
PCSX-ReduxNone NoneNone

Table of contents 41. Home 52. PCSX-Redux menus 62.1 File 72.2 Emulation 72.3 Configuration 82.4 Debug 82.5 Help 82.6 GPU information 103. Compiling PCSX-Redux 103.1 Getting the sources 103.2 Windows 113.3 Linux 123.4 Compiling PSX code 144. Command Line Flags 185. Debugging 185.1 Debugging with PCSX-Redux 195.2 GDB server 285.3 Connecting Ghidra to PCSX-Redux 315.4 Misc Features 345.5 VRAM viewer 355.6 GPU Logger 376. Mips API 376.1 Description 386.2 Functions 417. Web server 417.1 Activation 417.2 REST API 448. Lua 448.1 Introduction 468.2 Loaded libraries 488.3 Redux basic API 578.4 Rendering 678.5 File API 768.6 Webserver Lua API 778.7 Memory and registers Table of contents- 2/94 -

808.8 Events 848.9 Breakpoints 878.10 Inline assembler 888.11 Handling of PSX binaries 928.12 Case studies 09. Openbios 09.1 Purposes of Openbios 09.2 Building 09.3 Status 09.4 Organization 09.5 Technicalities 09.6 Commentary 09.7 Legality Table of contents- 3/94 -

1. HomeWelcome to the PCSX-Redux emulator documentation.You can get the emulator for various platforms here: https://github.com/grumpycoders/pcsx-redux#whereTo discuss this emulator specifically, please join our Discord server:To discuss PlayStation 1 development, hacking, and reverse engineering in general,please join the PSX.Dev Discord server:Compiling PCSX-ReduxMenusCommand line argumentsDebugging with PCSX-ReduxInternal MIPS apiWeb ServerLua APIOpenBios 1. Home- 4/94 -

https://github.com/grumpycoders/pcsx-redux
https://github.com/grumpycoders/pcsx-redux#where
https://github.com/grumpycoders/pcsx-redux#where
https://discord.gg/KG5uCqw
https://discord.gg/KG5uCqw
https://discord.gg/QByKPpH
https://discord.gg/QByKPpH

2. PCSX-Redux menusThe menu bar holds some informations :CPU modeGame IDImGui FPS counter (not psx internal fps)• • • 2. PCSX-Redux menus- 5/94 -

2.1 FileOpen ISOClose ISOLoad BinaryDump save state proto schemaSave state slotsLoad state slotsSave global stateLoad global stateOpen Lid : Simulate open lidClose Lid : Simulate closed lidOpen and Close Lid : Simulate opening then closing the lidMC1 inserted: Insert or remove Memory Card 1MC2 inserted: Insert or remove Memory Card 2Reboot : Restart emulatorQuit• • • • • • • • • • • • • • • 2.1 File- 6/94 -

2.2 EmulationStart (F5): Start executionPause (F6): Pause executionSoft reset (F8): Calls Redux's CPU reset function, which jumps to the BIOS entrypoint(0xBFC00000), resets some COP0 registers and the general purpose registers, andresets some IO. Does not clear vram.Hard reset (Shift-F8): Similar to a reboot of the PSX.2.3 ConfigurationEmulation : Emulation settingsGPU : Graphics Processing Unit settingsSPU : Sound Processing Unit settingsUI : Change user interface settings (such as font size, language or UI theme)Controls : Edit KB/Pad controlsShader presets : Apply a shader presetConfigure shaders : Show shader editor• • • • • • • • • • • 2.2 Emulation- 7/94 -

2.4 Debug2.5 HelpShow ImGui demoAbout2.6 GPU informationThe 'About' dialog available in the 'Help' menu has an 'OpenGL information' tab thatdisplays information on the GPU currently used by the program, such as the supportedOpenGL extensions.• • 2.4 Debug- 8/94 -

2.6 GPU information- 9/94 -

3. Compiling PCSX-Redux3.1 Getting the sourcesThe only location for the source is on github. Clone recursively, as the project usessubmodules: git clone https://github.com/grumpycoders/pcsx-redux.git --recursive .3.2 WindowsInstall Visual Studio 2019 Community Edition. Open the file vsprojects\pcsx-redux.sln , select pcsx-redux -> pcsx-redux , rightclick, Set as Startup Project , and hit F7 to build.The project follows the open-and-build paradigm with no extra step, so no specificdependency ought to be needed, as NuGet will take care of downloading themautomatically for you on the first build.Note: If you get an error saying hresult e_fail has been returned from a call to a com component , you mightneed to delete the .suo file in vsproject/vs, restart Visual Studio and retry.OpenbiosUsing Visual Studio Code, one can use the task "make_openbios" to compile: CTRL-Pthen task make_openbios to compile. 3. Compiling PCSX-Redux- 10/94 -

https://github.com/grumpycoders/pcsx-redux/
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&rel=16
https://www.nuget.org/
https://code.visualstudio.com/

3.3 Linux3.3.1 Compiling with DockerRun ./dockermake.sh . You need docker for this to work. You will also need a few libraries on your system for this to work. Check the Dockerfilefor a list of library packages to install.3.3.2 Compiling with makeDebian derivatives (for full emulator compilation):Arch derivatives :You can then just enter the 'pcsx-redux' directory and compile without using docker with make .If you have a different mips compiler, you'll need to override some variables, such as PREFIX=mipsel-none-elf FORMAT=elf32-littlemips . OpenbiosBuilding OpenBIOS on Linux can be done with docker : ./dockermake.sh openbios ,or using make , with the g++-mipsel-linux-gnu package installed ; make openbios . 1234 # Debian derivative; Ubuntu, Mint...sudo apt install docker# Arch derivative; Manjaro...sudo pacman -S docker• 1 sudo apt-get install -y build-essential git make pkg-config clang g++ g++-mipsel-linux-gnu cpp-mipsel-linux-gnu binutils-mipsel-linux-gnu libfreetype-dev libavcodec-dev libavformat-dev libavutil-dev libcurl4-openssl-dev libglfw3-dev libswresample-dev libuv1-dev zlib1g-dev• 1 sudo pacman -S clang git make pkg-config ffmpeg libuv zlib glfw-x11 curl xorg-server-xvfb 3.3 Linux- 11/94 -

https://en.wikipedia.org/wiki/Docker_(software)
https://github.com/grumpycoders/pcsx-redux/blob/main/tools/build/Dockerfile#L22

3.3.3 MacOSYou need MacOS Catalina with the latest XCode to build, as well as a few homebrewpackages.Run the brew installation script to get all the necessary dependencies.Run make to build. Compiling OpenBIOS will require a mips compiler, that you can generate using thefollowing commands: OpenbiosThen, you can compile OpenBIOS using make -C ./src/mips/openbios .3.4 Compiling PSX codeIf you're only interested in compiling psx code, you can clone the PCSX-Redux repo; then install a mips toolchain and get the converted PsyQ libraries in the pcsx-redux/src/mips/psyq/ folder as per these instructions.You can also find the pre-compiled converted Psyq libraries online.3.4.1 Getting the toolchain on WindowsDownload the MIPS toolchain here : https://static.grumpycoder.net/pixel/mips/g++-mipsel-none-elf-10.3.0.zipand add the bin folder to your $PATH.You can test it's working by launching a command prompt and typing mipsel-none-elf-gcc.exe --version . If you get a message like mipsel-none-gnu-gcc (GCC) 10.3.0 , then it's working !12 brew install ./tools/macos-mips/mipsel-none-elf-binutils.rbbrew install ./tools/macos-mips/mipsel-none-elf-gcc.rb1 git clone https://github.com/grumpycoders/pcsx-redux.git --recursive 3.3.3 MacOS- 12/94 -

https://brew.sh/
https://github.com/grumpycoders/pcsx-redux/blob/main/.github/scripts/install-brew-dependencies.sh
https://github.com/ABelliqueux/pcsx-redux/blob/main/src/mips/psyq/README.md
https://github.com/ABelliqueux/nolibgs_hello_worlds/blob/main/README.md#nugget--psyq-setup
http://static.grumpycoder.net/pixel/mips/g++-mipsel-none-elf-10.3.0.zip
http://static.grumpycoder.net/pixel/mips/g++-mipsel-none-elf-10.3.0.zip
https://stackoverflow.com/questions/44272416/how-to-add-a-folder-to-path-environment-variable-in-windows-10-with-screensho#44272417
https://www.lifewire.com/how-to-open-command-prompt-2618089

3.4.2 Getting the toolchain on GNU/LinuxDebian derivative; Ubuntu, Mint...Arch derivative; Manjaro...The mipsel environment can be installed from AUR : cross-mipsel-linux-gnu-binutils and cross-mipsel-linux-gnu-gcc using your AURhelper of choice:1 sudo apt install g++-mipsel-linux-gnu cpp-mipsel-linux-gnu binutils-mipsel-linux-gnu1 trizen -S cross-mipsel-linux-gnu-binutils cross-mipsel-linux-gnu-gcc3.4.2 Getting the toolchain on GNU/Linux- 13/94 -

https://wiki.archlinux.org/index.php/Aur
https://aur.archlinux.org/packages/cross-mipsel-linux-gnu-binutils/
https://aur.archlinux.org/packages/cross-mipsel-linux-gnu-gcc/
https://wiki.archlinux.org/index.php/AUR_helpers

4. Command Line FlagsYou can launch pcsx-redux with the following command line parameters: 4. Command Line Flags- 14/94 -

The parsing code doesn't care about the number of dashes in the parameter'sflag, so '-' can be used as well as '--', or any number of dashes. 4. Command Line Flags- 15/94 -

Flag Meaning-dumpproto Dump the protobuf schemas for PCSX-Redux on stdout and exit immediately.-run Begin execution immediately on startup.-stdout Redirect log output to stdout.-lua_stdout Redirect Lua's console output to stdout.-logfile Specify a file to log output to.-bios Specify a BIOS file.-testmode Interpret internal API's pcsx_exit() command as a request to exit the emulator instead of pausing, andclose the emulator. Implies -safe , -no-gui-log , and will also disable first chance exceptions. Use onlywhen doing unit testing.-exe Load a PSX exe.-loadexe Load a PSX exe.-iso Load a PSX disk image (iso, bin/cue).-loadiso Load a PSX disk image (iso, bin/cue).-memcard1 Specify a memory card file to use as memory card slot 1.-memcard2 Specify a memory card file to use as memory card slot 2.-pcdrv Enable the pcdrv device interface. (Access PC filesystem through SIO).-pcdrvbase Specify base directory for pcdrv.-safe Resets configuration to defaults.-resetui Resets the UI to its defaults.-kiosk Enables kiosk mode, disabling UI interaction. Will change the saved setting.-no-kiosk Disables kiosk mode, allowing the user to interact with the UI. Will change the saved setting.-interpreter Use the interpreter CPU core.-dynarec Use the dynamic recompiler CPU core.-debugger Activates the debugger. Will change the saved setting.-no-debugger Deactivates the debugger. Will change the saved setting.-fastboot Skips the BIOS logo and boot animation. Will change the saved setting.-no-fastboot Shows the BIOS logo and boot animation. Will change the saved setting.-gdb Activates the gdb server. Will change the saved setting.-no-gdb Deactivates the gdb server. Will change the saved setting.-gdb-port Sets the TCP port the gdb server is listening on. Will change the saved setting.-trace Activates the CPU trace logging. Will change the saved setting.-no-trace Deactivates the CPU trace logging. Will change the saved setting.-no-gui-log Fully disables logs to be sent to the GUI.-archive Specifies a .zip file to load for the Support.extra.dofile function. 4. Command Line Flags- 16/94 -

Flag Meaning-dofile Specifies a Lua file to load through the Support.extra.dofile function.-exec Specifies a Lua string to execute.-luacov Enables Lua code coverage report. Requires the luacov Lua module to be installed.-portable Enables portable mode. Settings and saves will be stored in the same directory as the executable, or in thedirectory specified by the optional argument to this flag. 4. Command Line Flags- 17/94 -

5. Debugging5.1 Debugging with PCSX-ReduxPCSX-Redux has strong debugging capabilities. It has a built-in GDB server, whichallows you to connect to it with a GDB client, such as gdb itself when targeting MIPS, avscode connector, IDA Pro, or Ghidra, and debug the MIPS CPU. See debugging withGhidra for more information on debugging with Ghidra.There are also built-in debugging tools, available in the Debug menu. Most of the CPUdebugging features will require switching the Dynarec off from the Emulationconfiguration menu, as the Dynarec is not compatible with the debugging features.Additionally, the debugger needs to be enabled, also in the Emulation configurationmenu.The GPU debugging tools can work with the Dynarec enabled, and thus will be muchfaster than when the interpreter is used. 5. Debugging- 18/94 -

5.2 GDB serverThe GDB server allows you to set breakpoints and control your PSX program's executionfrom your gdb compatible IDE.5.2.1 Enabling the GDB serverIn PCSX-Redux: Configuration > Emulation > Enable GDB server . Make sure the debugger is also enabled. 5.2 GDB server- 19/94 -

5.2.2 GDB setupYou need gdb-multiarch on your system :WindowsDownload a pre-compiled version from here : https://static.grumpycoder.net/pixel/gdb-multiarch-windows/GNU/LinuxDEBIAN BASEDInstall via your package manager :ARCH BASEDOn Arch based distributions, multiarch is now enabled by default in regular builds andyou don't need to install a specific version anymore.You can install the 'gdb' package with pacman :5.2.3 IDE setupMS VScodeInstall the Native debug extension :https://marketplace.visualstudio.com/items?itemName=webfreak.debug12 # Debian derivative; Ubuntu, Mint...sudo apt install gdb-multiarch1 sudo pacman -S gdb• 5.2.2 GDB setup- 20/94 -

https://static.grumpycoder.net/pixel/gdb-multiarch-windows/
https://static.grumpycoder.net/pixel/gdb-multiarch-windows/
https://gitlab.archlinux.org/archlinux/packaging/packages/gdb/-/blob/main/PKGBUILD?ref_type=heads#L50
https://marketplace.visualstudio.com/items?itemName=webfreak.debug

