-bit number indicating how many CPU
cycles have elapsed. This can be paired with the PCSX.CONSTS.CPU.CLOCKSPEED
constant to determine how much emulated time has passed.

e PCSX.Adpcm.NewEncoder Wwill return an Adpcm encoder object. The object has the
following methods:

e :reset([mode]) will reset the encoder, and set the mode to the given mode. The
mode can be 'Normal', 'XA', 'High', 'Low', 'FourBits' . The default mode is
'"Normal' , which enables all the filters available in the SPU. The 'xa' mode limits
the encoder to the filters available in the XA ADPCM format. The 'High' mode uses
the high-pass filter, and the 'Low' mode uses the low-pass filter. The 'FourBits'
mode forces plain 4-bit Adpcm encoding.

e :processBlock(inData, [outData], [channels]) will encode the given ffi input
buffer, and write the result to the given ffi output buffer. The input buffer should be a
buffer of 16-bit signed integers, and the output buffer should be a buffer of 16-bit
signed integers. The channels parameter is optional, and will default to 2. The input
buffer should contain exactly 28 samples, and so does the output buffer. If the output
buffer is not given, the function will return a new buffer with the result. LuaBuffers are
also accepted as input and output buffers. The function will return three values: the
output buffer, the filter index used, and the shifting used. The function is intended to
be used as an intermediate computation step, and the output still needs to be
processed into 4 bits or 8 bits samples.

e :processSPUBlock (inData, [outData], [blockAttribute]) will encode the given

ffi input buffer, and write the result to the given ffi output buffer. The input buffer

-54/94 -

8.3.11 Miscellaneous

should be a buffer of 16-bit signed integers, and the output buffer should be a buffer
which is at least 16 bytes large. The blockAttribute parameter is optional, and will
default to 'oneshot' . The input buffer should contain exactly 28 samples. If the
output buffer is not given, the function will return a new buffer with the result.
LuaBuffers are also accepted as input and output buffers. The function will return the
encoded block, suitable for SPU usage. The blockAttribute parameter can be one of
the following strings: 'OneShot', 'OneShotEnd',6 'LoopStart',6 'LoopBody',

'LoopEnd' .

e :finishSPU([outData]) will write the opinionated end of sample looping block, as
prescribed by the original Sony API. The output buffer should be a buffer which is at
least 16 bytes large. If the output buffer is not given, the function will return a new
buffer with the result. LuaBuffers are also accepted as output buffers. The function will
return the encoded block, suitable for SPU usage.

e :processXABlock (inData, [outData], [xaMode], [channels]) Wwill encode the
given ffi input buffer, and write the result to the given ffi output buffer. The input buffer
should be a buffer of 16-bit signed integers, and the output buffer should be a buffer
which is at least 128 bytes large. Note that a MODE2 FORM2 XA sector requires
subheaders and 18 of these blocks. The xaMode parameter is optional, and will default
to 'XAFourBits' . The other valid value is 'xaAEightBits' . It will defines the
encoding output between either 4-bit and 8-bit. The channels parameter is optional,
and will default to 1. If the output buffer is not given, the function will return a new
buffer with the result. LuaBuffers are also accepted as input and output buffers. The
function will return the encoded block, suitable for XA usage. The amount of required
input samples varies depending of the number of channels and the encoding mode:

e 4-bit mono: 224 samples aka 448 bytes
e 4-bit stereo: 112 samples aka 448 bytes
e 8-bit mono: 112 samples aka 224 bytes
e 8-bit stereo: 56 samples aka 224 bytes

-55/94 -

Using the encoder to process an input audio file is as simple as:

O J o U w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

function encodeAudioLoop (inputFile, outputFile)

local closeInput = false

if type (inputFile) == 'string' then
inputFile = Support.File.open (inputFile)
closeInput = true

end

local audio = Support.File.ffmpegAudioFile (inputFile, {
channels = 'Mono',
frequency = 22050

})

local closeOutput = false

if type (outputFile) == 'string' then
outputFile = Support.File.open (outputFile, 'TRUNCATE')
closeOutput = true

end

local blockCount = math.floor (audio:size() / (2 * 28))

local bufferIn = ffi.new('intl6 t[28]")

local bufferOut = Support.NewLuaBuffer (16)

local encoder = PCSX.Adpcm.NewEncoder ()
encoder:reset 'Normal'

for i = 1, blockCount do
audio:read (bufferIn, 28 * 2)

local blockType = 'LoopBody'
if 1 == 1 then blockType = 'LoopStart' end
if 1 == blockCount then blockType = 'LoopEnd' end

encoder:processSPUBlock (bufferIn, bufferOut, blockType)
outputFile:write (bufferOut)
end

if closeInput then
inputFile:close ()

end

if closeOutput then
outputFile:close ()

end

audio:close ()

end

-56/94 -

8.3.11 Miscellaneous

8.4 Rendering

8.4 Rendering

PCSX-Redux is entirely running as an OpenGL3 application. All of its aspects, including
the UI elements, are rendered using OpenGL primitives. This means there is very little
boundaries between the various rendered elements on the screen.

The rendering of the UI is done through ImGui, and a chunk of its API is bound is to Lua
using bindings.

A good portion of the OpenGL3 API is also bound to Lua, as well as the nanovg library.

8.4.1 Emulated GPU rendering pipeline

The content of the Output region is rendered in two steps. The first step is called the
"Offscreen rendering", and is done during the emulated GPU vsyncs. Its job is to flush
the contents of the VRAM texture to an offscreen texture, which may be of a different
resolution. The resolution of the offscreen texture should be pixel perfect with that of
the Output region. By default, the associated shader with this operation should only do a
simple copy and interpolation, but as the first stage of the rendering pipeline, this can
be used for some first pass output effect such as the first pass of a crt shader.

The second step is called the "Output rendering”, and is done every time the UI wants to
refresh its display, which may or may not be at the same time as the emulated vsync.
The resolution of the input will match exactly the resolution of the input texture, and the
default shader should simply copy all the texels without any sort of interpolation, but as
the second stage of the rendering pipeline, this can still be used for the second pass
output effect.

The crt-lottes implementation leverages these two passes to do the full CRT-like output.

8.4.2 Shader editor

The shader editor is a simple text editor that allows to edit the shader code. It is not a
full IDE, and it is not meant to be. Its point is to do quick iterations on the shader code,
and to be able to see the result of the changes in real time.

-57/94 -

https://github.com/ocornut/imgui
https://github.com/grumpycoders/pcsx-redux/tree/main/third_party/imgui_lua_bindings
https://github.com/grumpycoders/nanovg/tree/master
https://github.com/grumpycoders/pcsx-redux/blob/main/src/gui/shaders

8.4.2 Shader editor

The shader editor is split in 3 regions:

e The left tab is the vertex shader code. It is technically editable, but there shouldn't be
much reason to edit it.

e The middle tab is the fragment shader code. This is the main shader code. It is
editable, and the changes will be reflected in real time.

e The right tab is the Lua invoker code. This is the code that will be executed under
multiple circumstances. It is editable, and the changes will be reflected in real time.

The Lua invoker code will be compiled and executed in a soft sandbox environment. The
code can still access already created globals and mutate them, but any newly created
global will be kept within the sandbox and won't be accessible from other Lua code. All
these globals will be saved and restored with the normal emulator settings.

