/* MIT License CRTea - Configurable CRT Fragment Shader Copyright (c) 2020-2022 Rupert Carmichael Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Based on Public Domain work by Timothy Lottes precision highp float; uniform sampler2D source; uniform vec4 sourceSize; uniform vec4 targetSize; uniform int masktype; // Mask Type uniform float maskstr; // Mask Strength uniform float scanstr; // Scanline Strength uniform float sharpness; // Pixel Sharpness uniform float curve; // Screen Curvature uniform float corner; // Screen Curvature uniform float tcurve; // Trinitron Curve in vec2 texCoord; out vec4 FragColor; //#define CRTS_DEBUG 1 // Define to see on/off split screen //#define CRTS_2_TAP 1 // Faster very pixely 2-tap filter (off is 8) #define CRTS_WARP 1 // Apply screen warp #define INPUT_MASK (1.0 - maskstr) #define INPUT_SCAN (0.5 + (0.5 * scanstr)) #define INPUT_SHRP (-1.0 * sharpness) #define INPUT_X sourceSize.x #define INPUT_Y sourceSize.y #define CURVATURE curve #define TRINITRON_CURVE tcurve #define CORNER corner #define CRT_GAMMA 2.4 #define CRTS_TONE 1 // Normalize mid-level and process color #define CRTS_CONTRAST 0 // Process color - enable contrast control #define CRTS_SATURATION 0 // Process color - enable saturation control #define CrtsRcpF1(x) (1.0/(x)) #define CrtsSatF1(x) clamp((x),0.0,1.0) // sRGB-Linear Conversions float FromSrgb1(float c) { return (c <= 0.04045) ? c * (1.0 / 12.92) : pow(c * (1.0 / 1.055) + (0.055 / 1.055), CRT_GAMMA); } vec3 FromSrgb(vec3 c) { return vec3(FromSrgb1(c.r), FromSrgb1(c.g), FromSrgb1(c.b)); } float ToSrgb1(float c) { return (c < 0.0031308 ? c * 12.92 : 1.055 * pow(c, 0.41666) - 0.055); } vec3 ToSrgb(vec3 c) { return vec3(ToSrgb1(c.r), ToSrgb1(c.g), ToSrgb1(c.b)); } // Fetch the input image colour vec3 CrtsFetch(vec2 uv) { // Scale to get native texels in the image uv *= vec2(INPUT_X, INPUT_Y) / sourceSize.xy; return FromSrgb(texture(source, uv.xy, -16.0).rgb); } // Get the maximum of 3 floats float CrtsMax3F1(float a, float b, float c) { return max(a, max(b, c)); } // Tonal Control vec4 CrtsTone(float contrast, float saturation, float thin, float mask) { if (masktype == 0) mask = 1.0; if (masktype == 1) { // Normal R mask is {1.0,mask,mask} // LITE R mask is {mask,1.0,1.0} mask = 0.5 + mask * 0.5; } vec4 ret; float midOut = 0.18 / ((1.5 - thin) * (0.5 * mask + 0.5)); float pMidIn = pow(0.18, contrast); ret.x = contrast; ret.y = ((-pMidIn) + midOut) / ((1.0 - pMidIn) * midOut); ret.z = ((-pMidIn) * midOut + pMidIn) / (midOut * (-pMidIn) + midOut); ret.w = contrast + saturation; return ret; } // Apply the mask vec3 CrtsMask(vec2 pos, float dark) { if (masktype == 0) { // Scanlines (No Mask) return vec3(1.0, 1.0, 1.0); } if (masktype == 1) { // Aperture Grille Lite vec3 m = vec3(1.0, 1.0, 1.0); float x = fract(pos.x * (1.0 / 3.0)); if (x < (1.0 / 3.0)) m.r = dark; else if (x < (2.0 / 3.0)) m.g = dark; else m.b = dark; return m; } if (masktype == 2) { // Aperture Grille vec3 m = vec3(dark, dark, dark); float x = fract(pos.x * (1.0 / 3.0)); if (x < (1.0 / 3.0)) m.r = 1.0; else if (x < (2.0 / 3.0)) m.g = 1.0; else m.b = 1.0; return m; } if (masktype == 3) { // Shadow Mask pos.x += pos.y * 2.9999; vec3 m = vec3(dark, dark, dark); float x = fract(pos.x * (1.0 / 6.0)); if (x < (1.0 / 3.0)) m.r = 1.0; else if (x < (2.0 / 3.0)) m.g = 1.0; else m.b = 1.0; return m; } } // The filter function itself // SV_POSITION, fragCoord.xy // sourceSize / targetSize (in pixels) // 0.5 * sourceSize (in pixels) // 1.0 / sourceSize (in pixels) // 1.0 / targetSize (in pixels) // 2.0 / targetSize (in pixels) // Warp scanlines but not phosphor mask // Tonal curve parameters generated by CrtsTone() vec3 CrtsFilter(vec2 ipos, vec2 inputSizeDivOutputSize, vec2 halfInputSize, vec2 rcpInputSize, vec2 rcpOutputSize, vec2 twoDivOutputSize, vec2 warp, vec4 tone) { #ifdef CRTS_DEBUG vec2 uv = ipos * rcpOutputSize; // Show second half processed, and first half un-processed if (uv.x < 0.5) { // Force nearest to get squares uv *= 1.0 / rcpInputSize; uv = floor(uv) + vec2(0.5, 0.5); uv *= rcpInputSize; vec3 color = CrtsFetch(uv); return color; } #endif // Optional apply warp vec2 pos; #ifdef CRTS_WARP // Convert to {-1 to 1} range pos = ipos * twoDivOutputSize - vec2(1.0, 1.0); // Distort pushes image outside {-1 to 1} range pos *= vec2(1.0 + (pos.y * pos.y) * warp.x, 1.0 + (pos.x * pos.x) * warp.y); // TODO: Vignette needs optimization float vin = (1.0 - ((1.0 - CrtsSatF1(pos.x * pos.x)) * (1.0 - CrtsSatF1(pos.y * pos.y)))) * (0.998 + (0.001 * CORNER)); vin = CrtsSatF1((-vin) * sourceSize.y + sourceSize.y); // Leave in {0 to inputSize} pos = pos * halfInputSize + halfInputSize; #else pos = ipos * inputSizeDivOutputSize; #endif // Snap to center of first scanline float y0 = floor(pos.y - 0.5) + 0.5; #ifdef CRTS_2_TAP // Using Inigo's "Improved Texture Interpolation" // http://iquilezles.org/www/articles/texture/texture.htm pos.x += 0.5; float xi = floor(pos.x); float xf = pos.x - xi; xf = xf * xf * xf * (xf * (xf * 6.0 - 15.0) + 10.0); float x0 = xi + xf - 0.5; vec2 p = vec2(x0 * rcpInputSize.x, y0 * rcpInputSize.y); // Coordinate adjusted bilinear fetch from 2 nearest scanlines vec3 colA = CrtsFetch(p); p.y += rcpInputSize.y; vec3 colB = CrtsFetch(p); #else // Snap to center of one of four pixels float x0 = floor(pos.x - 1.5) + 0.5; // Inital UV position vec2 p = vec2(x0 * rcpInputSize.x, y0 * rcpInputSize.y); // Fetch 4 nearest texels from 2 nearest scanlines vec3 colA0 = CrtsFetch(p); p.x += rcpInputSize.x; vec3 colA1 = CrtsFetch(p); p.x += rcpInputSize.x; vec3 colA2 = CrtsFetch(p); p.x += rcpInputSize.x; vec3 colA3 = CrtsFetch(p); p.y += rcpInputSize.y; vec3 colB3 = CrtsFetch(p); p.x -= rcpInputSize.x; vec3 colB2 = CrtsFetch(p); p.x -= rcpInputSize.x; vec3 colB1 = CrtsFetch(p); p.x -= rcpInputSize.x; vec3 colB0 = CrtsFetch(p); #endif // Vertical filter // Scanline intensity is using sine wave // Easy filter window and integral used later in exposure float off = pos.y - y0; float pi2 = 6.28318530717958; float hlf = 0.5; float scanA = cos(min(0.5, off * INPUT_SCAN) * pi2) * hlf + hlf; float scanB = cos(min(0.5, (-off) * INPUT_SCAN + INPUT_SCAN) * pi2) * hlf + hlf; #ifdef CRTS_2_TAP #ifdef CRTS_WARP // Get rid of wrong pixels on edge scanA *= vin; scanB *= vin; #endif // Apply vertical filter vec3 color = (colA * scanA) + (colB * scanB); #else // Horizontal kernel is simple gaussian filter float off0 = pos.x - x0; float off1 = off0 - 1.0; float off2 = off0 - 2.0; float off3 = off0 - 3.0; float pix0 = exp2(INPUT_SHRP * off0 * off0); float pix1 = exp2(INPUT_SHRP * off1 * off1); float pix2 = exp2(INPUT_SHRP * off2 * off2); float pix3 = exp2(INPUT_SHRP * off3 * off3); float pixT = CrtsRcpF1(pix0 + pix1 + pix2 + pix3); #ifdef CRTS_WARP // Get rid of wrong pixels on edge pixT *= vin; #endif scanA *= pixT; scanB *= pixT; // Apply horizontal and vertical filters vec3 color = (colA0 * pix0 + colA1 * pix1 + colA2 * pix2 + colA3 * pix3) * scanA + (colB0 * pix0 + colB1 * pix1 + colB2 * pix2 + colB3 * pix3) * scanB; #endif // Apply phosphor mask color *= CrtsMask(gl_FragCoord.xy, INPUT_MASK); // Optional color processing #ifdef CRTS_TONE // Tonal control, start by protecting from /0 float peak = max(1.0 / (256.0 * 65536.0), CrtsMax3F1(color.r, color.g, color.b)); // Compute the ratios of {R,G,B} vec3 ratio = color * CrtsRcpF1(peak); // Apply tonal curve to peak value #ifdef CRTS_CONTRAST peak = pow(peak, tone.x); #endif peak = peak * CrtsRcpF1(peak * tone.y + tone.z); // Apply saturation #ifdef CRTS_SATURATION ratio = pow(ratio, vec3(tone.w, tone.w, tone.w)); #endif // Reconstruct color return ratio * peak; #else return color; #endif } void main() { vec2 warp_factor; warp_factor.x = CURVATURE; warp_factor.y = (3.0 / 4.0) * warp_factor.x; // assume 4:3 aspect warp_factor.x *= (1.0 - TRINITRON_CURVE); FragColor.rgb = CrtsFilter(texCoord.xy * targetSize.xy, sourceSize.xy * targetSize.zw, sourceSize.xy * vec2(0.5, 0.5), sourceSize.zw, targetSize.zw, 2.0 * targetSize.zw, warp_factor, CrtsTone(1.0, 0.0, INPUT_SCAN, INPUT_MASK)); // Output non-linear color FragColor.rgb = ToSrgb(FragColor.rgb); }