Adapt your launch.json file to your environment :A sample lanuch.json file is available here.This should go in your-project/.vscode/ . You need to adapt the values of "executable" , "gdbpath" and "autorun" accordingto your system :EXECUTABLEThis is the path to your .elf executable :https://github.com/grumpycoders/pcsx-redux/blob/a3bebd490388130e924124cdfeff3bc46b6149d9/.vscode/launch.json#L153GDBPATHThis the path to the gdb-multiarch executable:https://github.com/grumpycoders/pcsx-redux/blob/a3bebd490388130e924124cdfeff3bc46b6149d9/.vscode/launch.json#L154-L157AUTORUNMake sure that "load your-file.elf" corresponds to the "target" value. https://github.com/grumpycoders/pcsx-redux/blob/a3bebd490388130e924124cdfeff3bc46b6149d9/.vscode/launch.json#L159-L165• 1 "executable": "HelloWorld.elf",1 "gdbpath": "/usr/bin/gdb-multiarch",1234 "autorun": ["monitor reset shellhalt",[...]"load your-file.elf", 5.2.3 IDE setup- 21/94 -

https://github.com/grumpycoders/pcsx-redux/blob/main/.vscode/launch.json
https://github.com/grumpycoders/pcsx-redux/blob/a3bebd490388130e924124cdfeff3bc46b6149d9/.vscode/launch.json#L153
https://github.com/grumpycoders/pcsx-redux/blob/a3bebd490388130e924124cdfeff3bc46b6149d9/.vscode/launch.json#L153
https://github.com/grumpycoders/pcsx-redux/blob/a3bebd490388130e924124cdfeff3bc46b6149d9/.vscode/launch.json#L154-L157
https://github.com/grumpycoders/pcsx-redux/blob/a3bebd490388130e924124cdfeff3bc46b6149d9/.vscode/launch.json#L154-L157
https://github.com/grumpycoders/pcsx-redux/blob/a3bebd490388130e924124cdfeff3bc46b6149d9/.vscode/launch.json#L159-L165
https://github.com/grumpycoders/pcsx-redux/blob/a3bebd490388130e924124cdfeff3bc46b6149d9/.vscode/launch.json#L159-L165

By default, using localhost should work, but if encountering trouble, try using yourcomputer's local IP (e.g; 192.168.x.x, 10.0.x.x, etc.)https://github.com/grumpycoders/pcsx-redux/blob/a3bebd490388130e924124cdfeff3bc46b6149d9/.vscode/launch.json#L150GeanyMake sure you installed the official plugins and enable the Scope debugger .To enable the plugin, open Geany, go to Tools > Plugin manager and enable Scope Debugger .You can find the debugging facilities in the Debug menu ; 5.2.3 IDE setup- 22/94 -

https://github.com/grumpycoders/pcsx-redux/blob/a3bebd490388130e924124cdfeff3bc46b6149d9/.vscode/launch.json#L150
https://github.com/grumpycoders/pcsx-redux/blob/a3bebd490388130e924124cdfeff3bc46b6149d9/.vscode/launch.json#L150
https://www.geany.org/download/releases/#geany-plugins-releases

You can find the plugin's documentation here : https://plugins.geany.org/scope.html.GDBINITCreate a .gdbinit file at the root of your project with the following content, adaptingthe path to your elf file and the gdb server's ip.PLUGIN CONFIGURATIONIn Geany : Debug > Setup Program : 1234 target remote localhost:3333symbol-file load /path/to/your/executable.elfmonitor reset shellhaltload /path/to/your/executable.elf 5.2.3 IDE setup- 23/94 -

https://plugins.geany.org/scope.html

CLionOpen the Run/Debug Configurations menu, which you can find here:Then, add a new Remote Debug configuration: 5.2.3 IDE setup- 24/94 -

Finally, set your new configuration up: 5.2.3 IDE setup- 25/94 -

.GDBINITCreate a .gdbinit file at the root of your project with the following content, adaptingthe path to your elf file.123456 define target remotetarget extended-remote $arg0symbol-file /path/to/your/executable.elfmonitor reset shellhaltload /path/to/your/executable.elfend 5.2.3 IDE setup- 26/94 -

5.2.4 Beginning DebuggingLaunch pcsx-redux , then run the debugger from your IDE. It should load the elf file,and execute until the next breakpoint.Starting debugging in GeanyYour browser does not support the video tag. Source :https://archive.org/details/pcsx_redux_geany_gdb5.2.5 Additional toolshttps://github.com/cyrus-and/gdb-dashboard/ 5.2.4 Beginning Debugging- 27/94 -

https://archive.org/details/pcsx_redux_geany_gdb
https://github.com/cyrus-and/gdb-dashboard/

5.3 Connecting Ghidra to PCSX-ReduxSince version 10.3, Ghidra now supports debugging MIPS targets. This allows for a muchmore powerful reverse engineering experience than what was previously possible withthe GDB server. This document will explain how to set up Ghidra to debug PCSX-Redux,as it is not entirely straightforward.5.3.1 PrerequisitesA gdb "multiarch" binary is required. For Windows, you can get it from here. For Linux,you can get it from your distribution's package manager; on Ubuntu and Debian, this isthe package gdb-multiarch . And for MacOS, you can use the brew package managerto install it; this is the package gdb .Ghidra 10.3 or newer. You can get it from here.PCSX-Redux either configured to disable Dynarec, enable the debugger, and enable thegdb server, or started using the following command-line arguments: -interpreter -debugger -gdb .The following file downloaded somewhere on your computer, naming it ghidra_debugger_scripts . 5.3.2 Setting up GhidraBefore starting Ghidra, until version 10.3.3, the MIPS CPU isn't terribly well defined. Oneneeds to go to the installation files of Ghidra, and edit the file Ghidra/Processors/MIPS/data/languages/mips.ldef . In this file, find the lines <external_name tool="gnu" name="mips:4000"/> , and change them to <external_name tool="gnu" name="mips:3000"/> . This will allow Ghidra to properlyrecognize the MIPS CPU used by the PlayStation 1. This step is no longer necessarystarting with Ghidra 10.3.3.• • • • 5.3 Connecting Ghidra to PCSX-Redux- 28/94 -

https://static.grumpycoder.net/pixel/gdb-multiarch-windows/
https://brew.sh/
https://ghidra-sre.org/
https://raw.githubusercontent.com/grumpycoders/pcsx-redux/main/tools/ghidra_scripts/ghidra_debugger_scripts

5.3.3 Setting up Ghidra's debuggerWhen in the main view of Ghidra, right click on the project you want to debug, and inthe context menu, select Open With > Debugger . This will open the debugger toolinstead of the default disassembler tool.First, identify the Debugger Targets window, and click its top right button:This will open the debugger connector window. In the drop down, select gdb , and asthe launch command, enter the path to the gdb multiarch binary, followed by -i mi2 .For example, on Windows, this could be C:/gdb-multiarch/bin/gdb-multiarch.exe -i mi2 . Click Connect .A new Interpreter window should open on the right, with the prompt (gdb) allowingyou to type commands. First, you need to source the ghidra_debugger_scripts filefrom before. To do this, type source <path to ghidra_debugger_scripts> . Forexample, on Windows, this could be source C:/Users/Pixel/Downloads/ghidra_debugger_scripts . Then, you need to connect to the PCSX-Redux gdb server.To do this, type target remote localhost:3333 . Finally, locate the Modules tab in5.3.3 Setting up Ghidra's debugger- 29/94 -

the right window, next to the Interpreter tab, which should look like this:Select the top line, right click on it, and in the context menu, select Map Module to <name of your project> . In the new window that appears, simply click Ok .At this point, Ghidra should be fully connected to PCSX-Redux, and should be able toplace breakpoint, resume or pause execution, inspect variables, etc. Please be awarethat, as of Ghidra 10.3, many features of the debugger are still work in progress, andwon't necessarily be stable. 5.3.3 Setting up Ghidra's debugger- 30/94 -

5.4 Misc Features5.4.1 Mapping breakpointsPCSX-Redux has a feature that allows mapping the memory of the console while thesoftware is running, and to set breakpoints on the mapped memory. This can forinstance help in finding codepath when performing certain activities when running code.First, map the kind of action you want to discover, such as executing code, readingmemory, or writing memory. Then, run the code for some time without performing thespecific action you want to discover. Finally, activate the map breakpoint mode, and thenperform the action you want to discover. The breakpoint should be triggered when theaction is performed.For example, say that in a game, you want to know what code is executed when youpress the "X" button. First, check the Map execution checkbox. Then, run the game fora while without pressing the "X" button. This will map enough of the memory that'sbeing run in a normal way. Finally, activate the Break on execution map checkbox,and press the "X" button. If the game takes a new codepath that hasn't been executedyet, the breakpoint should be triggered.Breakpoints are always checked before mapping the memory, so it's safe to keep bothcheckboxes on at the same time.Click the Clear maps button to zero out all of the maps, when starting anew.5.4.2 CPU trace dumpSetupIn PCSX-Redux, make sure Debug > Show logs is enabled.In the 'Logs' window, hide all logs : Displayed > Hide allTo avoid unnecessary noise, you can also skip ISR during CPU traces : Special > Skip ISR during CPU traces 5.4 Misc Features- 31/94 -

5.4.2 CPU trace dump- 32/94 -

Begin dumpTo dump the CPU traces, launch pcsx-redux with the following command :You can use additional flags to launch an executable/disk image in one go, e.g :Sourcehttps://discord.com/channels/642647820683444236/663664210525290507/882608398993063997123 pcsx-redux -stdout -logfile log.txt# Alternatively, you can use -stdout on its own and pipe the output to a file.pcsx-redux -stdout >> log.txt1 pcsx-redux -stdout -logfile tst.log -iso image.cue -run 5.4.2 CPU trace dump- 33/94 -

https://discord.com/channels/642647820683444236/663664210525290507/882608398993063997
https://discord.com/channels/642647820683444236/663664210525290507/882608398993063997

5.5 VRAM viewer5.5.1 NavigatingHolding the middle button, or both the left and right buttons, allows you to pan the viewaround. Using the wheel allows you to zoom in and out, at the location of the mousecursor.5.5.2 LensingHolding the CTRL key of your keyboard will bring up a lens, which will show you a locallyzoomed version of the VRAM at the location of the mouse cursor. The lens can be resizedby using the wheel while holding the CTRL key. Holding the CTRL and Shift buttons whileusing the wheel will change the size of the lens. The lens can be closed by releasing theCTRL key.5.5.3 The various viewersThere are different viewers available from the main menu, which can be used tovisualize the VRAM in different ways. The main viewer will let you see the VRAM usingvarious CLUTs. The CLUT viewer will let you select a CLUT to use for the main VRAMviewer. In order to do this, first select the 8-bits or 4-bits view in the main viewer. Then,in the CLUT viewer, select View -> Select a CLUT . At this point, hovering the CLUTviewer will automatically change the main viewer to use the hovered CLUT. Once theproper view is found, simply click on the first pixel of the CLUT viewer to select the CLUTmore permanently.The GPU logger will also select CLUTs and change the main viewer's mode automatically,depending on the GPU commands being inspected. 5.5 VRAM viewer- 34/94 -

5.6 GPU LoggerThe GPU logger is a tool that allows you to see the GPU commands being executed bythe emulator, and the resulting VRAM changes. It can be used to debug the GPU, and tounderstand how the executed software is rendering the scene. The logger will have a fullframe worth of primitives, and will automatically clear the log when a new frame isstarted. Note that the notion of a frame may span over multiple vsyncs, if thePlayStation software isn't running at full FPS.Note that it can be fairly resource intensive, and may significantly slow down theemulation, depending on the context.The top of the GPU Logger window will have the following checkboxes:GPU Logging - Enable or disable the GPU logging.Breakpoint on vsync - Pause the emulation when a vsync occurs, allowing to inspectthe current frame.Replay frame - Enables the replay of the current frame. See below for details.Show origins - Show the data path of the primitives. This will show the origin of thedata, and the path it took to reach the GPU. For example, a sequence of primitivesmay be sent to the GPU via chained DMA.5.6.1 Understanding the logsThe top of the logger can be expanded to display rough frame statistics. These valuesaren't necessarily too accurate, and are only meant to give a rough idea of the framecomplexity.Each row of the logger displays one command sent to the GPU. The first button andcheckbox will be used for the replay system. The next three buttons and checkboxes willbe used for the highlighting system. The next column will display the command name,and opening the tree node will expand the command parameters.The expanded node may have buttons which will affect the main VRAM viewer, either byselecting CLUTs, or zooming in on the corresponding region. The VRAM viewer will alsobe updated when the replay system is used.• • • • 5.6 GPU Logger- 35/94 -