When the shaders are compiled, the Vertex and Fragment shader code will be compiled
together, and if the resulting program is valid, the Lua invoker code will be compiled and
executed. If the Lua code fails to compile or execute, the shader will be considered
invalid and the error will be displayed in the shader editor.

This compilation order allows the Lua code to access the shader program uniforms, and
to set them up as needed. The global shaderProgramID will be available to the Lua
code, and will contain the ID of the shader program.

-58/94 -

8.4.2 Shader editor

The code is expected to export a few functions:

e Draw , which will be called periodically within the ImGui context, allowing to draw UI
elements. The global configureme will be set to true when the user selects the
"Configure Shaders" menu item. This allows to display a configuration UI to the user
during this function call.

e Image (textureID, srcSizeX, srcSizeY, dstSizeX, dstSizeY) , which will be
called periodically within the ImGui context, when the emulator needs to draw the
texture textureID at the given size. The texture ID is the OpenGL texture ID, and
the size is in pixels. The code is at best expected to do a simple call to
imgui.Image (textureID, dstSizeX, dstSizeY, 0, 0, 1, 1) to draw the texture.
For the Emulated GPU Pipeline, this function will only be called on the Output shader,
when being drawn to the Output region. As the function will be called during the ImGui
context, it can capture certain ImGui state, such as the current ImGui cursor position,
and use it to draw additional UI elements. Note that as with any normal ImGui
function, this isn't the moment when the UI elements are actually drawn, but rather
when the UI elements are queued to be drawn, meaning this isn't when the shader
program will be executed, which is the point of the next function.

e BindAttributes (texturelID, shaderProgramID, srcLocX, srclLocY, srcSizeX,
srcSizeY, dstSizeX, dstSizeY) will be called when the shader program is about to

be executed, and needs to bind the attributes. The texture ID is the OpenGL texture
ID, and the shader program ID is the OpenGL shader program ID. The location and
sizes are in pixels, but are only used for the Emulated GPU Pipeline, when the
Offscreen shader is being executed, as it needs to grab a portion of the VRAM texture
to be rendered to the offscreen texture.

Additionally, it is possible to programmatically set the content of the editors using the
following methods:

PCSX.GUI.OffscreenShader.setDefaults ()
PCSX.GUI.OffscreenShader.setTextVS (text)
PCSX.GUI.OffscreenShader.setTextPS (text)
PCSX.GUI.OffscreenShader.setTextL (text)
PCSX.GUI.OutputShader.setDefaults ()
PCSX.GUI.OutputShader.setTextVS (text)
PCSX.GUI.OutputShader.setTextPS (text)
PCSX.GUI.OutputShader.setTextL (text)

0w J o b W NN

-59/94 -

8.4.3 ImGui

The setDefaults method will set the default shader code, and the setText* methods
will set the shader code to the given string. The text argument can be either an actual
string, ora File object.

8.4.3 ImGui

The ImGui API is bound to Lua, and can be used to draw UI elements. The ImGui API is
documented on the ImGui source code. There is also an interactive manual available.

Not all functions are necessarily bound to Lua, and one can check the bindings code to
see which functions are bound, and why some functions are not bound.

The main reason for not binding a function is that its arguments or return values are not
trivial to bind. For example, the ImGui::Text C++ function is not bound, as it takes a
variadic number of arguments, which is not possible to bind in Lua easily. Instead, the
ImGui: :TextUnformatted C++ function is bound, which takes a single string
argument.

The emulator will periodically try to call the global function DrawImguiFrame with no
arguments. If the function is not defined, nothing will happen. If the function fails to
execute, it will be removed from the global environment, and the emulator will stop
trying to call it until a new global is defined.

The DrawImguiFrame function is expected to call the imgui.Begin function to create a
new ImGui window, as there is no default window created by the emulator for the Lua
context. The DrawImguiFrame function is also expected to call the imgui.End function
as normal with the ImGui API.

- 60/94 -

https://github.com/ocornut/imgui/blob/docking/imgui.h
https://pthom.github.io/imgui_manual_online/manual/imgui_manual.html
https://github.com/grumpycoders/pcsx-redux/blob/main/third_party/imgui_lua_bindings/imgui_iterator.inl

8.4.3 ImGui

Some extra functions are bound to Lua beyond the API listed above:

-61/94 -

8.4.3 ImGui

¢ imgui.extra.ImVec2.New(x, y) Will create a new FFI Imvec2 object. The Imvec2
object is a simple struct with two fields, x and y. The New function takes two
optional arguments, the x and y values, and returns the new Imvec2 object.

e imgui.extra.getCurrentViewportId() Wwill return the current viewport ID.
Viewports in ImGui are a way to split the ImGui context into multiple independent
contexts, and the viewport ID is a unique identifier for each viewport. Basically, each
viewport is a physical window from the operating system, and it can contain one or
more ImGui windows.

e imgui.extra.getViewportFlags (id) will return the viewport flags for the specified
viewport. The viewport flags are of the type ImGuiviewportFlags in the ImGui C++
API, and is a bitmask of flags, which are exposed as individual values in the Lua
generated bindings.

e imgui.extra.setViewportFlags (id, flags) Wwill setthe viewport flags for the
specified viewport. The proper usage of this function is to call
imgui.extra.getViewportFlags to get the current flags, modify the flags as needed,
and then call imgui.extra.setViewportFlags to set the new flags.

e imgui.extra.getViewportPos (id) will return the position of the specified viewport.
The position is returned as an Imvec2 object.

e imgui.extra.getViewportSize (id) will return the size of the specified viewport. The

size is returned as an Imvec2 object.

e imgui.extra.getViewportWorkPos (id) will return the work position of the specified
viewport. The work position is returned as an Imvec2 object.

e imgui.extra.getViewportWorkSize (id) will return the work size of the specified

viewport. The work size is returned as an Imvec2 object.

¢ imgui.extra.getViewportDpiScale (id) will return the DPI scale of the specified

viewport. The DPI scale is returned as a number. A value of 1.0 means that the DPI
scale for this viewport is 100%.

e imgui.extra.InputText (label, text[, flags]) will create an input text widget.
The label is the label to display next to the input text, and the text is the current
text to display in the input text. The flags are optional, and are the same flags as
the ones used by the imgui::InputText C++ function. The function will return a
boolean indicating if the text has changed or not, and the new text.

-62/94 -

8.4.3 ImGui

¢ imgui.extra.InputTextWithHint (label, hint, text[, flags]) will create an
input text widget. The label is the label to display next to the input text, and the
hint is the hint to display in the input text when the text is empty. The text is the
current text to display in the input text. The flags are optional, and are the same
flags as the ones used by the imgui::InputTextwithHint C++ function. The

function will return a boolean indicating if the text has changed or not, and the new
text.

¢ imgui.extra.logText (text) will call the imgui::LogText C++ function, which will
add the given text to current log buffer.

® PCSX.GUI.useMainFont () will call the imgui::PushFont C++ function with the
proportional font. It will need to be followed by a call to imgui.PopFont () .

® PCSX.GUI.useMonoFont () will call the imgui::PushFont C++ function with the
monospace font. It will need to be followed by a call to imgui.PopFont () .

Safety

The ImGui API will frequently assert and crash the process if the API calls are
imbalanced. For example, if the imgui.BeginTable function is called without calling the
imgui.EndTable function, the process will most likely crash.

This can be problematic when using the ImGui API from Lua, as the Lua code is not able
to catch the crash, and the process will crash without any indication of what went
wrong.

