/******************************************************************************************** * * PNGU * * Original author: frontier (http://frontier-dev.net) * Modified by Tantric, 2009-2010 * ********************************************************************************************/ #include #include #include #include "pngu.h" #include // Constants #define PNGU_SOURCE_BUFFER 1 #define PNGU_SOURCE_DEVICE 2 // Return codes #define PNGU_OK 0 #define PNGU_ODD_WIDTH 1 #define PNGU_ODD_STRIDE 2 #define PNGU_INVALID_WIDTH_OR_HEIGHT 3 #define PNGU_FILE_IS_NOT_PNG 4 #define PNGU_UNSUPPORTED_COLOR_TYPE 5 #define PNGU_NO_FILE_SELECTED 6 #define PNGU_CANT_OPEN_FILE 7 #define PNGU_CANT_READ_FILE 8 #define PNGU_LIB_ERROR 9 // Color types #define PNGU_COLOR_TYPE_GRAY 1 #define PNGU_COLOR_TYPE_GRAY_ALPHA 2 #define PNGU_COLOR_TYPE_PALETTE 3 #define PNGU_COLOR_TYPE_RGB 4 #define PNGU_COLOR_TYPE_RGB_ALPHA 5 #define PNGU_COLOR_TYPE_UNKNOWN 6 // PNGU Image context struct struct _IMGCTX { int source; void *buffer; char *filename; PNGU_u32 cursor; PNGU_u32 propRead; PNGUPROP prop; PNGU_u32 infoRead; png_structp png_ptr; png_infop info_ptr; FILE *fd; png_bytep *row_pointers; png_bytep img_data; }; // PNGU Implementation static void pngu_free_info(IMGCTX ctx) { if (ctx->infoRead) { if (ctx->source == PNGU_SOURCE_DEVICE) fclose(ctx->fd); png_destroy_read_struct(&(ctx->png_ptr), &(ctx->info_ptr), (png_infopp) NULL); ctx->infoRead = 0; } } // Custom data provider function used for reading from memory buffers. static void pngu_read_data_from_buffer(png_structp png_ptr, png_bytep data, png_size_t length) { IMGCTX ctx = (IMGCTX) png_get_io_ptr(png_ptr); memcpy(data, ctx->buffer + ctx->cursor, length); ctx->cursor += length; } // Custom data writer function used for writing to memory buffers. static void pngu_write_data_to_buffer(png_structp png_ptr, png_bytep data, png_size_t length) { IMGCTX ctx = (IMGCTX) png_get_io_ptr(png_ptr); memcpy(ctx->buffer + ctx->cursor, data, length); ctx->cursor += length; } // Custom data flusher function used for writing to memory buffers. static void pngu_flush_data_to_buffer(png_structp png_ptr) { // Nothing to do here } static int pngu_info(IMGCTX ctx) { png_byte magic[8]; png_uint_32 width; png_uint_32 height; png_color_16p background; png_bytep trans; png_color_16p trans_values; int scale, i; // Check if there is a file selected and if it is a valid .png if (ctx->source == PNGU_SOURCE_BUFFER) memcpy(magic, ctx->buffer, 8); else if (ctx->source == PNGU_SOURCE_DEVICE) { // Open file if (!(ctx->fd = fopen(ctx->filename, "rb"))) return PNGU_CANT_OPEN_FILE; // Load first 8 bytes into magic buffer if (fread(magic, 1, 8, ctx->fd) != 8) { fclose(ctx->fd); return PNGU_CANT_READ_FILE; } } else return PNGU_NO_FILE_SELECTED; ; if (png_sig_cmp(magic, 0, 8) != 0) { if (ctx->source == PNGU_SOURCE_DEVICE) fclose(ctx->fd); return PNGU_FILE_IS_NOT_PNG; } // Allocation of libpng structs ctx->png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL); if (!(ctx->png_ptr)) { if (ctx->source == PNGU_SOURCE_DEVICE) fclose(ctx->fd); return PNGU_LIB_ERROR; } ctx->info_ptr = png_create_info_struct(ctx->png_ptr); if (!