5.6.2 Highlighting PrimitivesThe GPU logger can highlight primitives in the VRAM viewer. One or more primitives maybe selected, and the corresponding VRAM regions will be outlined. The highlighting willbe cleared when a new frame is started. The default outlined colors will be red forwritten pixels, and green for read pixels. The colors can be changed in the main VRAMviewer settings.Checking the Highlight on hover checkbox will temporarily outline a primitive whenhovering it in the logger. This can be useful to quickly identify the correspondingprimitive in the VRAM viewer by flicking the mouse over the logger.Checking the second checkbox in a logger node will permanently highlight thecorresponding primitive in the VRAM viewer. The [B] and [E] buttons will select thebeginning and the end of a span of primitives, and highlight them in the VRAM viewer.5.6.3 Replay SystemOnce a frame has been logged properly, and the emulator is paused, the replay systemcan be used to replay the frame. The replay system will constantly replay the frame aslong as it is activated, and it will update the VRAM viewer accordingly. By default, allnodes in the logger will be selected for replaying. Unselecting the first checkbox in anode will prevent it from being replayed, and the VRAM viewer will show what happenswhen this primitive isn't executed, and potentially see what is underneath it. Clicking the [T] button of a node will select all nodes for replaying until this node, allowing to easilysee the frame being built up to this point. 5.6.2 Highlighting Primitives- 36/94 -

6. Mips API6.1 DescriptionPCSX-Redux has a special API that mips binaries can use : Source : https://github.com/grumpycoders/pcsx-redux/blob/main/src/mips/common/hardware/pcsxhw.h#L31-L36The API needs DEV8/EXP2 (1f802000 to 1f80207f), which holds the hardware registerfor the bios POST status, to be expanded to 1f8020ff.Thus the need to use a custom crt0.s if you plan on running your code on realhardware.The default file provided with the Nugget+PsyQ development environment does that: 123456789 static __inline__ void pcsx_putc(int c) { *((volatile char* const)0x1f802080) = c; }static __inline__ void pcsx_debugbreak() { *((volatile char* const)0x1f802081) = 0; }static __inline__ void pcsx_execSlot(uint8_t slot) { *((volatile uint8_t*const)0x1f802081) = slot; }static __inline__ void pcsx_exit(int code) { *((volatile int16_t* const)0x1f802082)= code; }static __inline__ void pcsx_message(const char* msg) { *((volatile char**const)0x1f802084) = msg; }static __inline__ void pcsx_checkKernel(int enable) { *((volatile char*)0x1f802088)= enable; }static __inline__ int pcsx_isCheckingKernel() { return *((volatile char*const)0x1f802088) != 0; }static __inline__ int pcsx_present() { return *((volatile uint32_t*const)0x1f802080) == 0x58534350; } 1 2 3 4 5 6 7 8 91011 _start:lw $t2, SBUS_DEV8_CTRLlui $t0, 8lui $t1, 1_check_dev8:bge $t2, $t0, _store_dev8nopb _check_dev8add $t2, $t1_store_dev8:sw $t2, SBUS_DEV8_CTRL 6. Mips API- 37/94 -

https://github.com/grumpycoders/pcsx-redux/blob/main/src/mips/common/hardware/pcsxhw.h#L31-L36
https://github.com/grumpycoders/pcsx-redux/blob/main/src/mips/common/hardware/pcsxhw.h#L31-L36
https://psx-spx.consoledev.net/expansionportpio/#exp2-post-registers
https://github.com/pcsx-redux/nugget

Source : https://github.com/grumpycoders/pcsx-redux/blob/main/src/mips/common/crt0/crt0.s#L36-L466.2 FunctionsThe following functions are available :Example of a UI dialog created with pcsx_message() : Function Usagepcsx_putc(int c) Print ASCII character with code c to console/stdout.pcsx_debugbreak() Break execution (Pause emulation).pcsx_execSlot(uint8_t slot) Executes Lua function at PCSX.execSlots[slot] . The slot value can be between1 and 255. If no Lua function exists within a slot, then this behaves the same as pcsx_debugbreak() .pcsx_exit(int code) Exit emulator and forward code as exit code.pcsx_message(const char* msg) Create a UI dialog displaying msgpcsx_checkKernel(int enable) Enable or disable kernel checking.pcsx_isCheckingKernel() Returns truthy if kernel checking is enabled.pcsx_present() Returns 1 if code is running in PCSX-Reduxpcsx_initMsan() Initialize memory sanitizer system.pcsx_resetMsan() Reset memory sanitizer system.pcsx_msanAlloc(uint32_t size) Allocate memory with memory sanitizer.pcsx_msanFree(void* ptr) Free memory with memory sanitizer.pcsx_msanRealloc(void* ptr, uint32_t size) Reallocate memory with memory sanitizer. 6.2 Functions- 38/94 -

https://github.com/grumpycoders/pcsx-redux/blob/main/src/mips/common/crt0/crt0.s#L36-L46
https://github.com/grumpycoders/pcsx-redux/blob/main/src/mips/common/crt0/crt0.s#L36-L46

6.2.1 Kernel CheckerThe kernel checking feature is used to try and catch unwanted accesses to the kernel,which are usually a sign of a bug in the code, such as a buffer overflow or a null pointerdereference. If the kernel checking feature is enabled, the emulator will break executionand display a message in the console if it detects an unwanted access to the kernel. Thefollowing actions are considered unwanted accesses to the kernel:Reading or writing to a kernel address from a user-mode address and while not in akernel-mode context such as while in the ISR. The ISR sets up a stack frame withinthe kernel space, so callbacks from the kernel and into the user space will be usingkernel space as the stack. This means that a null pointer dereference in a callbackfrom the kernel during an interrupt or exception will not be caught by the kernelchecking feature.An indirect jump to a kernel address from a user-mode address and that isn't 0xa0,0xb0, or 0xc0, and that isn't a jr $ra instruction. Direct jumps and branches tokernel addresses should be compiler-level problems, so they are not checked for. The jr $ra exception to the rule is because callbacks from the kernel will use jr $ra toreturn to the kernel. Optimizations which bypass the jr $ra instruction by using adifferent register to return to the kernel during a callback will cause false positives.The feature is disabled by default as many games and software will access the kernel invarious ways, and it can be enabled by calling pcsx_checkKernel(1) . The feature canbe disabled by calling pcsx_checkKernel(0) . Since many startup sequences will accessthe kernel to patch it or clean it, it is recommended to enable the feature after thestartup sequence has completed. Some libraries may also access the kernel during theirnormal operations. The user can simply disable the checker temporarily by toggling itbefore and after calling such APIs. The kernel space is considered to be all the memoryaddresses between 0x80000000 and 0x8000ffff. The BIOS is considered to be part ofthe kernel space in terms of code, so any access to the RAM Kernel space from the BIOSmemory space will not trigger any of the kernel checks. The kernel checking feature isonly available in the interpreter with the debugger enabled, and it is not available in thedynarec. Trying to enable the feature while using the dynarec, or while the debugger isdisabled, will not have any effect.• • 6.2.1 Kernel Checker- 39/94 -

6.2.2 Memory SanitizerThe memory sanitizer system of PCSX is inspired of various similar tools. It can detectuse-after-frees, buffer overflows, and reads from uninitialized memory. Enabling thememory sanitizer is done through the pcsx_initMsan() function call. The emulator willimmediately allocate an extra 2GB of memory to store the memory sanitizer data andmetadata. Once enabled, the user can call pcsx_msanAlloc() , pcsx_msanFree() , and pcsx_msanRealloc() to allocate, free, and reallocate memory, working as expectedfrom a normal C library. The memory sanitizer will keep track of the memory allocatedand will check for the following issues:Use-after-frees: If the user tries to access memory that has been freed, the memorysanitizer will break execution and display a message in the console.Double frees: If the user tries to free memory that has already been freed, thememory sanitizer will break execution and display a message in the console.Corrupted pointer: If the user tries to free or reallocate a pointer that is not a validpointer, the memory sanitizer will break execution and display a message in theconsole.Buffer overflows: If the user writes to memory before or after the allocated size, up to1kB, the memory sanitizer will break execution and display a message in the console.Reads from uninitialized memory: If the user tries to read from memory that has notbeen written to first, the memory sanitizer will break execution and display a messagein the console.Internally, the memory sanitizer will allocate memory to the range0x20000000-0x80000000, which is 1.5GB large. Note that for the use-after-freedetection to work, the memory sanitizer will never actually free anything, and so it ispossible to run out of memory if the user allocates too much memory. Calling pcsx_resetMsan() will re-initialize the memory sanitizer back to its original state. Thememory sanitizer is available at all times, and is not affected by the debugger settingnor the dynarec.• • • • • 6.2.2 Memory Sanitizer- 40/94 -

7. Web serverA web server can be activated. This allows the use of a REST api to access variousfeatures. The server only handles up to HTTP/1.1, without SSL support.7.1 ActivationYou can activate the web server by going to Configuration > Emulation > Enable Web Server7.2 REST APIBy default, the server listens for incoming connection on localhost:8080 . The port canbe changed in the same settings above.These GET methods are available:The following POST methods are available:/api/v1/gpu/vram/raw?x=<value>&y=<value>&width=<value>&height=<value>The above needs to also send a form with binary contents. This will partially update theVRAM with the corresponding pixels. The updated rectangle has to be within the1024x512 16bpp VRAM. The pixels need to be in 16bpp format, meaning the server isexpecting exactly width * height * 2 bytes in the form data. The server will properlyparse requests with Content-Type: multipart/form-data , but raw bytes in therequest body without this header is also acceptable. Any invalid query will result in a400 error./api/v1/cpu/ram/raw?offset=<value>&size=<value>URL Function/api/v1/gpu/vram/raw Dump VRAM/api/v1/cpu/ram/raw Dump RAM/api/v1/execution-flow Emulation Status/api/v1/cd/files?filename= Dump a file from the loaded disc image 7. Web server- 41/94 -

http://localhost:8080/api/v1/gpu/vram/raw
http://localhost:8080/api/v1/cpu/ram/raw
http://localhost:8080/api/v1/execution-flow
http://localhost:8080/api/v1/cd/files?filename=SYSTEM.CNF;1
http://localhost:8080/api/v1/cd/files?filename=SYSTEM.CNF;1

The above needs to also send a form with binary contents, which will update the RAM atthe specified offset. Offset is expected to be a number from [0, 0x1FFFFF] in case ofrunning redux with 2MB RAM, or [0, 0x7FFFFF] in case the 8MB memory expansion isenabled. The value of size + offset must not exceed the total space in the RAM./api/v1/assembly/symbols?function=<value>The above expects a .map file with symbols and addresses, which will be merged withthe current symbols already loaded in redux. The map file should contain a pair of symbol address for each line. e.g Foo 80010000 would load the symbol Foo in theaddress 0x80010000 ./api/v1/cpu/cache?function=<value>/api/v1/execution-flow?function=<value>&type=<value>/api/v1/cd/patch?filename=<value>The above needs to also send a form with binary contents, which will patch the currentlyloaded iso file with the contents of the form. The server will look for the given filenamein the iso file, and patch its contents. All changes are cumulative. If the file is not found,a 404 error will be returned. The file name is case sensitive, and must be a validISO9660 filename, which means it can only contain uppercase letters, numbers, andunderscores, and ends with ;1 .Value Functionreset Resets the symbols loaded in reduxupload Uploads a .map file to reduxValue Functionflush Flushes the CPU cacheValue Type Functionpause - Pauses the emulator.start - Starts/Resumes the emulator.resume - Starts/Resumes the emulator.reset hard Hard resets the emulator. Equivalent to a power cycle of the console.reset soft Soft resets the emulator. Equivalent to pressing the reset button. 7.2 REST API- 42/94 -

For example:/api/v1/cd/patch?sector=<value>&mode=<value>The above needs to also send a form with binary contents, which will patch the currentlyloaded iso file with the contents of the form. The iso sectors starting at the given valuewill be written to. The mode argument is optional, and can be of the following values:All changes are cumulative.api/v1/cd/ppf?function=<value>1 $ curl -F file=@newsystem.cnf http://localhost:8080/api/v1/cd/patch?filename=SYSTEM.CNF;1Value FunctionGUESS Tries to guess the sector's mode. This is the default.RAW Writes the full sectors with no decoration, 2352 bytes per sector.M2_RAW Writes 2336 bytes per sector, with the first 16 bytes being the subheader.M2_FORM1 Writes 2048 bytes per sector. Will not update the subheader.M2_FORM2 Writes 2324 bytes per sector. Will not update the subheader.Value Functionsave Saves the current state of the disc image patches to a PPF file.clear Clears the current list of patches. 7.2 REST API- 43/94 -

8. Lua8.1 IntroductionPCSX-Redux features a Lua API that is available through either a direct Lua console, or aLua editor, both available through the Debug menu. The Lua VM runs on the mainthread, the same one as the UI and the emulated MIPS CPU. As a result, care must betaken to not stall for too long, or the UI will become unresponsive. Using coroutines tohandle long-running tasks is recommended, yielding periodically to let the UI performsome work too. The UI is probably going to run at 60FPS or so, which gives a ballpark of15ms per frame.8.1.1 Lua engineThe Lua engine that's being used is LuaJIT 2.1.0-beta3 compiled in Lua 5.2 compatibilitymode. The Lua 5.1 user manual and LuaJIT user manual are recommended reads. Inparticular, the bindings heavily make use of LuaJIT's FFI capabilities, which allows fordirect memory access within the emulator's process. This means there is little protectionagainst dramatic crashes the LuaJIT FFI engine can cause into the emulator's process,and the user must pay extra attention while manipulating FFI objects. Despite that, thecode tries as much as possible to sandbox what the Lua code does, and will preventcrashes on any recoverable exception, including OpenGL and ImGui exceptions.8.1.2 Lua consoleAll of the messages coming from Lua should display into the Lua console directly. Theinput text there is a single line execution, so the user can type one-liner Lua statementsand get an immediate result.8.1.3 Lua editorThe editor allows for more complex, multi-line statements to be written, such ascomplete functions. The editor will by default auto save its contents on the disc underthe filename pcsx.lua , which can potentially be a problem if the last statement typedcrashed the emulator, as it'll be reloaded on the next startup. It might becomenecessary to either edit the file externally, or simply delete it to recover from this state.8. Lua- 44/94 -

https://www.lua.org/manual/5.1/
https://luajit.org/extensions.html

The auto-execution of the editor permits for rapid development loop, with immediatefeedback of what's done.For complex projects however, it is recommended to split your work into sub-modules,and use the loadfile function to load them in your main code. This implies working onyour project using an external editor. 8.1.3 Lua editor- 45/94 -