The main reason for imbalanced API calls can be attributed to the user code throwing an
exception, which will cause the Lua code to unwind the stack, and the ImGui API will not
be able to properly clean up its state.

For example, consider the following code:

function DrawImguiFrame ()
if imgui.Begin ("My Window") then
error ("Something went wrong")
end
imgui.End ()
end

-63/94 -

8.4.4 NanoVG

The imgui.Begin function will be called, but the imgui.End function will not be called,

as the error function will unwind the stack, and the imgui.End function will never be
called.

In order to mitigate this, safe wrappers are provided for all of the ImGui Begin*/End*
functions. The safe wrappers will catch any exception thrown by the user code, and will
call the corresponding End* function if the Begin* function returned true. The error will
be rethrown after the End* function is called. The wrapped lambda will only be called if
the Begin* function returned true.

The example above can be rewritten as:

function DrawImguiFrame ()

]
2 imgui.safe.Begin ("My Window", function ()
j error ("Something went wrong")
5 end)
end
8.4.4 NanoVG

The NanoVG library is bound to Lua, and can be used to draw arbitrary vector graphics
on top of the emulator. The NanoVG API is documented on the NanoVG source code. The
API is very similar to the HTML5 Canvas API, meaning that one can use the MDN

CanvasRenderingContext2D documentation and other related documentation to learn
how to use it.

Using an HTML5 canvas toybox like this one is a good way to learn how to use this API
safely.

Note that the NanoVG rendering will happen after the ImGui rendering, meaning that
the NanoVG rendering will be on top of the ImGui rendering, regardless of the order in
which the NanoVG and ImGui functions are called.

- 64/94 -

https://github.com/grumpycoders/nanovg/blob/master/src/nanovg.h
https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D
https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D
https://www.w3schools.com/html/html5_canvas.asp
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Drawing_shapes
https://codepen.io/nicolas_noble/pen/MWXqwQG

8.4.5 Example of using everything together

Most of the NanoVG API is bound to Lua, with the exception of the following functions:

® nvgBeginFrame

e nvgCancelFrame

e nvgEndFrame

® nvgCreatelmage

® nvgCreatelImageMem

In addition, the enums and some constructors for the structures used in NanoVG are

available as extra values and functions. Please refer to the Lua source code for more
details.

The general idea is that the emulator will call nvgBeginFrame and nvgEndFrame before

and after the Lua code is executed, and the Lua code will be able to call the other
functions to draw the vector graphics.

The proper way to use the NanoVG API is to call
nvg:queueNvgRender (function() ... end) , when in an ImGui window in order to
queue the NanoVG rendering for this specific window.

The nvg:queueNvgRender function takes a single argument, which is a function that will

be called when the NanoVG rendering is being executed. The function will be called
without argument.

All of the NanoVG functions are bound to the nvg object, which is a proxy object to the
proper NanoVG context, meaning it is only valid within the function passed to

nvg:queueNvgRender .

This allows the user to call the NanoVG functions without having to pass the NanoVG
context as the first argument, as it is done automatically by the proxy object.

Note that the font used by the emulator is also loaded into the NanoVG context,
meaning that it is possible to use nvg:Text without having to load a font first.

8.4.5 Example of using everything together

As the NanoVG rendering is very low level, and requires a viewport to draw to, it is
required to use the ImGui API to draw some UI, grab the positions of the vector graphics

-65/94 -

https://github.com/grumpycoders/pcsx-redux/blob/main/src/gui/nvgffi.lua

8.4.5 Example of using everything together

to add, and then queue some NanoVG calls within some ImGui context to draw the
wanted vector graphics.

The following example will draw a red rectangle in the middle of the Output region. The
rectangle will be 100x100 pixels in size, and will be drawn on top of the emulator
rendering. It should follow around the Output region when resizing or moving the
window.

In order to work, this example requires the code to be executed in the Image function
of the Output shader invoker, so we can get the position of the Output region to draw to.

il function Image (textureID, srcSizeX, srcSizeY, dstSizeX, dstSizeY)

2 -- This helper is provided by the emulator, and will properly calculate

’ -— arbitrary coordinates within an ImGui image that is dstSizeX x dstSizeY
é —-— in size. The first two arguments are the coordinates to convert, and

% -— the middle two arguments are the boundaries of the source image.

7

8 -- Here, we are using (1.0, 1.0) as the source image size, but it could

g -- be any other size, as long as the coordinates are within the boundaries
12 -— of the source image. For example, if the source image is 320x240, then
12 -- the coordinates should be within (0, 0) and (320, 240), and the helper
13 -- will properly convert the coordinates to the destination image size.

14

15 local cx, cy = PCSX.Helpers.UI.imageCoordinates (0.5, 0.5, 1.0, 1.0, dstSizeX,
1e dstSizeY)

17

18

19 -- As explained, we can't call NanoVG functions directly, so we need to

20 -- gqueue the rendering of the vector graphics.

21 nvg:queueNvgRender (function ()

22 nvg:beginPath ()

ij nvg:rect(cx - 50, cy - 50, 100, 100)

nvg:fillColor (nvg.Color.New (1, 0, 0, 1))
nvg:£ill ()
end)
imgui.Image (texturelD, dstSizeX, dstSizeY, 0, 0, 1, 1)
end

- 66/94 -

8.5 File API

8.5 File API

8.5.1 Introduction & Rationale

While the normal Lua io API is loaded, there's a more powerful API that's more tightly
integrated with the rest of the PCSX-Redux File handling code. It's an abstraction class
that allows seamless manipulation of various objects using a common API.

- 67/94 -

8.5.2 Common API for all File objects

The File objects have different properties depending on how they are created and their
intention. But generally speaking, the following rules apply:

¢ Files are reference counted. They will be deleted when the reference count reaches
zero. The Lua garbage collector will only decrease the reference count.

e Whenever possible, writes are deferred to an asynchronous thread, making writes
return basically instantly. This speed up comes at the trade off of data integrity, which
means writes aren't guaranteed to be flushed to the disk yet when the function
returns. Data will always have integrity internally within PCSX-Redux however, and
when exiting normally, all data will be flushed to the disk.

e Some File objects can be cached. When caching, reads and writes will be done
transparently, and the cache will be used instead of the actual file. This will make reads
return basically instantly too.

e The Read and Write APIs can haul LuaBuffer objects. These are Lua objects that can be
used to read and write data to the file. You can construct one using the
Support.NewLuaBuffer (size) function. They can be cast to strings, and can be used

as a table for reading and writing bytes off of it, in a 0-based fashion. The length
operator will return the size of the buffer. The methods :maxsize ()

and :resize(size) are available. They also have a .pbslice property that implicitly
converts them to a Lua-Protobuf's pb.slice, which can then be passed to

pb.decode .

e The Read and Write APIs can also function using Lua-Protobuf's buffers and slices
respectively.

e If the file isn't closed when the file object is destroyed, it'll be closed then, but letting
the garbage collector do the closing is not recommended. This is because the garbage
collector will only run when the memory pressure is high enough, and the file handle
will be held for a long time.

e When using streamed functions, unlike POSIX files handles, there's two distinct
seeking pointers: one for reading and one for writing.

8.5.2 Common API for all File objects

All File objects have the following API attached to them as methods:

- 68/94 -

8.5.2 Common API for all File objects

Closes and frees any associated resources. Better to call this manually than letting the
garbage collector do it:

1 :close ()

Reads from the File object and advances the read pointer accordingly. The return value
depends on the variant used.