(ctx->info_ptr)) { if (ctx->source == PNGU_SOURCE_DEVICE) fclose(ctx->fd); png_destroy_read_struct(&(ctx->png_ptr), (png_infopp) NULL, (png_infopp) NULL); return PNGU_LIB_ERROR; } if (ctx->source == PNGU_SOURCE_BUFFER) { // Installation of our custom data provider function ctx->cursor = 0; png_set_read_fn(ctx->png_ptr, ctx, pngu_read_data_from_buffer); } else if (ctx->source == PNGU_SOURCE_DEVICE) { // Default data provider uses function fread, so it needs to use our FILE* png_init_io(ctx->png_ptr, ctx->fd); png_set_sig_bytes(ctx->png_ptr, 8); // We have read 8 bytes already to check PNG authenticity } // Read png header png_read_info(ctx->png_ptr, ctx->info_ptr); // Query image properties if they have not been queried before if (!ctx->propRead) { int ctxNumTrans; png_get_IHDR(ctx->png_ptr, ctx->info_ptr, &width, &height, (int *) &(ctx->prop.imgBitDepth), (int *) &(ctx->prop.imgColorType), NULL, NULL, NULL); ctx->prop.imgWidth = width; ctx->prop.imgHeight = height; switch (ctx->prop.imgColorType) { case PNG_COLOR_TYPE_GRAY: ctx->prop.imgColorType = PNGU_COLOR_TYPE_GRAY; break; case PNG_COLOR_TYPE_GRAY_ALPHA: ctx->prop.imgColorType = PNGU_COLOR_TYPE_GRAY_ALPHA; break; case PNG_COLOR_TYPE_PALETTE: ctx->prop.imgColorType = PNGU_COLOR_TYPE_PALETTE; break; case PNG_COLOR_TYPE_RGB: ctx->prop.imgColorType = PNGU_COLOR_TYPE_RGB; break; case PNG_COLOR_TYPE_RGB_ALPHA: ctx->prop.imgColorType = PNGU_COLOR_TYPE_RGB_ALPHA; break; default: ctx->prop.imgColorType = PNGU_COLOR_TYPE_UNKNOWN; break; } // Constant used to scale 16 bit values to 8 bit values scale = 0; if (ctx->prop.imgBitDepth == 16) scale = 8; // Query background color, if any. ctx->prop.validBckgrnd = 0; switch (ctx->prop.imgColorType) { case PNGU_COLOR_TYPE_RGB: case PNGU_COLOR_TYPE_RGB_ALPHA: { if (png_get_bKGD(ctx->png_ptr, ctx->info_ptr, &background)) { ctx->prop.validBckgrnd = 1; ctx->prop.bckgrnd.r = background->red >> scale; ctx->prop.bckgrnd.g = background->green >> scale; ctx->prop.bckgrnd.b = background->blue >> scale; } // Query list of transparent colors, if any. ctx->prop.numTrans = 0; ctx->prop.trans = NULL; if (png_get_tRNS(ctx->png_ptr, ctx->info_ptr, &trans, (int *) &(ctx->prop.numTrans), &trans_values)) { ctxNumTrans = ctx->prop.numTrans; if (ctxNumTrans) { ctx->prop.trans = malloc(sizeof (PNGUCOLOR) * ctxNumTrans); if (ctx->prop.trans) for (i = 0; i < ctxNumTrans; i++) { ctx->prop.trans[i].r = trans_values[i].red >> scale; ctx->prop.trans[i].g = trans_values[i].green >> scale; ctx->prop.trans[i].b = trans_values[i].blue >> scale; } else ctx->prop.numTrans = 0; } } } break; case PNGU_COLOR_TYPE_GRAY: case PNGU_COLOR_TYPE_GRAY_ALPHA: { if (png_get_bKGD(ctx->png_ptr, ctx->info_ptr, &background)) { ctx->prop.validBckgrnd = 1; ctx->prop.bckgrnd.r = ctx->prop.bckgrnd.g = ctx->prop.bckgrnd.b = background->gray >> scale; } // Query list of transparent colors, if any. ctx->prop.numTrans = 0; ctx->prop.trans = NULL; if (png_get_tRNS(ctx->png_ptr, ctx->info_ptr, &trans, (int *) &(ctx->prop.numTrans), &trans_values)) { ctxNumTrans = ctx->prop.numTrans; if (ctxNumTrans) { ctx->prop.trans = malloc(sizeof (PNGUCOLOR) * ctxNumTrans); if (ctx->prop.trans) for (i = 0; i < ctxNumTrans; i++) ctx->prop.trans[i].r = ctx->prop.trans[i].g = ctx->prop.trans[i].b = trans_values[i].gray >> scale; else ctx->prop.numTrans = 0; } } } break; default: // It was none of those things, { // Query list of transparent colors, if any. ctx->prop.numTrans = 0; ctx->prop.trans = NULL; } break; } ctx->propRead = 1; } // Success ctx->infoRead = 1; return PNGU_OK; } static int pngu_decode(IMGCTX ctx, PNGU_u32 width, PNGU_u32 height, PNGU_u32 stripAlpha) { png_uint_32 rowbytes; png_uint_32 i, propImgHeight; // Read info if it hasn't been read before if (!ctx->infoRead) { int c = pngu_info(ctx); if (c != PNGU_OK) return c; } // Check if the user has specified the real width and height of the image if ((ctx->prop.imgWidth != width) || (ctx->prop.imgHeight != height)) return PNGU_INVALID_WIDTH_OR_HEIGHT; // Check if color type is supported by PNGU if ((ctx->prop.imgColorType == PNGU_COLOR_TYPE_PALETTE) || (ctx->prop.imgColorType == PNGU_COLOR_TYPE_UNKNOWN)) return PNGU_UNSUPPORTED_COLOR_TYPE; // Scale 16 bit samples to 8 bit if (ctx->prop.imgBitDepth == 16) png_set_strip_16(ctx->png_ptr); // Remove alpha channel if we don't need it if (stripAlpha && ((ctx->prop.imgColorType == PNGU_COLOR_TYPE_RGB_ALPHA) || (ctx->prop.imgColorType == PNGU_COLOR_TYPE_GRAY_ALPHA))) png_set_strip_alpha(ctx->png_ptr); // Expand 1, 2 and 4 bit samples to 8 bit if (ctx->prop.imgBitDepth < 8) png_set_packing(ctx->png_ptr); // Transform grayscale images to RGB if ((ctx->prop.imgColorType == PNGU_COLOR_TYPE_GRAY) || (ctx->prop.imgColorType == PNGU_COLOR_TYPE_GRAY_ALPHA)) png_set_gray_to_rgb(ctx->png_ptr); // Flush transformations png_read_update_info(ctx->png_ptr, ctx->info_ptr); // Allocate memory to store the image rowbytes = png_get_rowbytes(ctx->png_ptr, ctx->info_ptr); if (rowbytes & 3) rowbytes = ((rowbytes >> 2) + 1) << 2; // Add extra padding so each row starts in a 4 byte boundary ctx->img_data = malloc(rowbytes * ctx->prop.imgHeight); if (!ctx->img_data) { pngu_free_info(ctx); return PNGU_LIB_ERROR; } ctx->row_pointers = malloc(sizeof (png_bytep) * ctx->prop.imgHeight); if (!ctx->row_pointers) { free(ctx->img_data); pngu_free_info(ctx); return PNGU_LIB_ERROR; } propImgHeight = ctx->prop.imgHeight; for (i = 0; i < propImgHeight; ++i) ctx->row_pointers[i] = ctx->img_data + (i * rowbytes); // Transform the image and copy it to our allocated memory png_read_image(ctx->png_ptr, ctx->row_pointers); // Free resources pngu_free_info(ctx); // Success return PNGU_OK; } static inline PNGU_u32 coordsRGBA8(PNGU_u32 x, PNGU_u32 y, PNGU_u32 w) { return ((((y >> 2) * (w >> 2) + (x >> 2)) << 5) + ((y & 3) << 2) + (x & 3)) << 1; } static u8 * PNGU_DecodeTo4x4RGBA8(IMGCTX ctx, PNGU_u32 width, PNGU_u32 height, int * dstWidth, int * dstHeight, int maxWidth, int maxHeight) { PNGU_u8 default_alpha = 255; u8 *dst; int x, y, x2, y2, offset; int xRatio = 0, yRatio = 0; png_byte *pixel; if (pngu_decode(ctx, width, height, 0) != PNGU_OK) return NULL; int newWidth = width; int newHeight = height; if ((maxWidth > 0 && width > maxWidth) || (maxHeight > 0 && height > maxHeight)) { float ratio = (float) width / (float) height; newWidth = maxWidth; newHeight = maxWidth / ratio; if (newHeight > maxHeight) { newWidth = maxHeight*ratio; newHeight = maxHeight; } xRatio = (int) ((width << 16) / newWidth) + 1; yRatio = (int) ((height << 16) / newHeight) + 1; } int