8.2 Loaded libraries8.2.1 Basic LuaThe LuaJIT extensions are fully loaded, and can be used globally. The standard Lualibraries are loaded, and are usable. The require function exists, but isn'trecommended as the loading of external DLLs might be difficult to properly accomplish.Loading pure Lua files is fine. The ffi table is loaded globally, there is no need to require it, but it'll work nonetheless. As a side-effect of Luv, Lua-compat-5.3 isloaded.8.2.2 Dear ImGuiA good portion of ImGui is bound to the Lua environment, and it's possible for the Luacode to emit arbitrary widgets through ImGui. It is advised to consult the user manual ofImGui in order to properly understand how to make use of it. The list of current bindingscan be found within the source code. Some usage examples will be provided within thecase studies. Additional features and interaction is documented in the rendering page.8.2.3 OpenGLOpenGL is bound directly to the Lua API through FFI bindings, loosely inspired andadapted from LuaJIT-OpenCL. Some usage examples can be seen in the CRT-Lottesshader configuration page.8.2.4 NanoVGThe NanoVG library is mostly bound to the Lua API through FFI bindings, with someadditional glue code. More explanation can be found in the rendering page.8.2.5 LuvFor network access and interaction, PCSX-Redux uses libuv internally, and is exposed tothe Lua API through Luv, tho its loop is tied to the main thread one, meaning it'll runonly once per frame. There is another layer of network API available through the FileAPI, which is more convenient and faster for simple tasks. 8.2 Loaded libraries- 46/94 -

https://luajit.org/extensions.html
https://www.lua.org/manual/5.1/manual.html#5
https://www.lua.org/manual/5.1/manual.html#5
https://github.com/keplerproject/lua-compat-5.3
https://github.com/ocornut/imgui
https://pthom.github.io/imgui_manual_online/manual/imgui_manual.html
https://github.com/grumpycoders/pcsx-redux/blob/main/third_party/imgui_lua_bindings/imgui_iterator.inl
https://github.com/malkia/luajit-opencl
https://github.com/grumpycoders/pcsx-redux/blob/eadd59e764d526636d900fada6f3dd0057035690/src/gui/shaders/crt-lottes.cc#L141-L146
https://github.com/grumpycoders/pcsx-redux/blob/eadd59e764d526636d900fada6f3dd0057035690/src/gui/shaders/crt-lottes.cc#L141-L146
https://github.com/grumpycoders/nanovg
https://libuv.org/
https://github.com/luvit/luv

8.2.6 ZlibThe Zlib C-API is exposed through FFI bindings. There is another layer of Zlib APIavailable through the File API, which is more convenient and faster for simple tasks.8.2.7 FFI-ReflectThe FFI-Reflect library is loaded globally as the reflect symbol. It's able to generatereflection objects for the LuaJIT FFI module.8.2.8 PPrintThe PPrint library is loaded globally as the pprint symbol. It's a more powerful printfunction than the one provided by Lua, and can be used to print tables in a morereadable way.8.2.9 Lua-ProtobufThe Lua-Protobuf library is available, but not loaded by default. All of its documentedAPI should be usable straight with no additional work. It has been slightly modified, butnothing that should be visible to the user. There is some limited glue between its APIand PCSX's.8.2.10 luafilesystemThe luafilesystem library is loaded globally as the lfs symbol. It's a library thatprovides access to the filesystem.8.2.11 LPegThe LPeg library is available, but not loaded by default. It's a library that provides apattern-matching library for Lua, which can be useful to create ad-hoc arbitrary parsers.8.2.6 Zlib- 47/94 -

https://github.com/luapower/zlib
https://github.com/corsix/ffi-reflect
https://github.com/jagt/pprint.lua
https://github.com/starwing/lua-protobuf
https://github.com/lunarmodules/luafilesystem
http://www.inf.puc-rio.br/~roberto/lpeg/

8.3 Redux basic API8.3.1 SettingsAll of the settings are exposed to Lua via the PCSX.settings table. It contains pseudo-tables that are reflections of the internal objects, and can be used to read and write thesettings. The exact list of settings can vary quickly over time, so making a full list herewould be fruitless. It is possible however to traverse the settings using pprint forexample. The semantic of the settings is the same as from within the GUI, with thesame caveats. For example, disabling the dynamic recompiler requires a reboot of theemulator.8.3.2 ImGui interactionPCSX-Redux will periodically try to call the Lua function DrawImguiFrame to allow theLua code to draw some widgets on screen. The function will be called exactly once peractual UI frame draw, which, when the emulator is running, will correspond to theemulated GPU's vsync. If the function throws an exception however, it will be disableduntil recompiled with new code.8.3.3 Events Engine interaction & Execution ContextsLuaJIT C callbacks aren't called from a safe execution context that can allow forcoroutine resuming, and luv's execution context doesn't have any error handling.It is possible to defer executing code to the main loop of PCSX-Redux, which can (a)resume coroutines and (b) execute code in a safe context. The function 8.3 Redux basic API- 48/94 -

PCSX.nextTick(func) will execute the given function in the next main loop iteration.Here's some examples of how to use it:Of course, this can also delay processing significantly, as the main loop is usually boundto the speed of the UI, which can mean up to 20ms of delay. 1 2 3 4 5 6 7 8 910 local captures = {}captures.current = coroutine.running()captures.callback = function()PCSX.nextTick(function()captures.callback:free()coroutine.resume(captures.current)end)endcaptures.callback = ffi.cast('void (*)()', captures.callback)-- use the C callback somewhere... 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627 function createClient(ip, port)client = luv.new_tcp()luv.tcp_connect(client, ip, port, function (err)PCSX.nextTick(function()assert(not err, err)luv.read_start(client, function (err, chunk)PCSX.nextTick(function()pprint("received at client", {err=err, chunk=chunk})assert(not err, err)if chunk then-- do something with the clientelseluv.close(client)endend))pprint("writing from client")luv.write(client, "Hello")luv.write(client, "World")endend)return clientend 8.3.3 Events Engine interaction & Execution Contexts- 49/94 -

8.3.4 ConstantsThe table PCSX.CONSTS contains numerical constants used throughout the rest of theAPI. Keeping an up to date list here is too exhausting, and it's simpler to print themusing pprint(PCSX.CONSTS) .8.3.5 PadsYou can access the pads API through PCSX.SIO0.slots[s].pads[p] where s is theslot number and p is the pad number, both indexed from 1, Lua-style. So PCSX.SIO0.slots[1].pads[1] accesses the first pad, and PCSX.SIO0.slots[2].pads[1] accesses the second pad.Each Pad table has the following functions:The button constants can be found in PCSX.CONSTS.PAD.BUTTON .You can for instance press the button Down on the first pad using the following code:8.3.6 Execution flowThe Lua code has the following API functions available to it in order to control theexecution flow of the emulator:PCSX.pauseEmulator()PCSX.resumeEmulator()PCSX.softResetEmulator()PCSX.hardResetEmulator()12345 getButton(button) -- Returns true if the specified button is pressed.setOverride(button) -- Overrides the specified button.clearOverride(button) -- Clears the override for the specified button.setAnalogMode(bool) -- Sets or clears the analog mode of this pad.map() -- Forces the pad to be remapped. Useful after changing pad settings.1 PCSX.SIO0.slots[1].pads[1].setOverride(PCSX.CONSTS.PAD.BUTTON.DOWN)• • • • 8.3.4 Constants- 50/94 -

It's also possible to manipulate savestates using the following functions:PCSX.createSaveState() -- returns a slice representing the savestatePCSX.loadSaveState(slice)PCSX.loadSaveState(file)Additionally, the following function returns a string containing the .proto file used toserialize the savestate:PCSX.getSaveStateProtoSchema()Note that the actual savestates made from the UI are gzip-compressed, but thefunctions above don't compress or decompress the data, so if trying to reload asavestate made from the UI, it'll need to be decompressed first, possibly through thezReader File object.Overall, this means the following is possible:8.3.7 MessagesThe globals print and printError are available, and will display logs in the LuaConsole. You can also use PCSX.log to display a line in the general Log window. Allthree functions should behave the way you'd expect from the normal print function inmainstream Lua.• • • • 12345678 local compiler = require('protoc').new()local pb = require('pb')local state = PCSX.createSaveState()compiler:load(PCSX.getSaveStateProtoSchema())local decodedState = pb.decode('SaveState', Support.sliceToPBSlice(state))print(string.format('%08x', decodedState.registers.pc)) 8.3.7 Messages- 51/94 -

8.3.8 GUIYou can move the cursor within the assembly window and the first memory view usingthe following functions:PCSX.GUI.jumpToPC(pc)PCSX.GUI.jumpToMemory(address[, width])8.3.9 GPUYou can take a screenshot of the current view of the emulated display using thefollowing:PCSX.GPU.takeScreenShot()This will return a struct that has the following fields: The Slice will contain the raw bytes of the screenshot data. It's meant to be writtenout using the :writeMoveSlice() method on a File object. The width and heightwill be the width and height of the screenshot, in pixels. The bpp will be either BPP_16or BPP_24 , depending on the color depth of the screenshot. The size of the data Slicewill be height * width multiplied by the number of bytes per pixel, depending on the bpp .• • • 12345 struct ScreenShot {Slice data;uint16_t width, height;enum { BPP_16, BPP_24 } bpp;}; 8.3.8 GUI- 52/94 -

8.3.10 Loading and executing codeWhile the basic Lua functions dofile and loadfile exist, some alternative functionsare available to load and execute code in a more flexible way.Support.extra.addArchive(filename) will load the given zip file, and will make itavailable to the Support.extra.dofile function. It is equivalent to the -archivecommand line flag. Note that if a file named autoexec.lua is found in the zip file, itwill be executed automatically.Support.extra.dofile(filename) will load the given file, and execute it. It isequivalent to dofile , but will also search for the file next to the currently loaded Luafile which is calling this function, and will also search for the file in all of the loaded zipfiles, either through the command line, or through the Support.extra.addArchivefunction.Support.extra.loadfile(filename) will load the given file, and return a functionthat can be called to execute the file. It is equivalent to loadfile , but has the samefile search algorithm as Support.extra.dofile .Support.extra.open(filename) will open the given file as read only, and return a File object. It is roughly equivalent to Support.File.open , but has the same filesearch algorithm as Support.extra.dofile .If given the following directory structure:If test/baz.lua contains the following code:Then running the following code: • • • • 1234 .└── bar.zip ├── test/baz.lua └── test2/qux.lua1 Support.extra.dofile('../test2/qux.lua')12 Support.extra.addArchive('bar.zip')Support.extra.dofile('test/baz.lua') 8.3.10 Loading and executing code- 53/94 -

Will first load test/baz.lua from the zip file bar.zip , run it, which will in turn load test2/qux.lua from the zip file bar.zip again, and execute it.This allows distributing complex "mods" as zip files, which can be loaded and executedfrom the command line or the console.8.3.11 MiscellaneousPCSX.quit([code]) schedules the emulator to quit. It's not instantaneous, and willonly quit after the current block of Lua code has finished executing, which will bebefore the next main loop iteration. The code parameter is optional, and will be theexit code of the emulator. If not specified, it'll default to 0.PCSX.getCPUCycles() returns an unsigned 64-bit number indicating how many CPUcycles have elapsed. This can be paired with the PCSX.CONSTS.CPU.CLOCKSPEEDconstant to determine how much emulated time has passed.PCSX.Adpcm.NewEncoder will return an Adpcm encoder object. The object has thefollowing methods::reset([mode]) will reset the encoder, and set the mode to the given mode. Themode can be 'Normal' , 'XA' , 'High' , 'Low' , 'FourBits' . The default mode is 'Normal' , which enables all the filters available in the SPU. The 'XA' mode limitsthe encoder to the filters available in the XA ADPCM format. The 'High' mode usesthe high-pass filter, and the 'Low' mode uses the low-pass filter. The 'FourBits'mode forces plain 4-bit Adpcm encoding.:processBlock(inData, [outData], [channels]) will encode the given ffi inputbuffer, and write the result to the given ffi output buffer. The input buffer should be abuffer of 16-bit signed integers, and the output buffer should be a buffer of 16-bitsigned integers. The channels parameter is optional, and will default to 2. The inputbuffer should contain exactly 28 samples, and so does the output buffer. If the outputbuffer is not given, the function will return a new buffer with the result. LuaBuffers arealso accepted as input and output buffers. The function will return three values: theoutput buffer, the filter index used, and the shifting used. The function is intended tobe used as an intermediate computation step, and the output still needs to beprocessed into 4 bits or 8 bits samples.:processSPUBlock(inData, [outData], [blockAttribute]) will encode the givenffi input buffer, and write the result to the given ffi output buffer. The input buffer• • • • • • 8.3.11 Miscellaneous- 54/94 -

should be a buffer of 16-bit signed integers, and the output buffer should be a bufferwhich is at least 16 bytes large. The blockAttribute parameter is optional, and willdefault to 'OneShot' . The input buffer should contain exactly 28 samples. If theoutput buffer is not given, the function will return a new buffer with the result.LuaBuffers are also accepted as input and output buffers. The function will return theencoded block, suitable for SPU usage. The blockAttribute parameter can be one ofthe following strings: 'OneShot' , 'OneShotEnd' , 'LoopStart' , 'LoopBody' , 'LoopEnd' .:finishSPU([outData]) will write the opinionated end of sample looping block, asprescribed by the original Sony API. The output buffer should be a buffer which is atleast 16 bytes large. If the output buffer is not given, the function will return a newbuffer with the result. LuaBuffers are also accepted as output buffers. The function willreturn the encoded block, suitable for SPU usage.:processXABlock(inData, [outData], [xaMode], [channels]) will encode thegiven ffi input buffer, and write the result to the given ffi output buffer. The input buffershould be a buffer of 16-bit signed integers, and the output buffer should be a bufferwhich is at least 128 bytes large. Note that a MODE2 FORM2 XA sector requiressubheaders and 18 of these blocks. The xaMode parameter is optional, and will defaultto 'XAFourBits' . The other valid value is 'XAEightBits' . It will defines theencoding output between either 4-bit and 8-bit. The channels parameter is optional,and will default to 1. If the output buffer is not given, the function will return a newbuffer with the result. LuaBuffers are also accepted as input and output buffers. Thefunction will return the encoded block, suitable for XA usage. The amount of requiredinput samples varies depending of the number of channels and the encoding mode:4-bit mono: 224 samples aka 448 bytes4-bit stereo: 112 samples aka 448 bytes8-bit mono: 112 samples aka 224 bytes8-bit stereo: 56 samples aka 224 bytes• • • • • • 8.3.11 Miscellaneous- 55/94 -