1 :read (size) -- returns a LuaBuffer
2 :read (ptr, size) —-— returns the number of bytes read, ptr has to be a cdata of
2 pointer type
5 :read (buffer) -—- returns the number of bytes read, and adjusts the buffer's
size
:read (pb_buffer, size) -- returns the number of bytes read, while appending to the

pb _buffer's existing data

:gets () -- returns a string, up to the next newline character

Reads from the File object at the specified position. No pointers are modified. The return
value depends on the variant used, just like the non-At variants above.

:readAt (size, pos)

:readAt (ptr, size, pos)
(
(

:readAt (buffer, pos)

SN

:readAt (pb_buffer, pos)

Writes to the File object. The non-At variants will advances the write pointer accordingly.
The At variants will not modify the write pointer, and simply write at the requested
location. Returns the number of bytes written. The string variants will in fact take any
object that can be transformed to a string using tostring() .

:write(string)

:write(slice)

(
:write (buffer)

(
:write(pb_slice)
:write (ptr, size)
:writeAt (string, pos)
:writeAt (buffer, pos)
:writeAt
:writeAt

:writeAt (ptr, size, pos)

slice, pos)

i
O W W ~J o U b W N

(
(
(pb_slice, pos)
(

Note that in this context, pb slice and pb buffer refer to Lua-Protobuf's pb.slice
and pb.buffer objects respectively.

-69/94 -

8.5.2 Common API for all File objects

Some APIs may return a slice object, which is an opaque buffer coming from C++.

The write and writeAt methods can take a slice . It is possible to write a slice to a

file in a zero-copy manner, which will be more efficient:

:writeMoveSlice (slice)
:writeAtMoveSlice (slice

, Pos)

After which, the slice will be consumed and not reusable. The slice objectis

convertible to a string using tostring() , and also has two members: data , which is a

const void*, and size.

slice will go down to zero.

Once consumed by the MovesSlice variants, the size of a

Finally, it is possible to convert a slice objectto a pb.slice one using the

Support.sliceToPBSlice function. However, the same caveats as for normal

pb.slice objects apply: it is fragile, and will be invalidated if the underlying Slice is

moved or destroyed, so it is recommended to use it as a temporary object, such as an

argument to pb.decode .

Still, it is @ much faster alternative to calling tostring()

which will make a copy of the underlying slice.

The following methods manipulate the read and write pointers. All of them return their

corresponding pointer. The wheel argument can be of the values 'SEEK SET',

'"SEEK CUR' , and 'SEEK END' , and will default to 'SEEK SET'.

S W N e

:rSeek (pos[, wheel])
crTell ()
:wSeek (pos [, wheel])
:wTell ()

These will query the corresponding File object.

SN

o J o U

:size () -—- Returns

will throw an error.

:seekable () -- Returns
:writable () -- Returns
ceof () -— Returns
:failed() -— Returns

the size in bytes, if possible. If the file is not seekable,

true
true
true

true

defunct if this is true.

if
if
if
if

the file is seekable.

the file is writable.

the read pointer is at the end of file.

the file failed in some ways. The File object is

:cacheable () -- Returns true i1if the file is cacheable.
:caching () -- Returns true if caching is in progress or completed.
:cacheProgress () -- Returns a value between 0 and 1 indicating the progress of the

caching operation.

-70/94 -

8.5.2 Common API for all File objects

If applicable, this will start caching the corresponding file in memory.

1 :startCaching ()

Same as above, but will suspend the current coroutine until the caching is done. Cannot
be used with the main thread.

1 :startCachingAndWait ()

Duplicates the File object. This will re-open the file, and possibly duplicate all ressources
associated with it.

1 :dup ()

Creates a read-only view of the file starting at the specified position, spanning the
specified length. The view will be a new File object, and will be a view of the same
underlying file. The default values of start and length are 0 and -1 respectively, which
will effectively create a view of the entire file. The view may have less features than the
underlying file, but will always be seekable, and keep its seeking position independent of
the underlying file. The view will hold a reference to the underlying file.

1 :subFile ([start[, length]])

In addition to the above methods, the File API has these helpers, that'll read or write
binary values off their corresponding stream position for the non-At variants, or at the
indicated position for the At variants. All the values will be read or stored in Little
Endian, regardless of the host's endianness.

1 :readU8 (), :readUl6 (), :readU32(), :readU64(),

2 :readI8 (), :readIl6 (), :readI32(), :readI6d(),

j :readUBAt (pos), :readUl6At (pos), :readU32At (pos), :readU64At (pos),

5 :readI8At (pos), :readIl6At (pos), :readI32At (pos), :readl6dAt (pos),

6 :writeU8 (val), :writeUl6(val), :writeU32(val), :writeU64 (val),

7 :writelI8(val), :writelIl6(val), :writeI32(val), :writelIo4d (val),

8 :writeU8At (val, pos), :writeUl6At (val, pos), :writeU32At(val, pos), :writeU64At (val,
pos),
:writeI8At (val, pos), :writeIl6At(val, pos), :writeI32At(val, pos), :writel64At (val,
pos) ,

-71/94 -

8.5.3 Creating File objects

8.5.3 Creating File objects
The Lua VM can create File objects in different ways:

Support.File.open (filename[, typel)
Support.File.buffer ()
Support.File.buffer (ptr, size[, typel)
Support.File.mem4qg ()

o 0w N

Support.File.uvFifo (address, port)
Support.File.zReader (file[, size[, raw]])

Basic files

The open function will function on filesystem and network URLs, while the buffer

function will generate a memory-only File object that's fully readable, writable, and
seekable. The type argument of the open function will determine what happens
exactly. It's a string that can have the following values:

e READ : Opens the file for reading only. Will fail if the file does not exist. This is the
default type.

TRUNCATE : Opens the file for reading and writing. If the file does not exist, it will be
created. If it does exist, it will be truncated to O size.

CREATE : Opens the file for reading and writing. If the file does not exist, it will be
created. If it does exist, it will be left untouched.

READWRITE : Opens the file for reading and writing. Will fail if the file does not exist.

DOWNLOAD URL : Opens the file for reading only. Will immediately start downloading
the file from the network. The filename argument will be treated as a URL. The curl

is the backend for this feature, and its url schemes are supported. The progress of the
download can be monitored with the :cacheProgress () method.

e DOWNLOAD URL AND WAIT : As above, but suspends the current coroutine until the
download is done. Cannot be used with the main thread.

-72/94 -

http://curl.se/libcurl
https://everything.curl.dev/cmdline/urls

8.5.3 Creating File objects

Buffers

When calling .buffer () with no argument, this will create an empty read-write buffer.
When calling it with a cdata pointer and a size, this will have the following behavior,
depending on type:

e READWRITE (or no type): The memory passed as an argument will be copied first.

e READ : The memory passed as an argument will be referenced, and the lifespan of said
memory needs to outlast the File object. The File object will be read-only.

e ACQUIRE : It will acquire the pointer passed as an argument, and free it later using
free () , meaning it needs to have been allocated using malloc () in the first place.

The .mem4g () constructor will return a sparse buffer that has a virtual 4GB span. It can
be used to read and write data in the 4GB range, but will not actually allocate any
memory until the data is actually written to. This is useful for doing operations that are
similar to that of the PlayStation memory. The .mem4g() constructor will return a File
object that's fully readable, writable, and seekable. Its size will always be 4GB. The
returned object will have 3 additional methods:

e :lowestAddress () : Returns the lowest address that has been written to.
e :highestAddress () : Returns the highest address that has been written to.
e :actualSize () : Returns the size of the buffer, which is the highest address minus the

lowest address.