padWidth = newWidth; int padHeight = newHeight; if (padWidth % 4) padWidth += (4 - padWidth % 4); if (padHeight % 4) padHeight += (4 - padHeight % 4); int len = (padWidth * padHeight) << 2; if (len % 32) len += (32 - len % 32); dst = memalign(32, len); if (!dst) return NULL; for (y = 0; y < padHeight; y++) { for (x = 0; x < padWidth; x++) { offset = coordsRGBA8(x, y, padWidth); if (y >= newHeight || x >= newWidth) { dst[offset] = 0; dst[offset + 1] = 255; dst[offset + 32] = 255; dst[offset + 33] = 255; } else { if (xRatio > 0) { x2 = ((x * xRatio) >> 16); y2 = ((y * yRatio) >> 16); } if (ctx->prop.imgColorType == PNGU_COLOR_TYPE_GRAY_ALPHA || ctx->prop.imgColorType == PNGU_COLOR_TYPE_RGB_ALPHA) { if (xRatio > 0) pixel = &(ctx->row_pointers[y2][x2 * 4]); else pixel = &(ctx->row_pointers[y][x * 4]); dst[offset] = pixel[3]; // Alpha dst[offset + 1] = pixel[0]; // Red dst[offset + 32] = pixel[1]; // Green dst[offset + 33] = pixel[2]; // Blue } else { if (xRatio > 0) pixel = &(ctx->row_pointers[y2][x2 * 3]); else pixel = &(ctx->row_pointers[y][x * 3]); dst[offset] = default_alpha; // Alpha dst[offset + 1] = pixel[0]; // Red dst[offset + 32] = pixel[1]; // Green dst[offset + 33] = pixel[2]; // Blue } } } } // Free resources free(ctx->img_data); free(ctx->row_pointers); *dstWidth = padWidth; *dstHeight = padHeight; /* DCFlushRange(dst, len); */ return dst; } IMGCTX PNGU_SelectImageFromBuffer(const void *buffer) { IMGCTX ctx = NULL; if (!buffer) return NULL; ctx = malloc(sizeof (struct _IMGCTX)); if (!ctx) return NULL; ctx->buffer = (void *) buffer; ctx->source = PNGU_SOURCE_BUFFER; ctx->cursor = 0; ctx->filename = NULL; ctx->propRead = 0; ctx->infoRead = 0; return ctx; } IMGCTX PNGU_SelectImageFromDevice(const char *filename) { IMGCTX ctx = NULL; if (!filename) return NULL; ctx = malloc(sizeof (struct _IMGCTX)); if (!ctx) return NULL; ctx->buffer = NULL; ctx->source = PNGU_SOURCE_DEVICE; ctx->cursor = 0; ctx->filename = malloc(strlen(filename) + 1); if (!ctx->filename) { free(ctx); return NULL; } strcpy(ctx->filename, filename); ctx->propRead = 0; ctx->infoRead = 0; return ctx; } void PNGU_ReleaseImageContext(IMGCTX ctx) { if (!ctx) return; if (ctx->filename) free(ctx->filename); if ((ctx->propRead) && (ctx->prop.trans)) free(ctx->prop.trans); pngu_free_info(ctx); free(ctx); } int PNGU_GetImageProperties(IMGCTX ctx, PNGUPROP *imgprop) { int res; if (!ctx->propRead) { res = pngu_info(ctx); if (res != PNGU_OK) return res; } *imgprop = ctx->prop; return PNGU_OK; } PNGU_u8 * DecodePNG(const PNGU_u8 *src, int * width, int * height, int maxwidth, int maxheight) { PNGUPROP imgProp; IMGCTX ctx = PNGU_SelectImageFromBuffer(src); u8 *dst = NULL; if (!ctx) return NULL; if (PNGU_GetImageProperties(ctx, &imgProp) == PNGU_OK) dst = PNGU_DecodeTo4x4RGBA8(ctx, imgProp.imgWidth, imgProp.imgHeight, width, height, maxwidth, maxheight); PNGU_ReleaseImageContext(ctx); return dst; } int PNGU_EncodeFromRGB(IMGCTX ctx, PNGU_u32 width, PNGU_u32 height, void *buffer, PNGU_u32 stride) { png_uint_32 rowbytes; PNGU_u32 y; // Erase from the context any readed info pngu_free_info(ctx); ctx->propRead = 0; // Check if the user has selected a file to write the image if (ctx->source == PNGU_SOURCE_BUFFER); else if (ctx->source == PNGU_SOURCE_DEVICE) { // Open file if (!