Using the encoder to process an input audio file is as simple as: 1 2 3 4 5 6 7 8 910111213141516171819202122232425262728293031323334353637383940 function encodeAudioLoop(inputFile, outputFile)local closeInput = falseif type(inputFile) == 'string' theninputFile = Support.File.open(inputFile)closeInput = trueendlocal audio = Support.File.ffmpegAudioFile(inputFile, {channels = 'Mono',frequency = 22050})local closeOutput = falseif type(outputFile) == 'string' thenoutputFile = Support.File.open(outputFile, 'TRUNCATE')closeOutput = trueendlocal blockCount = math.floor(audio:size() / (2 * 28))local bufferIn = ffi.new('int16_t[28]')local bufferOut = Support.NewLuaBuffer(16)local encoder = PCSX.Adpcm.NewEncoder()encoder:reset 'Normal'for i = 1, blockCount doaudio:read(bufferIn, 28 * 2)local blockType = 'LoopBody'if i == 1 then blockType = 'LoopStart' endif i == blockCount then blockType = 'LoopEnd' endencoder:processSPUBlock(bufferIn, bufferOut, blockType)outputFile:write(bufferOut)endif closeInput theninputFile:close()endif closeOutput thenoutputFile:close()endaudio:close()end 8.3.11 Miscellaneous- 56/94 -

8.4 RenderingPCSX-Redux is entirely running as an OpenGL3 application. All of its aspects, includingthe UI elements, are rendered using OpenGL primitives. This means there is very littleboundaries between the various rendered elements on the screen.The rendering of the UI is done through ImGui, and a chunk of its API is bound is to Luausing bindings.A good portion of the OpenGL3 API is also bound to Lua, as well as the nanovg library.8.4.1 Emulated GPU rendering pipelineThe content of the Output region is rendered in two steps. The first step is called the"Offscreen rendering", and is done during the emulated GPU vsyncs. Its job is to flushthe contents of the VRAM texture to an offscreen texture, which may be of a differentresolution. The resolution of the offscreen texture should be pixel perfect with that ofthe Output region. By default, the associated shader with this operation should only do asimple copy and interpolation, but as the first stage of the rendering pipeline, this canbe used for some first pass output effect such as the first pass of a crt shader.The second step is called the "Output rendering", and is done every time the UI wants torefresh its display, which may or may not be at the same time as the emulated vsync.The resolution of the input will match exactly the resolution of the input texture, and thedefault shader should simply copy all the texels without any sort of interpolation, but asthe second stage of the rendering pipeline, this can still be used for the second passoutput effect.The crt-lottes implementation leverages these two passes to do the full CRT-like output.8.4.2 Shader editorThe shader editor is a simple text editor that allows to edit the shader code. It is not afull IDE, and it is not meant to be. Its point is to do quick iterations on the shader code,and to be able to see the result of the changes in real time. 8.4 Rendering- 57/94 -

https://github.com/ocornut/imgui
https://github.com/grumpycoders/pcsx-redux/tree/main/third_party/imgui_lua_bindings
https://github.com/grumpycoders/nanovg/tree/master
https://github.com/grumpycoders/pcsx-redux/blob/main/src/gui/shaders

The shader editor is split in 3 regions:The left tab is the vertex shader code. It is technically editable, but there shouldn't bemuch reason to edit it.The middle tab is the fragment shader code. This is the main shader code. It iseditable, and the changes will be reflected in real time.The right tab is the Lua invoker code. This is the code that will be executed undermultiple circumstances. It is editable, and the changes will be reflected in real time.The Lua invoker code will be compiled and executed in a soft sandbox environment. Thecode can still access already created globals and mutate them, but any newly createdglobal will be kept within the sandbox and won't be accessible from other Lua code. Allthese globals will be saved and restored with the normal emulator settings.When the shaders are compiled, the Vertex and Fragment shader code will be compiledtogether, and if the resulting program is valid, the Lua invoker code will be compiled andexecuted. If the Lua code fails to compile or execute, the shader will be consideredinvalid and the error will be displayed in the shader editor.This compilation order allows the Lua code to access the shader program uniforms, andto set them up as needed. The global shaderProgramID will be available to the Luacode, and will contain the ID of the shader program.• • • 8.4.2 Shader editor- 58/94 -

The code is expected to export a few functions:Draw , which will be called periodically within the ImGui context, allowing to draw UIelements. The global configureme will be set to true when the user selects the"Configure Shaders" menu item. This allows to display a configuration UI to the userduring this function call.Image(textureID, srcSizeX, srcSizeY, dstSizeX, dstSizeY) , which will becalled periodically within the ImGui context, when the emulator needs to draw thetexture textureID at the given size. The texture ID is the OpenGL texture ID, andthe size is in pixels. The code is at best expected to do a simple call to imgui.Image(textureID, dstSizeX, dstSizeY, 0, 0, 1, 1) to draw the texture.For the Emulated GPU Pipeline, this function will only be called on the Output shader,when being drawn to the Output region. As the function will be called during the ImGuicontext, it can capture certain ImGui state, such as the current ImGui cursor position,and use it to draw additional UI elements. Note that as with any normal ImGuifunction, this isn't the moment when the UI elements are actually drawn, but ratherwhen the UI elements are queued to be drawn, meaning this isn't when the shaderprogram will be executed, which is the point of the next function.BindAttributes(textureID, shaderProgramID, srcLocX, srcLocY, srcSizeX, srcSizeY, dstSizeX, dstSizeY) will be called when the shader program is about tobe executed, and needs to bind the attributes. The texture ID is the OpenGL textureID, and the shader program ID is the OpenGL shader program ID. The location andsizes are in pixels, but are only used for the Emulated GPU Pipeline, when theOffscreen shader is being executed, as it needs to grab a portion of the VRAM textureto be rendered to the offscreen texture.Additionally, it is possible to programmatically set the content of the editors using thefollowing methods:• • • 12345678 PCSX.GUI.OffscreenShader.setDefaults()PCSX.GUI.OffscreenShader.setTextVS(text)PCSX.GUI.OffscreenShader.setTextPS(text)PCSX.GUI.OffscreenShader.setTextL(text)PCSX.GUI.OutputShader.setDefaults()PCSX.GUI.OutputShader.setTextVS(text)PCSX.GUI.OutputShader.setTextPS(text)PCSX.GUI.OutputShader.setTextL(text) 8.4.2 Shader editor- 59/94 -

The setDefaults method will set the default shader code, and the setText* methodswill set the shader code to the given string. The text argument can be either an actualstring, or a File object.8.4.3 ImGuiThe ImGui API is bound to Lua, and can be used to draw UI elements. The ImGui API isdocumented on the ImGui source code. There is also an interactive manual available.Not all functions are necessarily bound to Lua, and one can check the bindings code tosee which functions are bound, and why some functions are not bound.The main reason for not binding a function is that its arguments or return values are nottrivial to bind. For example, the ImGui::Text C++ function is not bound, as it takes avariadic number of arguments, which is not possible to bind in Lua easily. Instead, the ImGui::TextUnformatted C++ function is bound, which takes a single stringargument.The emulator will periodically try to call the global function DrawImguiFrame with noarguments. If the function is not defined, nothing will happen. If the function fails toexecute, it will be removed from the global environment, and the emulator will stoptrying to call it until a new global is defined.The DrawImguiFrame function is expected to call the imgui.Begin function to create anew ImGui window, as there is no default window created by the emulator for the Luacontext. The DrawImguiFrame function is also expected to call the imgui.End functionas normal with the ImGui API. 8.4.3 ImGui- 60/94 -

https://github.com/ocornut/imgui/blob/docking/imgui.h
https://pthom.github.io/imgui_manual_online/manual/imgui_manual.html
https://github.com/grumpycoders/pcsx-redux/blob/main/third_party/imgui_lua_bindings/imgui_iterator.inl

Some extra functions are bound to Lua beyond the API listed above: 8.4.3 ImGui- 61/94 -

imgui.extra.ImVec2.New(x, y) will create a new FFI ImVec2 object. The ImVec2object is a simple struct with two fields, x and y . The New function takes twooptional arguments, the x and y values, and returns the new ImVec2 object.imgui.extra.getCurrentViewportId() will return the current viewport ID.Viewports in ImGui are a way to split the ImGui context into multiple independentcontexts, and the viewport ID is a unique identifier for each viewport. Basically, eachviewport is a physical window from the operating system, and it can contain one ormore ImGui windows.imgui.extra.getViewportFlags(id) will return the viewport flags for the specifiedviewport. The viewport flags are of the type ImGuiViewportFlags_ in the ImGui C++API, and is a bitmask of flags, which are exposed as individual values in the Luagenerated bindings.imgui.extra.setViewportFlags(id, flags) will set the viewport flags for thespecified viewport. The proper usage of this function is to call imgui.extra.getViewportFlags to get the current flags, modify the flags as needed,and then call imgui.extra.setViewportFlags to set the new flags.imgui.extra.getViewportPos(id) will return the position of the specified viewport.The position is returned as an ImVec2 object.imgui.extra.getViewportSize(id) will return the size of the specified viewport. Thesize is returned as an ImVec2 object.imgui.extra.getViewportWorkPos(id) will return the work position of the specifiedviewport. The work position is returned as an ImVec2 object.imgui.extra.getViewportWorkSize(id) will return the work size of the specifiedviewport. The work size is returned as an ImVec2 object.imgui.extra.getViewportDpiScale(id) will return the DPI scale of the specifiedviewport. The DPI scale is returned as a number. A value of 1.0 means that the DPIscale for this viewport is 100%.imgui.extra.InputText(label, text[, flags]) will create an input text widget.The label is the label to display next to the input text, and the text is the currenttext to display in the input text. The flags are optional, and are the same flags asthe ones used by the imgui::InputText C++ function. The function will return aboolean indicating if the text has changed or not, and the new text.• • • • • • • • • • 8.4.3 ImGui- 62/94 -

imgui.extra.InputTextWithHint(label, hint, text[, flags]) will create aninput text widget. The label is the label to display next to the input text, and the hint is the hint to display in the input text when the text is empty. The text is thecurrent text to display in the input text. The flags are optional, and are the sameflags as the ones used by the imgui::InputTextWithHint C++ function. Thefunction will return a boolean indicating if the text has changed or not, and the newtext.imgui.extra.logText(text) will call the imgui::LogText C++ function, which willadd the given text to current log buffer.PCSX.GUI.useMainFont() will call the imgui::PushFont C++ function with theproportional font. It will need to be followed by a call to imgui.PopFont() .PCSX.GUI.useMonoFont() will call the imgui::PushFont C++ function with themonospace font. It will need to be followed by a call to imgui.PopFont() .SafetyThe ImGui API will frequently assert and crash the process if the API calls areimbalanced. For example, if the imgui.BeginTable function is called without calling theimgui.EndTable function, the process will most likely crash.This can be problematic when using the ImGui API from Lua, as the Lua code is not ableto catch the crash, and the process will crash without any indication of what wentwrong.The main reason for imbalanced API calls can be attributed to the user code throwing anexception, which will cause the Lua code to unwind the stack, and the ImGui API will notbe able to properly clean up its state.For example, consider the following code:• • • • 123456 function DrawImguiFrame()if imgui.Begin("My Window") thenerror("Something went wrong")endimgui.End()end 8.4.3 ImGui- 63/94 -

The imgui.Begin function will be called, but the imgui.End function will not be called,as the error function will unwind the stack, and the imgui.End function will never becalled.In order to mitigate this, safe wrappers are provided for all of the ImGui Begin*/End*functions. The safe wrappers will catch any exception thrown by the user code, and willcall the corresponding End* function if the Begin* function returned true. The error willbe rethrown after the End* function is called. The wrapped lambda will only be called ifthe Begin* function returned true.The example above can be rewritten as:8.4.4 NanoVGThe NanoVG library is bound to Lua, and can be used to draw arbitrary vector graphicson top of the emulator. The NanoVG API is documented on the NanoVG source code. TheAPI is very similar to the HTML5 Canvas API, meaning that one can use the MDNCanvasRenderingContext2D documentation and other related documentation to learnhow to use it.Using an HTML5 canvas toybox like this one is a good way to learn how to use this APIsafely.Note that the NanoVG rendering will happen after the ImGui rendering, meaning thatthe NanoVG rendering will be on top of the ImGui rendering, regardless of the order inwhich the NanoVG and ImGui functions are called.12345 function DrawImguiFrame()imgui.safe.Begin("My Window", function()error("Something went wrong")end)end 8.4.4 NanoVG- 64/94 -

https://github.com/grumpycoders/nanovg/blob/master/src/nanovg.h
https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D
https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D
https://www.w3schools.com/html/html5_canvas.asp
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Drawing_shapes
https://codepen.io/nicolas_noble/pen/MWXqwQG