This is a useful object to use with the :subrile() method, as it will allow you to create
a view of a specific range of the 4GB memory. Specifically,
obj:subFile (obj:lowestAddress (), obj:actualSize()) will create a view of the

entire memory that has been written to.

Network streams

The uvFifo function will create a File object that will read from and write to the
specified TCP address and port after connecting to it. The :failed() method will return

true in case of a connection failure. The address is a string, and must be a strict IP
address, no hostnames allowed. The port is a humber between 1 and 65535 inclusive.
As the name suggests, this object is a FIFO, meaning that incoming bytes will be
consumed by any read operation. The :size () method will return the number of bytes
in the FIFO. Writes will be immediately sent over. There are no reception guarantees, as

-73/94 -

8.5.4 Iso files

the other side might have disconnected at any point. The :eof () method will return

true when the opposite end of the stream has been disconnected and there's no more
bytes in the FIFO. In addition to the normal rFile API, a uvFifo has a method

called :isConnecting () , which returns a boolean indicating the fifo is still connecting,

meaning it's possible to verify if the fifo has successfully connected using the boolean
expression not fifo:isConnecting() and not fifo:failed() .

Compressed streams

The zReader function will create a read-only File object which decompresses the data
from the specified File object. The file argument is a File object, and the size
argument is an optional number that will be used to determine the size of the
decompressed data. If not specified, the resulting file won't be seekable, and

its :size () method won't work, but the file will be readable until :eof () returns true.
The raw argument is an optional string that needs to be equal to 'rRaw' , and will

determine whether the data is compressed using the raw deflate format, or the zlib
format. Any other string means the zlib format will be used.

8.5.4 Iso files
There is some limited API for working with ISO files.

e PCSX.getCurrentIso () will return an Iso object representing the currently loaded
ISO file by the emulator.

e PCSX.openlIso (pathOrFile) will return an Iso object opened from the specified
argument, which can either be a filesystem path, or a File object.

The following methods are available on the Iso object:

1 :failed () —-— Returns true if the Iso file failed in some ways. The Iso object
2 is defunct if this is true.
j :createReader () -- Returns an ISOReader object off the Iso file.
. :open (lba[, size[, mode]]) -- Returns a File object off the specified span of
sectors.
:clearPPF () —-— Clears out all of the currently applied patches.
:savePPF () —-- Saves the currently applied patches to a PPF file named after the
ISO file.

The :open method has some magic built-in. The size argument is optional, and if
missing, the code will attempt to guess the size of the underlying file within the Iso. It

- 74/94 -

8.5.4 Iso files

will represent the size of the virtual file in bytes. The size guessing mechanism can only
work on MODE2 FORM1 or FORM2 sectors, and will result in a failed File object
otherwise. The mode argument is optional, and can be one of the following:

'GUESS' : will attempt to guess the mode of the file. This is the default.

'RAW' : the returned File object will read 2352 bytes per sector.

'M1' : the returned File object will read 2048 bytes per sector.

e 'M2 RAW' : the returned File object will read 2336 bytes per sector. This can't be

guessed. This is useful for extracting STR files that require the subheaders to be
present.

e 'M2 FORMI1' : the returned File object will read 2048 bytes per sector.

e 'M2 FORMZ2' : the returned File object will read 2324 bytes per sector.

The resulting File object will cache a single full sector in memory, meaning that small
sequential reads won't read the same sector over and over from the disk.

The resulting File object will be writable, which will temporarily patch the CD-Rom image
file in memory. It is possible to flush the patches to a PPF file by calling the :savePPF ()
method of the corresponding Iso object. When writing to one of these files, the
filesystem metadata information will not be updated, meaning that the size of the file on
the filesystem will not change, despite it being possible to write past the end of it and
overflow on the next sectors. Note that while the virtual File object will enlarge to
accommodate the writes, it will not be filled with zeroes as with typical filesystem
operations, but instead will be filled with the existing data from the iso image. When
applicable, sync headers, location, MODE2 subheaders will be added, and ECC and EDC
will be recalculated on the fly, and the resulting data will be written to the virtual file,
except for files opened in 'RAW' mode. The 'M1' mode cannot be written to, and will
throw an error if attempted.

The ISOReader object has the following methods:

i :open (filename) -- Returns a File object off the specified file within the ISO.

This method is basically a helper over the :open () method of the Iso object, and will
automatically guess the mode and size of the file.

-75/94 -

8.6 Webserver Lua API

8.6 Webserver Lua API

When the webserver is enabled, it will expose the /api/v1/1lua/ prefix, which can be

used to execute Lua code on the emulator. When an endpoint with this prefix is called,
the Lua table pcsx.WebServer.Handlers Wwill be inspected to find a handler for the rest
of the path in the endpoint. If a handler is found, it will be called with a request object
representing the query, and it has to return a string, which will be sent back to the client
as the response. If no handler is found, a 404 error will be returned. If an error occurs
while executing the handler, a 500 error will be returned.

The request object has the following fields:

e form is a table of the form data in the request. This is only available if the request is
a POST request, and the content type is application/x-www-form-urlencoded .

e headers is a table of the headers in the request.

method is the HTTP method of the request.

e urlData is a table with more information about the URL. It has the following string
fields:

e fragment

e host

® path

® port

® Jquery

® schema

e userInfo

If the returned string starts with the characters "HTTP/", then the web server will
consider the response string is a full HTTP response with headers, and will send it as-is

to the client. Otherwise, the response string will be sent as the body of a normal 200
response.

-76/94 -

8.7 Memory and registers

8.7 Memory and registers

8.7.1 FFIl access

The Lua code can access the emulated memory and registers directly through some FFI
bindings:

PCSX.getMemPtr () Will return @ cdatauint8 t*] representing up to 8MB of

emulated memory. This can be written to, but careful about the emulated i-cache in
case code is being written to.

PCSX.getParPtr () will return a cdatauint8 t*] representing up to 512kB of the
EXP1/Parallel port memory space. This can be written to.

e PCSX.getRomPtr () Wwill return a cdata[uint8 t*] representing up to 512kB of the
BIOS memory space. This can be written to.

® PCSX.getScratchPtr () will return a cdata[uint8 t*] representing up to 1kB for
the scratchpad memory space.

e PCSX.getRegisters () Wwill return a structured cdata representing all the registers
present in the CPU:

® PCSX.getReadLUT () will return a cdata[uint8 t**] representing the read LUT for
the CPU.

® PCSX.getWriteLUT () Wwill return a cdata[uint8 t**] representing the write LUT for
the CPU.