(ctx->fd = fopen(ctx->filename, "wb"))) return PNGU_CANT_OPEN_FILE; } else return PNGU_NO_FILE_SELECTED; // Allocation of libpng structs ctx->png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL); if (!(ctx->png_ptr)) { if (ctx->source == PNGU_SOURCE_DEVICE) fclose(ctx->fd); return PNGU_LIB_ERROR; } ctx->info_ptr = png_create_info_struct(ctx->png_ptr); if (!(ctx->info_ptr)) { png_destroy_write_struct(&(ctx->png_ptr), (png_infopp) NULL); if (ctx->source == PNGU_SOURCE_DEVICE) fclose(ctx->fd); return PNGU_LIB_ERROR; } if (ctx->source == PNGU_SOURCE_BUFFER) { // Installation of our custom data writer function ctx->cursor = 0; png_set_write_fn(ctx->png_ptr, ctx, pngu_write_data_to_buffer, pngu_flush_data_to_buffer); } else if (ctx->source == PNGU_SOURCE_DEVICE) { // Default data writer uses function fwrite, so it needs to use our FILE* png_init_io(ctx->png_ptr, ctx->fd); } // Setup output file properties png_set_IHDR(ctx->png_ptr, ctx->info_ptr, width, height, 8, PNG_COLOR_TYPE_RGB, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT); // Allocate memory to store the image in RGB format rowbytes = width * 3; if (rowbytes % 4) rowbytes = ((rowbytes >> 2) + 1) << 2; // Add extra padding so each row starts in a 4 byte boundary ctx->img_data = malloc(rowbytes * height); memset(ctx->img_data, 0, rowbytes * height); if (!ctx->img_data) { png_destroy_write_struct(&(ctx->png_ptr), (png_infopp) NULL); if (ctx->source == PNGU_SOURCE_DEVICE) fclose(ctx->fd); return PNGU_LIB_ERROR; } ctx->row_pointers = malloc(sizeof (png_bytep) * height); memset(ctx->row_pointers, 0, sizeof (png_bytep) * height); if (!ctx->row_pointers) { png_destroy_write_struct(&(ctx->png_ptr), (png_infopp) NULL); if (ctx->source == PNGU_SOURCE_DEVICE) fclose(ctx->fd); return PNGU_LIB_ERROR; } for (y = 0; y < height; ++y) { ctx->row_pointers[y] = buffer + (y * rowbytes); } // Tell libpng where is our image data png_set_rows(ctx->png_ptr, ctx->info_ptr, ctx->row_pointers); // Write file header and image data png_write_png(ctx->png_ptr, ctx->info_ptr, PNG_TRANSFORM_IDENTITY, NULL); // Tell libpng we have no more data to write png_write_end(ctx->png_ptr, (png_infop) NULL); // Free resources free(ctx->img_data); free(ctx->row_pointers); png_destroy_write_struct(&(ctx->png_ptr), &(ctx->info_ptr)); if (ctx->source == PNGU_SOURCE_DEVICE) fclose(ctx->fd); // Success return ctx->cursor; } int PNGU_EncodeFromGXTexture(IMGCTX ctx, PNGU_u32 width, PNGU_u32 height, void *buffer, PNGU_u32 stride) { int res; PNGU_u32 x, y, tmpy1, tmpy2, tmpyWid, tmpxy; unsigned char * ptr = (unsigned char*) buffer; unsigned char * tmpbuffer = (unsigned char *) malloc(width * height * 3); memset(tmpbuffer, 0, width * height * 3); png_uint_32 offset; for (y = 0; y < height; y++) { tmpy1 = y * 640 * 3; tmpy2 = y % 4 << 2; tmpyWid = (((y >> 2) << 4) * width); for (x = 0; x < width; x++) { offset = tmpyWid + ((x >> 2) << 6) + ((tmpy2 + x % 4) << 1); tmpxy = x * 3 + tmpy1; tmpbuffer[tmpxy ] = ptr[offset + 1]; // R tmpbuffer[tmpxy + 1] = ptr[offset + 32]; // G tmpbuffer[tmpxy + 2] = ptr[offset + 33]; // B } } res = PNGU_EncodeFromRGB(ctx, width, height, tmpbuffer, stride); free(tmpbuffer); return res; }