Most of the NanoVG API is bound to Lua, with the exception of the following functions:nvgBeginFramenvgCancelFramenvgEndFramenvgCreateImagenvgCreateImageMemIn addition, the enums and some constructors for the structures used in NanoVG areavailable as extra values and functions. Please refer to the Lua source code for moredetails.The general idea is that the emulator will call nvgBeginFrame and nvgEndFrame beforeand after the Lua code is executed, and the Lua code will be able to call the otherfunctions to draw the vector graphics.The proper way to use the NanoVG API is to call nvg:queueNvgRender(function() ... end) , when in an ImGui window in order toqueue the NanoVG rendering for this specific window.The nvg:queueNvgRender function takes a single argument, which is a function that willbe called when the NanoVG rendering is being executed. The function will be calledwithout argument.All of the NanoVG functions are bound to the nvg object, which is a proxy object to theproper NanoVG context, meaning it is only valid within the function passed to nvg:queueNvgRender .This allows the user to call the NanoVG functions without having to pass the NanoVGcontext as the first argument, as it is done automatically by the proxy object.Note that the font used by the emulator is also loaded into the NanoVG context,meaning that it is possible to use nvg:Text without having to load a font first.8.4.5 Example of using everything togetherAs the NanoVG rendering is very low level, and requires a viewport to draw to, it isrequired to use the ImGui API to draw some UI, grab the positions of the vector graphics• • • • • 8.4.5 Example of using everything together- 65/94 -

https://github.com/grumpycoders/pcsx-redux/blob/main/src/gui/nvgffi.lua

to add, and then queue some NanoVG calls within some ImGui context to draw thewanted vector graphics.The following example will draw a red rectangle in the middle of the Output region. Therectangle will be 100x100 pixels in size, and will be drawn on top of the emulatorrendering. It should follow around the Output region when resizing or moving thewindow.In order to work, this example requires the code to be executed in the Image functionof the Output shader invoker, so we can get the position of the Output region to draw to. 1 2 3 4 5 6 7 8 9101112131415161718192021222324 function Image(textureID, srcSizeX, srcSizeY, dstSizeX, dstSizeY)-- This helper is provided by the emulator, and will properly calculate-- arbitrary coordinates within an ImGui image that is dstSizeX x dstSizeY-- in size. The first two arguments are the coordinates to convert, and-- the middle two arguments are the boundaries of the source image.-- Here, we are using (1.0, 1.0) as the source image size, but it could-- be any other size, as long as the coordinates are within the boundaries-- of the source image. For example, if the source image is 320x240, then-- the coordinates should be within (0, 0) and (320, 240), and the helper-- will properly convert the coordinates to the destination image size.local cx, cy = PCSX.Helpers.UI.imageCoordinates(0.5, 0.5, 1.0, 1.0, dstSizeX,dstSizeY)-- As explained, we can't call NanoVG functions directly, so we need to-- queue the rendering of the vector graphics.nvg:queueNvgRender(function()nvg:beginPath()nvg:rect(cx - 50, cy - 50, 100, 100)nvg:fillColor(nvg.Color.New(1, 0, 0, 1))nvg:fill()end)imgui.Image(textureID, dstSizeX, dstSizeY, 0, 0, 1, 1)end 8.4.5 Example of using everything together- 66/94 -

8.5 File API8.5.1 Introduction & RationaleWhile the normal Lua io API is loaded, there's a more powerful API that's more tightlyintegrated with the rest of the PCSX-Redux File handling code. It's an abstraction classthat allows seamless manipulation of various objects using a common API. 8.5 File API- 67/94 -

The File objects have different properties depending on how they are created and theirintention. But generally speaking, the following rules apply:Files are reference counted. They will be deleted when the reference count reacheszero. The Lua garbage collector will only decrease the reference count.Whenever possible, writes are deferred to an asynchronous thread, making writesreturn basically instantly. This speed up comes at the trade off of data integrity, whichmeans writes aren't guaranteed to be flushed to the disk yet when the functionreturns. Data will always have integrity internally within PCSX-Redux however, andwhen exiting normally, all data will be flushed to the disk.Some File objects can be cached. When caching, reads and writes will be donetransparently, and the cache will be used instead of the actual file. This will make readsreturn basically instantly too.The Read and Write APIs can haul LuaBuffer objects. These are Lua objects that can beused to read and write data to the file. You can construct one using the Support.NewLuaBuffer(size) function. They can be cast to strings, and can be usedas a table for reading and writing bytes off of it, in a 0-based fashion. The lengthoperator will return the size of the buffer. The methods :maxsize()and :resize(size) are available. They also have a .pbSlice property that implicitlyconverts them to a Lua-Protobuf's pb.slice , which can then be passed to pb.decode .The Read and Write APIs can also function using Lua-Protobuf's buffers and slicesrespectively.If the file isn't closed when the file object is destroyed, it'll be closed then, but lettingthe garbage collector do the closing is not recommended. This is because the garbagecollector will only run when the memory pressure is high enough, and the file handlewill be held for a long time.When using streamed functions, unlike POSIX files handles, there's two distinctseeking pointers: one for reading and one for writing.8.5.2 Common API for all File objectsAll File objects have the following API attached to them as methods:• • • • • • • 8.5.2 Common API for all File objects- 68/94 -

Closes and frees any associated resources. Better to call this manually than letting thegarbage collector do it: Reads from the File object and advances the read pointer accordingly. The return valuedepends on the variant used. Reads from the File object at the specified position. No pointers are modified. The returnvalue depends on the variant used, just like the non-At variants above. Writes to the File object. The non-At variants will advances the write pointer accordingly.The At variants will not modify the write pointer, and simply write at the requestedlocation. Returns the number of bytes written. The string variants will in fact take anyobject that can be transformed to a string using tostring() . Note that in this context, pb_slice and pb_buffer refer to Lua-Protobuf's pb.sliceand pb.buffer objects respectively.1 :close()12345 :read(size) -- returns a LuaBuffer:read(ptr, size) -- returns the number of bytes read, ptr has to be a cdata of pointer type:read(buffer) -- returns the number of bytes read, and adjusts the buffer's size:read(pb_buffer, size) -- returns the number of bytes read, while appending to the pb_buffer's existing data:gets() -- returns a string, up to the next newline character1234 :readAt(size, pos):readAt(ptr, size, pos):readAt(buffer, pos):readAt(pb_buffer, pos) 1 2 3 4 5 6 7 8 910 :write(string):write(buffer):write(slice):write(pb_slice):write(ptr, size):writeAt(string, pos):writeAt(buffer, pos):writeAt(slice, pos):writeAt(pb_slice, pos):writeAt(ptr, size, pos) 8.5.2 Common API for all File objects- 69/94 -

Some APIs may return a Slice object, which is an opaque buffer coming from C++.The write and writeAt methods can take a Slice . It is possible to write a slice to afile in a zero-copy manner, which will be more efficient:After which, the slice will be consumed and not reusable. The Slice object isconvertible to a string using tostring() , and also has two members: data , which is a const void* , and size . Once consumed by the MoveSlice variants, the size of aslice will go down to zero.Finally, it is possible to convert a Slice object to a pb.slice one using the Support.sliceToPBSlice function. However, the same caveats as for normal pb.slice objects apply: it is fragile, and will be invalidated if the underlying Slice ismoved or destroyed, so it is recommended to use it as a temporary object, such as anargument to pb.decode . Still, it is a much faster alternative to calling tostring()which will make a copy of the underlying slice.The following methods manipulate the read and write pointers. All of them return theircorresponding pointer. The wheel argument can be of the values 'SEEK_SET' , 'SEEK_CUR' , and 'SEEK_END' , and will default to 'SEEK_SET' . These will query the corresponding File object. 12 :writeMoveSlice(slice):writeAtMoveSlice(slice, pos)1234 :rSeek(pos[, wheel]):rTell():wSeek(pos[, wheel]):wTell()12345678 :size() -- Returns the size in bytes, if possible. If the file is not seekable, will throw an error.:seekable() -- Returns true if the file is seekable.:writable() -- Returns true if the file is writable.:eof() -- Returns true if the read pointer is at the end of file.:failed() -- Returns true if the file failed in some ways. The File object is defunct if this is true.:cacheable() -- Returns true if the file is cacheable.:caching() -- Returns true if caching is in progress or completed.:cacheProgress() -- Returns a value between 0 and 1 indicating the progress of the caching operation. 8.5.2 Common API for all File objects- 70/94 -

If applicable, this will start caching the corresponding file in memory. Same as above, but will suspend the current coroutine until the caching is done. Cannotbe used with the main thread. Duplicates the File object. This will re-open the file, and possibly duplicate all ressourcesassociated with it. Creates a read-only view of the file starting at the specified position, spanning thespecified length. The view will be a new File object, and will be a view of the sameunderlying file. The default values of start and length are 0 and -1 respectively, whichwill effectively create a view of the entire file. The view may have less features than theunderlying file, but will always be seekable, and keep its seeking position independent ofthe underlying file. The view will hold a reference to the underlying file. In addition to the above methods, the File API has these helpers, that'll read or writebinary values off their corresponding stream position for the non-At variants, or at theindicated position for the At variants. All the values will be read or stored in LittleEndian, regardless of the host's endianness. 1 :startCaching()1 :startCachingAndWait()1 :dup()1 :subFile([start[, length]])12345678 :readU8(), :readU16(), :readU32(), :readU64(),:readI8(), :readI16(), :readI32(), :readI64(),:readU8At(pos), :readU16At(pos), :readU32At(pos), :readU64At(pos),:readI8At(pos), :readI16At(pos), :readI32At(pos), :readI64At(pos),:writeU8(val), :writeU16(val), :writeU32(val), :writeU64(val),:writeI8(val), :writeI16(val), :writeI32(val), :writeI64(val),:writeU8At(val, pos), :writeU16At(val, pos), :writeU32At(val, pos), :writeU64At(val,pos),:writeI8At(val, pos), :writeI16At(val, pos), :writeI32At(val, pos), :writeI64At(val,pos), 8.5.2 Common API for all File objects- 71/94 -

8.5.3 Creating File objectsThe Lua VM can create File objects in different ways: Basic filesThe open function will function on filesystem and network URLs, while the bufferfunction will generate a memory-only File object that's fully readable, writable, andseekable. The type argument of the open function will determine what happensexactly. It's a string that can have the following values:READ : Opens the file for reading only. Will fail if the file does not exist. This is thedefault type.TRUNCATE : Opens the file for reading and writing. If the file does not exist, it will becreated. If it does exist, it will be truncated to 0 size.CREATE : Opens the file for reading and writing. If the file does not exist, it will becreated. If it does exist, it will be left untouched.READWRITE : Opens the file for reading and writing. Will fail if the file does not exist.DOWNLOAD_URL : Opens the file for reading only. Will immediately start downloadingthe file from the network. The filename argument will be treated as a URL. The curlis the backend for this feature, and its url schemes are supported. The progress of thedownload can be monitored with the :cacheProgress() method.DOWNLOAD_URL_AND_WAIT : As above, but suspends the current coroutine until thedownload is done. Cannot be used with the main thread.123456 Support.File.open(filename[, type])Support.File.buffer()Support.File.buffer(ptr, size[, type])Support.File.mem4g()Support.File.uvFifo(address, port)Support.File.zReader(file[, size[, raw]])• • • • • • 8.5.3 Creating File objects- 72/94 -

http://curl.se/libcurl
https://everything.curl.dev/cmdline/urls

BuffersWhen calling .buffer() with no argument, this will create an empty read-write buffer.When calling it with a cdata pointer and a size, this will have the following behavior,depending on type:READWRITE (or no type): The memory passed as an argument will be copied first.READ : The memory passed as an argument will be referenced, and the lifespan of saidmemory needs to outlast the File object. The File object will be read-only.ACQUIRE : It will acquire the pointer passed as an argument, and free it later using free() , meaning it needs to have been allocated using malloc() in the first place.The .mem4g() constructor will return a sparse buffer that has a virtual 4GB span. It canbe used to read and write data in the 4GB range, but will not actually allocate anymemory until the data is actually written to. This is useful for doing operations that aresimilar to that of the PlayStation memory. The .mem4g() constructor will return a Fileobject that's fully readable, writable, and seekable. Its size will always be 4GB. Thereturned object will have 3 additional methods::lowestAddress() : Returns the lowest address that has been written to.:highestAddress() : Returns the highest address that has been written to.:actualSize() : Returns the size of the buffer, which is the highest address minus thelowest address.This is a useful object to use with the :subFile() method, as it will allow you to createa view of a specific range of the 4GB memory. Specifically, obj:subFile(obj:lowestAddress(), obj:actualSize()) will create a view of theentire memory that has been written to.Network streamsThe uvFifo function will create a File object that will read from and write to thespecified TCP address and port after connecting to it. The :failed() method will returntrue in case of a connection failure. The address is a string, and must be a strict IPaddress, no hostnames allowed. The port is a number between 1 and 65535 inclusive.As the name suggests, this object is a FIFO, meaning that incoming bytes will beconsumed by any read operation. The :size() method will return the number of bytesin the FIFO. Writes will be immediately sent over. There are no reception guarantees, as• • • • • • 8.5.3 Creating File objects- 73/94 -