-77/94 -

typedef union {
struct {
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

} n;

} psxGPRRegs;

14 typedef union {

r0,
to,
s0,
t8,
lo,

uint32 t r[34];

15 uint32 t r[32];

} psxCPORegs;

19 typedef union {

20 uint32 t r[32];

21 } psxCP2Data;

typedef union {

26 } psxCP2Ctrl;

28 typedef struct {

uint32 t r[32];

28 psxGPRRegs GPR;
psxCPORegs CPO;

psxCP2Data CP2D;
psxCP2Ctrl CP2C;

uint32 t pc;
} psxRegisters;

8.7.2 Safer access

at,
€,
s1,
t9,
hi;

v0,
t2,
82,
kO,

vl,
€3,
s3,
k1,

ao,
t4,
s4,
gp,

al,
t5,
s5,
Spr

az,
t6,
s6,
s8,

as3;
©7e
Sy¥

ray

8.7.2 Safer access

The above methods will return direct pointers into the emulated memory, so it's easy to

crash the emulator if you're not careful. The getMemoryAsFile ()

will be slower:

method is safer, but

e PCSX.getMemoryAsFile () will return a File object representing the full 4GB of

accessible memory. All operations on this file will be translated to the emulated

memory space. This is slower than the direct access methods, but safer. Any read or

write operation will be clamped to the emulated memory space, and will not crash the

emulator.

-78/94 -

8.7.3 Memory mapping

8.7.3 Memory mapping

PCSX-Redux will attempt to forward reads and writes for memory not mapped in the
LUTs. This is useful for debugging, but will be slower than the direct access methods.

- UnknownMemoryRead (address, size) Will be called when a read is attempted to an
unmapped memory address. The function should return an 8, 16, or 32-bit value to be
returned to the CPU. - UnknownMemoryWrite (address, size, value) Will be called
when a write is attempted to an unmapped memory address. The function should return
true or false indicating whether the write was handled.

-79/94 -

8.8 Events

8.8 Events

The Lua code can listen for events broadcasted from within the emulator. The following
function is available to register a callback to be called when certain events happen:

1 PCSX.Events.createEventListener (eventName, callback)

Important: the return value of this function will be an object that represents the
listener itself. If this object gets garbage collected, the corresponding listener will be
removed. Thus it is important to store it somewhere that won't get garbage collected
right away. The listener object has a :remove method to stop the listener before its
garbage collection time.

The callback function will be called from an unsecured environment, and it is advised to
delegate anything complex or risky enough to PCSX.nextTick .

- 80/94 -

8.8 Events

The eventName argument is a string that can have the following values:

-81/94 -

8.8 Events

Quitting : The emulator is about to quit. The callback will be called with no

arguments. This is where you'd need to close libuv objects held by Lua through luv in
order to allow the emulator to quit gracefully. Otherwise you may soft lock the
application where it'll wait for libuv objects to close.

IsoMounted : A new ISO file has been mounted into the virtual CDRom drive. The
callback will be called with no arguments.

GPU: :Vsync : The emulated GPU has just completed a vertical blanking interval. The
callback will be called with no arguments.

ExecutionFlow: :ShellReached : The emulation execution has reached the beginning

of the BIOS' shell. The callback will be called with no arguments. This is the moment
where the kernel is properly set up and ready to execute any arbitrary binary. The
emulator may use this event to side load binaries, or signal gdb that the kernel is
ready.

ExecutionFlow: :Run : The emulator resumed execution. The callback will be called
with no arguments. This event will fire when calling PCSX.resumeEmulator () , when

the user presses Start, or other potential interactions.

ExecutionFlow: : Pause : The emulator paused execution. The callback will be called
with a table that contains a boolean named exception, indicating if the pause is the

result of an execution exception within the emulated CPU. This event will fire on
breakpoints too, so if breakpoints have Lua callbacks attached on them, they will be
executed too.

ExecutionFlow: :Reset : The emulator is resetting the emulated machine. The
callback will be called with a table that contains a boolean named hard, indicating if

the reset is a hard reset or a soft reset. This event will fire when calling
PCSX.resetEmulator () , when the user presses Reset, or other potential interactions.

ExecutionFlow: :SaveStateLoaded : The emulator just loaded a savestate. The

callback will be called with no arguments. This event will fire when calling
PCSX.loadSaveState () , when the user loads a savestate, or other potential

interactions. This is useful to listen to in case some internal state needs to be reset
within the Lua logic.

GUI::JumpToPC : The Ul is being asked to move the assembly view cursor to the

specified address. The callback will be called with a table that contains a number
named pc, indicating the address to jump to.

- 82/94 -

8.8 Events

e GUI::JumpToMemory : The Ul is being asked to move the memory view cursor to the
specified address. The callback will be called with a table that contains a number
named address , indicating the address to jump to, and size, indicating the number

of bytes to highlight.

e Keyboard : The emulator is dispatching keyboard events. The callback will be called
with a table containing four numbers: key, scancode, action, and mods . They are
the same values as the glfw callback set by glfwSetKeyCallback .

e Memory::SetLuts : The emulator has updated the memory LUTs. The callback will be
called with no arguments.

- 83/94 -

8.9 Breakpoints

8.9 Breakpoints

If the debugger is activated, and while using the interpreter, the Lua code can insert
powerful breakpoints using the following API:

1 PCSX.addBreakpoint (address, type, width, cause, invoker)

Important: the return value of this function will be an object that represents the
breakpoint itself. If this object gets garbage collected, the corresponding breakpoint will
be removed. Thus it is important to store it somewhere that won't get garbage collected
right away.

The only mandatory argument is address , which will by default place an execution
breakpoint at the corresponding address. The second argument type is an enum which
can be represented by one of the 3 following strings: 'Exec', 'Read', 'Write', and
will set the breakpoint type accordingly. The third argument width is the width of the
breakpoint, which indicates how many bytes should intersect from the base address with
operations done by the emulated CPU in order to actually trigger the breakpoint. The
fourth argument cause is a string that will be displayed in the logs about why the

breakpoint triggered. It will also be displayed in the Breakpoint Debug UI. And the fifth
and final argument invoker is a Lua function that will be called whenever the

breakpoint is triggered. By default, this will simply call pPcsSx.pauseEmulator () . If the
invoker returns false , the breakpoint will be permanently removed, permitting
temporary breakpoints for example. The signature of the invoker callback is:

1 function (address, width, cause)

2 -- body

3
end

The address parameter will contain the address that triggered the breakpoint. For
'Exec' breakpoints, this is going to be the same as the current pc, but for 'read’
and 'write', it's going to be the actual accessed address. The width parameter will

contain the width of the access that triggered the breakpoint, which can be different
from what the breakpoint is monitoring. And the cause parameter will contain a string

describing the reason for the breakpoint; the latter may or may not be the same as
what was passed to the addBreakpoint function. Note that you don't need to strictly

-84/94 -

8.9 Breakpoints

adhere to the signature, and have zero, one, two, or three arguments for your invoker
callback. The return value of the invoker callback is also optional.

For example, these two examples are well formed and perfectly valid:

bpl = PCSX.addBreakpoint (0x80000000, 'Write', 0x80000, 'Write tracing',

function (address, width, cause)

local regs = PCSX.getRegisters()

local pc = regs.pc

print ("Writing at ' .. address .. ' from ' .. pc .. ' with width ' .. width ..
' and cause ' .. cause)

end)

O W W J o U b W N

i

bp2 = PCSX.addBreakpoint (0x80030000, 'Exec', 4, 'Shell reached - pausing',
function ()

PCSX.pauseEmulator ()

return false
end)

The returned breakpoint object will have a few methods attached to it:

e :disable ()

® :ecnable ()

e :isFnabled()

® :remove ()

A removed breakpoint will no longer have any effect whatsoever, and none of its

methods will do anything. Remember it is possible for the user to still manually remove
a breakpoint from the UL.