the other side might have disconnected at any point. The :eof() method will returntrue when the opposite end of the stream has been disconnected and there's no morebytes in the FIFO. In addition to the normal File API, a uvFifo has a methodcalled :isConnecting() , which returns a boolean indicating the fifo is still connecting,meaning it's possible to verify if the fifo has successfully connected using the booleanexpression not fifo:isConnecting() and not fifo:failed() .Compressed streamsThe zReader function will create a read-only File object which decompresses the datafrom the specified File object. The file argument is a File object, and the sizeargument is an optional number that will be used to determine the size of thedecompressed data. If not specified, the resulting file won't be seekable, andits :size() method won't work, but the file will be readable until :eof() returns true.The raw argument is an optional string that needs to be equal to 'RAW' , and willdetermine whether the data is compressed using the raw deflate format, or the zlibformat. Any other string means the zlib format will be used.8.5.4 Iso filesThere is some limited API for working with ISO files.PCSX.getCurrentIso() will return an Iso object representing the currently loadedISO file by the emulator.PCSX.openIso(pathOrFile) will return an Iso object opened from the specifiedargument, which can either be a filesystem path, or a File object.The following methods are available on the Iso object:The :open method has some magic built-in. The size argument is optional, and ifmissing, the code will attempt to guess the size of the underlying file within the Iso. It• • 12345 :failed() -- Returns true if the Iso file failed in some ways. The Iso object is defunct if this is true.:createReader() -- Returns an ISOReader object off the Iso file.:open(lba[, size[, mode]]) -- Returns a File object off the specified span of sectors.:clearPPF() -- Clears out all of the currently applied patches.:savePPF() -- Saves the currently applied patches to a PPF file named after the ISO file. 8.5.4 Iso files- 74/94 -

will represent the size of the virtual file in bytes. The size guessing mechanism can onlywork on MODE2 FORM1 or FORM2 sectors, and will result in a failed File objectotherwise. The mode argument is optional, and can be one of the following:'GUESS' : will attempt to guess the mode of the file. This is the default.'RAW' : the returned File object will read 2352 bytes per sector.'M1' : the returned File object will read 2048 bytes per sector.'M2_RAW' : the returned File object will read 2336 bytes per sector. This can't beguessed. This is useful for extracting STR files that require the subheaders to bepresent.'M2_FORM1' : the returned File object will read 2048 bytes per sector.'M2_FORM2' : the returned File object will read 2324 bytes per sector.The resulting File object will cache a single full sector in memory, meaning that smallsequential reads won't read the same sector over and over from the disk.The resulting File object will be writable, which will temporarily patch the CD-Rom imagefile in memory. It is possible to flush the patches to a PPF file by calling the :savePPF()method of the corresponding Iso object. When writing to one of these files, thefilesystem metadata information will not be updated, meaning that the size of the file onthe filesystem will not change, despite it being possible to write past the end of it andoverflow on the next sectors. Note that while the virtual File object will enlarge toaccommodate the writes, it will not be filled with zeroes as with typical filesystemoperations, but instead will be filled with the existing data from the iso image. Whenapplicable, sync headers, location, MODE2 subheaders will be added, and ECC and EDCwill be recalculated on the fly, and the resulting data will be written to the virtual file,except for files opened in 'RAW' mode. The 'M1' mode cannot be written to, and willthrow an error if attempted.The ISOReader object has the following methods:This method is basically a helper over the :open() method of the Iso object, and willautomatically guess the mode and size of the file.• • • • • • 1 :open(filename) -- Returns a File object off the specified file within the ISO. 8.5.4 Iso files- 75/94 -

8.6 Webserver Lua APIWhen the webserver is enabled, it will expose the /api/v1/lua/ prefix, which can beused to execute Lua code on the emulator. When an endpoint with this prefix is called,the Lua table PCSX.WebServer.Handlers will be inspected to find a handler for the restof the path in the endpoint. If a handler is found, it will be called with a request objectrepresenting the query, and it has to return a string, which will be sent back to the clientas the response. If no handler is found, a 404 error will be returned. If an error occurswhile executing the handler, a 500 error will be returned.The request object has the following fields:form is a table of the form data in the request. This is only available if the request isa POST request, and the content type is application/x-www-form-urlencoded .headers is a table of the headers in the request.method is the HTTP method of the request.urlData is a table with more information about the URL. It has the following stringfields:fragmenthostpathportqueryschemauserInfoIf the returned string starts with the characters "HTTP/", then the web server willconsider the response string is a full HTTP response with headers, and will send it as-isto the client. Otherwise, the response string will be sent as the body of a normal 200response.• • • • • • • • • • • 8.6 Webserver Lua API- 76/94 -

8.7 Memory and registers8.7.1 FFI accessThe Lua code can access the emulated memory and registers directly through some FFIbindings:PCSX.getMemPtr() will return a cdata[uint8_t*] representing up to 8MB ofemulated memory. This can be written to, but careful about the emulated i-cache incase code is being written to.PCSX.getParPtr() will return a cdata[uint8_t*] representing up to 512kB of theEXP1/Parallel port memory space. This can be written to.PCSX.getRomPtr() will return a cdata[uint8_t*] representing up to 512kB of theBIOS memory space. This can be written to.PCSX.getScratchPtr() will return a cdata[uint8_t*] representing up to 1kB forthe scratchpad memory space.PCSX.getRegisters() will return a structured cdata representing all the registerspresent in the CPU:PCSX.getReadLUT() will return a cdata[uint8_t**] representing the read LUT forthe CPU.PCSX.getWriteLUT() will return a cdata[uint8_t**] representing the write LUT forthe CPU.• • • • • • • 8.7 Memory and registers- 77/94 -

8.7.2 Safer accessThe above methods will return direct pointers into the emulated memory, so it's easy tocrash the emulator if you're not careful. The getMemoryAsFile() method is safer, butwill be slower:PCSX.getMemoryAsFile() will return a File object representing the full 4GB ofaccessible memory. All operations on this file will be translated to the emulatedmemory space. This is slower than the direct access methods, but safer. Any read orwrite operation will be clamped to the emulated memory space, and will not crash theemulator. 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930 typedef union {struct {uint32_t r0, at, v0, v1, a0, a1, a2, a3;uint32_t t0, t1, t2, t3, t4, t5, t6, t7;uint32_t s0, s1, s2, s3, s4, s5, s6, s7;uint32_t t8, t9, k0, k1, gp, sp, s8, ra;uint32_t lo, hi;} n;uint32_t r[34];} psxGPRRegs;typedef union {uint32_t r[32];} psxCP0Regs;typedef union {uint32_t r[32];} psxCP2Data;typedef union {uint32_t r[32];} psxCP2Ctrl;typedef struct {psxGPRRegs GPR;psxCP0Regs CP0;psxCP2Data CP2D;psxCP2Ctrl CP2C;uint32_t pc;} psxRegisters;• 8.7.2 Safer access- 78/94 -

8.7.3 Memory mappingPCSX-Redux will attempt to forward reads and writes for memory not mapped in theLUTs. This is useful for debugging, but will be slower than the direct access methods.- UnknownMemoryRead(address, size) will be called when a read is attempted to anunmapped memory address. The function should return an 8, 16, or 32-bit value to bereturned to the CPU. - UnknownMemoryWrite(address, size, value) will be calledwhen a write is attempted to an unmapped memory address. The function should return true or false indicating whether the write was handled. 8.7.3 Memory mapping- 79/94 -

8.8 EventsThe Lua code can listen for events broadcasted from within the emulator. The followingfunction is available to register a callback to be called when certain events happen:Important: the return value of this function will be an object that represents thelistener itself. If this object gets garbage collected, the corresponding listener will beremoved. Thus it is important to store it somewhere that won't get garbage collectedright away. The listener object has a :remove method to stop the listener before itsgarbage collection time.The callback function will be called from an unsecured environment, and it is advised todelegate anything complex or risky enough to PCSX.nextTick .1 PCSX.Events.createEventListener(eventName, callback) 8.8 Events- 80/94 -

The eventName argument is a string that can have the following values: 8.8 Events- 81/94 -

Quitting : The emulator is about to quit. The callback will be called with noarguments. This is where you'd need to close libuv objects held by Lua through luv inorder to allow the emulator to quit gracefully. Otherwise you may soft lock theapplication where it'll wait for libuv objects to close.IsoMounted : A new ISO file has been mounted into the virtual CDRom drive. Thecallback will be called with no arguments.GPU::Vsync : The emulated GPU has just completed a vertical blanking interval. Thecallback will be called with no arguments.ExecutionFlow::ShellReached : The emulation execution has reached the beginningof the BIOS' shell. The callback will be called with no arguments. This is the momentwhere the kernel is properly set up and ready to execute any arbitrary binary. Theemulator may use this event to side load binaries, or signal gdb that the kernel isready.ExecutionFlow::Run : The emulator resumed execution. The callback will be calledwith no arguments. This event will fire when calling PCSX.resumeEmulator() , whenthe user presses Start, or other potential interactions.ExecutionFlow::Pause : The emulator paused execution. The callback will be calledwith a table that contains a boolean named exception , indicating if the pause is theresult of an execution exception within the emulated CPU. This event will fire onbreakpoints too, so if breakpoints have Lua callbacks attached on them, they will beexecuted too.ExecutionFlow::Reset : The emulator is resetting the emulated machine. Thecallback will be called with a table that contains a boolean named hard , indicating ifthe reset is a hard reset or a soft reset. This event will fire when calling PCSX.resetEmulator() , when the user presses Reset, or other potential interactions.ExecutionFlow::SaveStateLoaded : The emulator just loaded a savestate. Thecallback will be called with no arguments. This event will fire when calling PCSX.loadSaveState() , when the user loads a savestate, or other potentialinteractions. This is useful to listen to in case some internal state needs to be resetwithin the Lua logic.GUI::JumpToPC : The UI is being asked to move the assembly view cursor to thespecified address. The callback will be called with a table that contains a numbernamed pc , indicating the address to jump to.• • • • • • • • • 8.8 Events- 82/94 -

GUI::JumpToMemory : The UI is being asked to move the memory view cursor to thespecified address. The callback will be called with a table that contains a numbernamed address , indicating the address to jump to, and size , indicating the numberof bytes to highlight.Keyboard : The emulator is dispatching keyboard events. The callback will be calledwith a table containing four numbers: key , scancode , action , and mods . They arethe same values as the glfw callback set by glfwSetKeyCallback .Memory::SetLuts : The emulator has updated the memory LUTs. The callback will becalled with no arguments.• • • 8.8 Events- 83/94 -

8.9 BreakpointsIf the debugger is activated, and while using the interpreter, the Lua code can insertpowerful breakpoints using the following API:Important: the return value of this function will be an object that represents thebreakpoint itself. If this object gets garbage collected, the corresponding breakpoint willbe removed. Thus it is important to store it somewhere that won't get garbage collectedright away.The only mandatory argument is address , which will by default place an executionbreakpoint at the corresponding address. The second argument type is an enum whichcan be represented by one of the 3 following strings: 'Exec' , 'Read' , 'Write' , andwill set the breakpoint type accordingly. The third argument width is the width of thebreakpoint, which indicates how many bytes should intersect from the base address withoperations done by the emulated CPU in order to actually trigger the breakpoint. Thefourth argument cause is a string that will be displayed in the logs about why thebreakpoint triggered. It will also be displayed in the Breakpoint Debug UI. And the fifthand final argument invoker is a Lua function that will be called whenever thebreakpoint is triggered. By default, this will simply call PCSX.pauseEmulator() . If theinvoker returns false , the breakpoint will be permanently removed, permittingtemporary breakpoints for example. The signature of the invoker callback is:The address parameter will contain the address that triggered the breakpoint. For 'Exec' breakpoints, this is going to be the same as the current pc , but for 'Read'and 'Write' , it's going to be the actual accessed address. The width parameter willcontain the width of the access that triggered the breakpoint, which can be differentfrom what the breakpoint is monitoring. And the cause parameter will contain a stringdescribing the reason for the breakpoint; the latter may or may not be the same aswhat was passed to the addBreakpoint function. Note that you don't need to strictly1 PCSX.addBreakpoint(address, type, width, cause, invoker)123 function(address, width, cause)-- bodyend 8.9 Breakpoints- 84/94 -

adhere to the signature, and have zero, one, two, or three arguments for your invokercallback. The return value of the invoker callback is also optional.For example, these two examples are well formed and perfectly valid:The returned breakpoint object will have a few methods attached to it::disable():enable():isEnabled():remove()A removed breakpoint will no longer have any effect whatsoever, and none of itsmethods will do anything. Remember it is possible for the user to still manually removea breakpoint from the UI.Note that the breakpoint will run outside of any safe Lua environment, so it's possible tocrash the emulator by doing something wrong which would normally be caught by thesafe environment of the main thread. This is to ensure that the breakpoint can run as 1 2 3 4 5 6 7 8 910 bp1 = PCSX.addBreakpoint(0x80000000, 'Write', 0x80000, 'Write tracing',function(address, width, cause)local regs = PCSX.getRegisters()local pc = regs.pcprint('Writing at ' .. address .. ' from ' .. pc .. ' with width ' .. width ..' and cause ' .. cause)end)bp2 = PCSX.addBreakpoint(0x80030000, 'Exec', 4, 'Shell reached - pausing',function()PCSX.pauseEmulator()return falseend)• • • • 8.9 Breakpoints- 85/94 -

fast as possible. In order to avoid this, it's possible to wrap the invoker callback in a pcall call, which will catch any error and display it in the logs. For example:This will ensure that the breakpoint will never crash the emulator, and will insteaddisplay the error in the logs, but it will also slow down the execution of the breakpoint.It's up to the user to decide whether or not this is acceptable.It is safe to add or remove breakpoints from within a breakpoint callback, but it's notsafe to remove the breakpoint that is currently being executed. For this specific case,simply return false from the invoker callback, and the breakpoint will be removedafter the callback returns. 1 2 3 4 5 6 7 8 91011 local someActualFunction = function(address, width, cause)-- bodyendbp = PCSX.addBreakpoint(0x80030000, 'Write', 4, 'Shell write tracing',function(address, width, cause)local success, msg = pcall(function()someActualFunction(address, width, cause)end)if not success thenprint('Error while running Lua breakpoint callback: ' .. msg)endend) 8.9 Breakpoints- 86/94 -

8.10 Inline assemblerThere is a Lua API for an inline MIPS assembler.One can instantiate an assembler with PCSX.Assembler.New() , which will keep all thestate of the assembler. The assembler can be used to assemble a string of MIPS code,and then compile it to memory or a file.The object has the following methods::parse(code) will parse the string code and assemble it. It will return theassembler object itself, so it can be chained with the compile methods. The parser isfairly simple, but it should be enough for most cases. The parser should handle all ofthe basic MIPS instructions, all of the PS1's GTE opcodes, and many pseudo-instructions. It will also handle labels. The parser is more lenient than normal MIPSassemblers, and will accept some invalid syntax, but it will throw an error if it can'tparse the code.:compileToUint32Table(baseAddress) will compile the assembled code to a table ofuint32_t values. This is useful for debugging, but not very useful for actually runningthe code. The baseAddress is the address that the code will be loaded at, in order tohandle relative jumps.:compileToMemory(memory, baseAddress, memoryStartAddress) will compile theassembled code to an indexable memory object, such as an ffi array. The memoryobject must be at least as large as the assembled code. The memory object will bemodified in-place. The baseAddress is the address that the code will be loaded at, inorder to handle relative jumps. The memoryStartAddress is the address that thememory object starts at.:compileToFile(file, baseAddress, fileStartAddress) will compile theassembled code to a file object. The file object must be at least as large as theassembled code. The file object will be modified in-place. The baseAddress is theaddress that the code will be loaded at, in order to handle relative jumps. The fileStartAddress is an optional argument which defaults to 0, and is the addressthat the file object starts at. Using a 0-based file address is relevant when using withthe PCSX.getMemoryAsFile() function, or when using a Support.mem4g() Fileobject.• • • • 8.10 Inline assembler- 87/94 -

8.11 Handling of PSX binariesThere is some support for handling PSX binaries in the Lua API. The PCSX.Binarymodule has the following functions: 8.11 Handling of PSX binaries- 88/94 -

PCSX.Binary.load(input, output) : loads an input File object into an output File object. The input file must be a valid PSX binary, which can be in the formatsCPE, PS-EXE, PSF, or ELF, and the output file must be at least 4GB large, which meansit's really only suitable with the mem4g object, or the object returned by getMemoryAsFile() . The output file will be modified in-place. The output file will beloaded at the address specified in the binary header. If successful, the function willreturn an info structure with the following optional fields:pc : the entry point of the binarygp : the global pointer of the binarysp : the stack pointer of the binaryregion : the region of the binary, which can be one of the following:'NTSC' : NTSC region'PAL' : PAL regionPCSX.Binary.pack(src, dest, addr, pc, gp, sp, options) : compresses theinput binary stream into a self-decompressing stream. The input must be a Fileobject, and the output must be a File object. The addr is the address that thebinary will be loaded at. The pc , gp , and sp are the entry point, global pointer, and• • • • • • • • 8.11 Handling of PSX binaries- 89/94 -

stack pointer of the binary. The options is an optional table with the followingoptional fields:tload : the address that the compressed binary will be loaded at. If not specified, itwill be set to a suitable address. Not specifying this will generate an in-placedecompression binary, which doesn't require much extra memory. When specifyingthis, the whole output stream will be loaded at this specific address, and thedecompression code will be located at its beginning, meaning both the entry point andthe loading addresses will be the same.nopad : the generated PS-EXE will not be padded to 2048 bytes. It will not be suitableto boot from cd-rom, as the BIOS requires binaries to be aligned to sector sizes, butmany other tools like unirom+nops or caetla+catflap will be able to handle it properly.booty : a boolean specifying that the output stream will be suitable to boot as a PIObytestream. Incompatible with tload or raw .nokernel : a boolean specifying that the produced binary will not try to call into thekernel, in case the kernel has been wiped out. Results in a slightly bigger binary, but isnecessary when the retail kernel is not present.shell : a boolean specifying that the output stream will attempt to reboot themachine and load the binary, which can be useful when resetting the kernel.raw : a boolean specifying that the output stream will be a raw binary, without a PS-EXE header. The generated binary will be completely position independent, and will notrequire any special loading address. It is up to the user to ensure no overlap canhappen by loading the file to a high enough address. This option can be used togenerate embedded binaries within others, or to be loaded by other means, andexecuted by jumping to it. The tload option will be ignored when this is specified.rom : a boolean specifying that the output stream will be a ROM file suitable to beflashed on a cheat cartridge, as long as the cartridge itself has linear addressing, whichis not necessarily the case for all cartridges. The tload option will be ignored whenthis is specified.cpe : a boolean specifying that the output stream will be a CPE file, which is the fileformat used by the ancient toolchain by Sony. This can be useful when trying to loadbinaries with these ancient tools.PCSX.Binary.createExe(src, dest, addr, pc, gp, sp) : creates a PS-EXE binaryfrom the input binary stream. The input must be a File object, and the output must• • • • • • • • • 8.11 Handling of PSX binaries- 90/94 -

be a File object. The addr is the address that the binary will be loaded at. The pc , gp , and sp are the entry point, global pointer, and stack pointer of the binary.The above methods can be used for example the following way:Additionally, the PCSX.Misc module has the following functions:PCSX.Misc.uclPack(src, dest) : compresses the input binary stream into a ucl-compressed stream. Both the input and output arguments must be File objects. Theoutput stream will be written at its current write pointer, and will be compressed usingthe UCL-NRV2E compression algorithm, which is a variant of the UCL compressionalgorithm. The output stream can be decompressed in-place with very little memoryoverhead. Simply place the compressed data at the end of the decompression buffer +16 bytes. The stream doesn't require to be aligned in any particular way.PCSX.Misc.writeUclDecomp(dest) : writes a MIPS UCL-NRV2E decompressionroutine to the output File object, at its current write pointer. The function returns thenumber of bytes written, which at the moment is 340 bytes. The code is positionindependent, and has the following function signature:void decompress(const uint8_t* src, uint8_t* dest); 1 2 3 4 5 6 7 8 91011121314 local src = PCSX.getCurrentIso():createReader():open('SLUS_012.34;1')local m4g = Support.File.mem4g()local info = PCSX.Binary.load(src, m4g)local asm = PCSX.Assembler.New()asm:parse [[lui $a0, 0x8001 addiu $a0, 0x1234]]:compileToFile(m4g, 0x80045678)local bytes = m4g:subFile(m4g:lowestAddress(), m4g:actualSize())local dst = Support.File.open('compressed-from-lua.ps-exe', 'TRUNCATE')PCSX.Binary.pack(bytes, dst, m4g:lowestAddress(), info.pc, info.gp, info.sp)• • • 8.11 Handling of PSX binaries- 91/94 -

8.12 Case studies8.12.1 Spyro: Year of the DragonBy looking up some of the gameshark codes for this game, we can determine thefollowing memory addresses:0x8007582c is the number of lives.0x80078bbc is the health of Spyro.0x80075860 is the number of unspent jewels available to the player.0x80075750 is the number of dragons Spyro released so far.• • • • 8.12 Case studies- 92/94 -

https://www.cheatcc.com/psx/codes/spyroyotd.html

With this, we can build a small UI to visualize and manipulate these values in real time:8.12.1 Spyro: Year of the Dragon- 93/94 -

 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354 -- Declare a helper function with the following arguments:-- mem: the ffi object representing the base pointer into the main RAM-- address: the address of the uint32_t to monitor and mutate-- name: the label to display in the UI-- min, max: the minimum and maximum values of the slider---- This function is local as to not pollute the global namespace.local function doSliderInt(mem, address, name, min, max)-- Clamping the address to the actual memory space, essentially-- removing the upper bank address using a bitmask. The result-- will still be a normal 32-bits value.address = bit.band(address, 0x1fffff)-- Computing the FFI pointer to the actual uint32_t location.-- The result will be a new FFI pointer, directly into the emulator's-- memory space, hopefully within normal accessible bounds. The-- resulting type will be a cdata[uint8_t*].local pointer = mem + address-- Casting this pointer to a proper uint32_t pointer.pointer = ffi.cast('uint32_t*', pointer)-- Reading the value in memorylocal value = pointer[0]-- Drawing the ImGui sliderlocal changedchanged, value = imgui.SliderInt(name, value, min, max, '%d')-- The ImGui Lua binding will first return a boolean indicating-- if the user moved the slider. The second return value will be-- the new value of the slider if it changed. Therefore we can-- reassign the pointer accordingly.if changed then pointer[0] = value endend-- Utilizing the DrawImguiFrame periodic function to draw our UI.-- We are declaring this function global so the emulator can-- properly call it periodically.function DrawImguiFrame()-- This is typical ImGui paradigm to display a window using-- the safe mode. This will ensure that the window is properly-- closed even if an exception is thrown during the rendering-- of the window.imgui.safe.Begin('Spyro internals', function()-- Grabbing the pointer to the main RAM, to avoid calling-- the function for every pointer we want to change.-- Note: it's not a good idea to hold onto this value between-- calls to the Lua VM, as the memory can potentially move-- within the emulator's memory space.local mem = PCSX.getMemPtr()-- Now calling our helper function for each of our pointer.doSliderInt(mem, 0x8007582c, 'Lives', 0, 9)doSliderInt(mem, 0x80078bbc, 'Health', -1, 3)doSliderInt(mem, 0x80075860, 'Jewels', 0, 65000)doSliderInt(mem, 0x80075750, 'Dragons', 0, 70) 8.12.1 Spyro: Year of the Dragon- 94/94 -

	PCSX-Redux
	1. Home
	2. PCSX-Redux menus
	2.1 File
	2.2 Emulation
	2.3 Configuration
	2.4 Debug
	2.5 Help
	2.6 GPU information

	3. Compiling PCSX-Redux
	3.1 Getting the sources
	3.2 Windows
	Openbios

	3.3 Linux
	3.3.1 Compiling with Docker
	3.3.2 Compiling with make
	Openbios

	3.3.3 MacOS
	Openbios

	3.4 Compiling PSX code
	3.4.1 Getting the toolchain on Windows
	3.4.2 Getting the toolchain on GNU/Linux
	Debian derivative; Ubuntu, Mint...
	Arch derivative; Manjaro...

	4. Command Line Flags
	5. Debugging
	5.1 Debugging with PCSX-Redux
	5.2 GDB server
	5.2.1 Enabling the GDB server
	5.2.2 GDB setup
	Windows
	GNU/Linux
	Debian based
	Arch based

	5.2.3 IDE setup
	MS VScode
	executable
	gdbpath
	autorun

	Geany
	.gdbinit
	Plugin configuration

	CLion
	.gdbinit

	5.2.4 Beginning Debugging
	Starting debugging in Geany

	5.2.5 Additional tools

	5.3 Connecting Ghidra to PCSX-Redux
	5.3.1 Prerequisites
	5.3.2 Setting up Ghidra
	5.3.3 Setting up Ghidra's debugger

	5.4 Misc Features
	5.4.1 Mapping breakpoints
	5.4.2 CPU trace dump
	Setup
	Begin dump
	Source

	5.5 VRAM viewer
	5.5.1 Navigating
	5.5.2 Lensing
	5.5.3 The various viewers

	5.6 GPU Logger
	5.6.1 Understanding the logs
	5.6.2 Highlighting Primitives
	5.6.3 Replay System

	6. Mips API
	6.1 Description
	6.2 Functions
	6.2.1 Kernel Checker
	6.2.2 Memory Sanitizer

	7. Web server
	7.1 Activation
	7.2 REST API

	8. Lua
	8.1 Introduction
	8.1.1 Lua engine
	8.1.2 Lua console
	8.1.3 Lua editor

	8.2 Loaded libraries
	8.2.1 Basic Lua
	8.2.2 Dear ImGui
	8.2.3 OpenGL
	8.2.4 NanoVG
	8.2.5 Luv
	8.2.6 Zlib
	8.2.7 FFI-Reflect
	8.2.8 PPrint
	8.2.9 Lua-Protobuf
	8.2.10 luafilesystem
	8.2.11 LPeg

	8.3 Redux basic API
	8.3.1 Settings
	8.3.2 ImGui interaction
	8.3.3 Events Engine interaction & Execution Contexts
	8.3.4 Constants
	8.3.5 Pads
	8.3.6 Execution flow
	8.3.7 Messages
	8.3.8 GUI
	8.3.9 GPU
	8.3.10 Loading and executing code
	8.3.11 Miscellaneous

	8.4 Rendering
	8.4.1 Emulated GPU rendering pipeline
	8.4.2 Shader editor
	8.4.3 ImGui
	Safety

	8.4.4 NanoVG
	8.4.5 Example of using everything together

	8.5 File API
	8.5.1 Introduction & Rationale
	8.5.2 Common API for all File objects
	8.5.3 Creating File objects
	Basic files
	Buffers
	Network streams
	Compressed streams

	8.5.4 Iso files

	8.6 Webserver Lua API
	8.7 Memory and registers
	8.7.1 FFI access
	8.7.2 Safer access
	8.7.3 Memory mapping

	8.8 Events
	8.9 Breakpoints
	8.10 Inline assembler
	8.11 Handling of PSX binaries
	8.12 Case studies
	8.12.1 Spyro: Year of the Dragon