Note that the breakpoint will run outside of any safe Lua environment, so it's possible to
crash the emulator by doing something wrong which would normally be caught by the
safe environment of the main thread. This is to ensure that the breakpoint can run as

- 85/94 -

8.9 Breakpoints

fast as possible. In order to avoid this, it's possible to wrap the invoker callback in a
pcall call, which will catch any error and display it in the logs. For example:

1 local someActualFunction = function (address, width, cause)

2 -—- body

j end

5 bp = PCSX.addBreakpoint (0x80030000, 'Write', 4, 'Shell write tracing',
% function (address, width, cause)

7 local success, msg = pcall (function ()

8 someActualFunction (address, width, cause)

S end)

10 .

. if not success then

print ('Error while running Lua breakpoint callback: ' .. msqg)
end
end)

This will ensure that the breakpoint will never crash the emulator, and will instead
display the error in the logs, but it will also slow down the execution of the breakpoint.
It's up to the user to decide whether or not this is acceptable.

It is safe to add or remove breakpoints from within a breakpoint callback, but it's not
safe to remove the breakpoint that is currently being executed. For this specific case,
simply return false from the invoker callback, and the breakpoint will be removed
after the callback returns.

- 86/94 -

8.10 Inline assembler

8.10 Inline assembler

There is a Lua API for an inline MIPS assembler.

One can instantiate an assembler with pcsx.Assembler.New () , which will keep all the

state of the assembler. The assembler can be used to assemble a string of MIPS code,
and then compile it to memory or a file.

The object has the following methods:

e :parse (code) Will parse the string code and assemble it. It will return the

assembler object itself, so it can be chained with the compile methods. The parser is
fairly simple, but it should be enough for most cases. The parser should handle all of
the basic MIPS instructions, all of the PS1's GTE opcodes, and many pseudo-
instructions. It will also handle labels. The parser is more lenient than normal MIPS
assemblers, and will accept some invalid syntax, but it will throw an error if it can't
parse the code.

e :compileToUint32Table (baseAddress) Will compile the assembled code to a table of
uint32 t values. This is useful for debugging, but not very useful for actually running
the code. The baseAddress is the address that the code will be loaded at, in order to
handle relative jumps.

e :compileToMemory (memory, baseAddress, memoryStartAddress) Will compile the

assembled code to an indexable memory object, such as an ffi array. The memory
object must be at least as large as the assembled code. The memory object will be
modified in-place. The baseAddress is the address that the code will be loaded at, in

order to handle relative jumps. The memoryStartAddress is the address that the
memory object starts at.

e :compileToFile(file, baseAddress, fileStartAddress) Will compile the
assembled code to a file object. The file object must be at least as large as the
assembled code. The file object will be modified in-place. The baseAddress is the
address that the code will be loaded at, in order to handle relative jumps. The
fileStartAddress is an optional argument which defaults to 0, and is the address
that the file object starts at. Using a 0-based file address is relevant when using with
the pPCSxX.getMemoryAsFile () function, or when using a Support.mem4g() File
object.

- 87/94 -

8.11 Handling of PSX binaries

8.11 Handling of PSX binaries

There is some support for handling PSX binaries in the Lua API. The PCSX.Binary
module has the following functions:

- 88/94 -

8.11 Handling of PSX binaries

e PCSX.Binary.load (input, output) : loads an input File object into an output
File object. The input file must be a valid PSX binary, which can be in the formats
CPE, PS-EXE, PSF, or ELF, and the output file must be at least 4GB large, which means
it's really only suitable with the mem4g object, or the object returned by
getMemoryAsFile () . The output file will be modified in-place. The output file will be

loaded at the address specified in the binary header. If successful, the function will
return an info structure with the following optional fields:

pc : the entry point of the binary

gp : the global pointer of the binary

sp : the stack pointer of the binary

e region : the region of the binary, which can be one of the following:

'NTSC' @ NTSC region

'PAL"' : PAL region

PCSX.Binary.pack(src, dest, addr, pc, gp, sp, options) : compresses the
input binary stream into a self-decompressing stream. The input must be a File
object, and the output must be a File object. The addr is the address that the
binary will be loaded at. The pc, gp, and sp are the entry point, global pointer, and

- 89/94 -

8.11 Handling of PSX binaries

stack pointer of the binary. The options is an optional table with the following
optional fields:

e tload : the address that the compressed binary will be loaded at. If not specified, it

will be set to a suitable address. Not specifying this will generate an in-place
decompression binary, which doesn't require much extra memory. When specifying
this, the whole output stream will be loaded at this specific address, and the
decompression code will be located at its beginning, meaning both the entry point and
the loading addresses will be the same.

e nopad : the generated PS-EXE will not be padded to 2048 bytes. It will not be suitable

to boot from cd-rom, as the BIOS requires binaries to be aligned to sector sizes, but
many other tools like unirom+nops or caetla+catflap will be able to handle it properly.

e booty : a boolean specifying that the output stream will be suitable to boot as a PIO
bytestream. Incompatible with tlocad or raw.

e nokernel : a boolean specifying that the produced binary will not try to call into the

kernel, in case the kernel has been wiped out. Results in a slightly bigger binary, but is
necessary when the retail kernel is not present.

e shell : a boolean specifying that the output stream will attempt to reboot the
machine and load the binary, which can be useful when resetting the kernel.

e raw : a boolean specifying that the output stream will be a raw binary, without a PS-
EXE header. The generated binary will be completely position independent, and will not
require any special loading address. It is up to the user to ensure no overlap can
happen by loading the file to a high enough address. This option can be used to
generate embedded binaries within others, or to be loaded by other means, and
executed by jumping to it. The tload option will be ignored when this is specified.

e rom : a boolean specifying that the output stream will be a ROM file suitable to be

flashed on a cheat cartridge, as long as the cartridge itself has linear addressing, which
is not necessarily the case for all cartridges. The tload option will be ignored when
this is specified.

e cpe : a boolean specifying that the output stream will be a CPE file, which is the file

format used by the ancient toolchain by Sony. This can be useful when trying to load
binaries with these ancient tools.

e PCSX.Binary.createExe (src, dest, addr, pc, gp, sp) : creates a PS-EXE binary
from the input binary stream. The input must be a File object, and the output must

-90/94 -

8.11 Handling of PSX binaries

be a rile object. The addr is the address that the binary will be loaded at. The pc,
gp, and sp are the entry point, global pointer, and stack pointer of the binary.

The above methods can be used for example the following way:

local src = PCSX.getCurrentIso () :createReader ():open('SLUS 012.34;1")

local md4g = Support.File.meméqg()
local info = PCSX.Binary.load(src, m4g)
% local asm = PCSX.Assembler.New ()

7 asm:parse [[

8 lui Sa0, 0x8001

? addiu $a0, 0x1234

13 1] :compileToFile (mdg, 0x80045678)

10 local bytes = még:subFile (m4g:lowestAddress (), m4g:actualSize())

13

14 local dst = Support.File.open ('compressed-from-lua.ps-exe', 'TRUNCATE')
PCSX.Binary.pack (bytes, dst, mé4g:lowestAddress (), info.pc, info.gp, info.sp)

Additionally, the pcsx.Misc module has the following functions:

e PCSX.Misc.uclPack (src, dest) : compresses the input binary stream into a ucl-
compressed stream. Both the input and output arguments must be File objects. The

output stream will be written at its current write pointer, and will be compressed using
the UCL-NRV2E compression algorithm, which is a variant of the UCL compression
algorithm. The output stream can be decompressed in-place with very little memory
overhead. Simply place the compressed data at the end of the decompression buffer +
16 bytes. The stream doesn't require to be aligned in any particular way.

® PCSX.Misc.writeUclDecomp (dest) : writes a MIPS UCL-NRV2E decompression
routine to the output rFile object, at its current write pointer. The function returns the

number of bytes written, which at the moment is 340 bytes. The code is position
independent, and has the following function signature:

® void decompress (const uint8 t* src, uint8 t* dest);

-91/94 -

8.12 Case studies

8.12 Case studies

8.12.1 Spyro: Year of the Dragon

By looking up some of the gameshark codes for this game, we can determine the
following memory addresses:

0x8007582c is the number of lives.

0x80078bbc is the health of Spyro.

0x80075860 is the number of unspent jewels available to the player.

0x80075750 is the number of dragons Spyro released so far.

-92/94 -

https://www.cheatcc.com/psx/codes/spyroyotd.html

8.12.1 Spyro: Year of the Dragon

With this, we can build a small UI to visualize and manipulate these values in real time:

-93/94 -

@0 o U w N

B DD S D D WWW W W W WWWWNNNNNNDNN R R
U WN P O W®-JoUd WNRE O WO®UOo U WN R O WWO®--Uo U WN P O W

47
48
49
50
51
52
53
54

8.12.1 Spyro: Year of the Dragon

—-- Declare a helper function with the following arguments:

== mem: the ffi object representing the base pointer into the main RAM
-= address: the address of the uint32 t to monitor and mutate

== name: the label to display in the UI

== min, max: the minimum and maximum values of the slider

-- This function is local as to not pollute the global namespace.
local function doSliderInt (mem, address, name, min, max)
-- Clamping the address to the actual memory space, essentially
-- removing the upper bank address using a bitmask. The result
-- will still be a normal 32-bits value.
address = bit.band(address, Ox1fffff)
-— Computing the FFI pointer to the actual uint32 t location.
—-— The result will be a new FFI pointer, directly into the emulator's
-- memory space, hopefully within normal accessible bounds. The
-- resulting type will be a cdata[uint8 t*].
local pointer = mem + address
-— Casting this pointer to a proper uint32 t pointer.
pointer = ffi.cast('uint32 t*', pointer)
-- Reading the value in memory
local value = pointer[0]
-- Drawing the ImGui slider
local changed
changed, value = imgui.SliderInt (name, value, min, max, '%d')
-- The ImGui Lua binding will first return a boolean indicating
-- if the user moved the slider. The second return value will be
-- the new value of the slider if it changed. Therefore we can
-- reassign the pointer accordingly.
if changed then pointer[0] = value end
end

—-- Utilizing the DrawImguiFrame periodic function to draw our UI.
—-— We are declaring this function global so the emulator can
-—- properly call it periodically.
function DrawImguiFrame ()
-- This is typical ImGui paradigm to display a window using
-- the safe mode. This will ensure that the window is properly
—-- closed even if an exception is thrown during the rendering
-- of the window.
imgui.safe.Begin('Spyro internals', function ()
-- Grabbing the pointer to the main RAM, to avoid calling
-- the function for every pointer we want to change.
-— Note: it's not a good idea to hold onto this value between
-- calls to the Lua VM, as the memory can potentially move
-— within the emulator's memory space.
local mem = PCSX.getMemPtr ()

—-— Now calling our helper function for each of our pointer.
doSliderInt (mem, 0x8007582c, 'Lives', 0, 9)
doSliderInt (mem, 0x80078bbc, 'Health', -1, 3)
doSliderInt (mem, 0x80075860, 'Jewels', 0, 65000)
doSliderInt (mem, 0x80075750, 'Dragons', 0, 70)

-94/94 -

	PCSX-Redux
	1. Home
	2. PCSX-Redux menus
	2.1 File
	2.2 Emulation
	2.3 Configuration
	2.4 Debug
	2.5 Help
	2.6 GPU information

	3. Compiling PCSX-Redux
	3.1 Getting the sources
	3.2 Windows
	Openbios

	3.3 Linux
	3.3.1 Compiling with Docker
	3.3.2 Compiling with make
	Openbios

	3.3.3 MacOS
	Openbios

	3.4 Compiling PSX code
	3.4.1 Getting the toolchain on Windows
	3.4.2 Getting the toolchain on GNU/Linux
	Debian derivative; Ubuntu, Mint...
	Arch derivative; Manjaro...

	4. Command Line Flags
	5. Debugging
	5.1 Debugging with PCSX-Redux
	5.2 GDB server
	5.2.1 Enabling the GDB server
	5.2.2 GDB setup
	Windows
	GNU/Linux
	Debian based
	Arch based

	5.2.3 IDE setup
	MS VScode
	executable
	gdbpath
	autorun

	Geany
	.gdbinit
	Plugin configuration

	CLion
	.gdbinit

	5.2.4 Beginning Debugging
	Starting debugging in Geany

	5.2.5 Additional tools

	5.3 Connecting Ghidra to PCSX-Redux
	5.3.1 Prerequisites
	5.3.2 Setting up Ghidra
	5.3.3 Setting up Ghidra's debugger

	5.4 Misc Features
	5.4.1 Mapping breakpoints
	5.4.2 CPU trace dump
	Setup
	Begin dump
	Source

	5.5 VRAM viewer
	5.5.1 Navigating
	5.5.2 Lensing
	5.5.3 The various viewers

	5.6 GPU Logger
	5.6.1 Understanding the logs
	5.6.2 Highlighting Primitives
	5.6.3 Replay System

	6. Mips API
	6.1 Description
	6.2 Functions
	6.2.1 Kernel Checker
	6.2.2 Memory Sanitizer

	7. Web server
	7.1 Activation
	7.2 REST API

	8. Lua
	8.1 Introduction
	8.1.1 Lua engine
	8.1.2 Lua console
	8.1.3 Lua editor

	8.2 Loaded libraries
	8.2.1 Basic Lua
	8.2.2 Dear ImGui
	8.2.3 OpenGL
	8.2.4 NanoVG
	8.2.5 Luv
	8.2.6 Zlib
	8.2.7 FFI-Reflect
	8.2.8 PPrint
	8.2.9 Lua-Protobuf
	8.2.10 luafilesystem
	8.2.11 LPeg

	8.3 Redux basic API
	8.3.1 Settings
	8.3.2 ImGui interaction
	8.3.3 Events Engine interaction & Execution Contexts
	8.3.4 Constants
	8.3.5 Pads
	8.3.6 Execution flow
	8.3.7 Messages
	8.3.8 GUI
	8.3.9 GPU
	8.3.10 Loading and executing code
	8.3.11 Miscellaneous

	8.4 Rendering
	8.4.1 Emulated GPU rendering pipeline
	8.4.2 Shader editor
	8.4.3 ImGui
	Safety

	8.4.4 NanoVG
	8.4.5 Example of using everything together

	8.5 File API
	8.5.1 Introduction & Rationale
	8.5.2 Common API for all File objects
	8.5.3 Creating File objects
	Basic files
	Buffers
	Network streams
	Compressed streams

	8.5.4 Iso files

	8.6 Webserver Lua API
	8.7 Memory and registers
	8.7.1 FFI access
	8.7.2 Safer access
	8.7.3 Memory mapping

	8.8 Events
	8.9 Breakpoints
	8.10 Inline assembler
	8.11 Handling of PSX binaries
	8.12 Case studies
	8.12.1 Spyro: Year of the Dragon

