mupen64plus-oldsvn/glide64/3dmath.cpp
2008-04-09 18:34:37 +00:00

369 lines
11 KiB
C++

/*
* Glide64 - Glide video plugin for Nintendo 64 emulators.
* Copyright (c) 2002 Dave2001
* Copyright (c) 2008 Günther <guenther.emu@freenet.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
//****************************************************************
//
// Glide64 - Glide Plugin for Nintendo 64 emulators (tested mostly with Project64)
// Project started on December 29th, 2001
//
// To modify Glide64:
// * Write your name and (optional)email, commented by your work, so I know who did it, and so that you can find which parts you modified when it comes time to send it to me.
// * Do NOT send me the whole project or file that you modified. Take out your modified code sections, and tell me where to put them. If people sent the whole thing, I would have many different versions, but no idea how to combine them all.
//
// Official Glide64 development channel: #Glide64 on EFnet
//
// Original author: Dave2001 (Dave2999@hotmail.com)
// Other authors: Gonetz, Gugaman
//
//****************************************************************
#include "Gfx1.3.h"
#include "3dmath.h"
void calc_light (VERTEX *v)
{
float light_intensity = 0.0f;
register float color[3] = {rdp.light[rdp.num_lights].r, rdp.light[rdp.num_lights].g, rdp.light[rdp.num_lights].b};
for (DWORD l=0; l<rdp.num_lights; l++)
{
light_intensity = DotProduct (rdp.light_vector[l], v->vec);
if (light_intensity > 0.0f)
{
color[0] += rdp.light[l].r * light_intensity;
color[1] += rdp.light[l].g * light_intensity;
color[2] += rdp.light[l].b * light_intensity;
}
}
if (color[0] > 1.0f) color[0] = 1.0f;
if (color[1] > 1.0f) color[1] = 1.0f;
if (color[2] > 1.0f) color[2] = 1.0f;
v->r = (BYTE)(color[0]*255.0f);
v->g = (BYTE)(color[1]*255.0f);
v->b = (BYTE)(color[2]*255.0f);
}
__inline void TransformVector (float *src, float *dst, float mat[4][4])
{
dst[0] = mat[0][0]*src[0] + mat[1][0]*src[1] + mat[2][0]*src[2];
dst[1] = mat[0][1]*src[0] + mat[1][1]*src[1] + mat[2][1]*src[2];
dst[2] = mat[0][2]*src[0] + mat[1][2]*src[1] + mat[2][2]*src[2];
}
//*
void calc_linear (VERTEX *v)
{
float vec[3];
TransformVector (v->vec, vec, rdp.model);
// TransformVector (v->vec, vec, rdp.combined);
NormalizeVector (vec);
float x, y;
if (!rdp.use_lookat)
{
x = vec[0];
y = vec[1];
}
else
{
x = DotProduct (rdp.lookat[0], vec);
y = DotProduct (rdp.lookat[1], vec);
}
if (rdp.cur_cache[0])
{
// scale >> 6 is size to map to
v->ou = (acosf(x)/3.1415f) * (rdp.tiles[rdp.cur_tile].org_s_scale >> 6);
v->ov = (acosf(y)/3.1415f) * (rdp.tiles[rdp.cur_tile].org_t_scale >> 6);
}
}
//*/
/*
void calc_linear (VERTEX *v)
{
float vec[3];
TransformVector (v->vec, vec, rdp.combined);
NormalizeVector (vec);
if (rdp.cur_cache[0])
{
// scale >> 6 is size to map to
v->ou = (acosf(vec[0])/3.1415f) * (rdp.tiles[rdp.cur_tile].org_s_scale >> 6);
v->ov = (acosf(vec[1])/3.1415f) * (rdp.tiles[rdp.cur_tile].org_t_scale >> 6);
}
}
//*/
void calc_sphere (VERTEX *v)
{
//RDP("calc_sphere\n");
float vec[3];
int s_scale, t_scale;
if (settings.chopper)
{
s_scale = min(rdp.tiles[rdp.cur_tile].org_s_scale >> 6, rdp.tiles[rdp.cur_tile].lr_s);
t_scale = min(rdp.tiles[rdp.cur_tile].org_t_scale >> 6, rdp.tiles[rdp.cur_tile].lr_t);
}
else
{
s_scale = rdp.tiles[rdp.cur_tile].org_s_scale >> 6;
t_scale = rdp.tiles[rdp.cur_tile].org_t_scale >> 6;
}
TransformVector (v->vec, vec, rdp.model);
// TransformVector (v->vec, vec, rdp.combined);
NormalizeVector (vec);
float x = DotProduct (rdp.lookat[0], vec);
float y = DotProduct (rdp.lookat[1], vec);
v->ou = (x * 0.5f + 0.5f) * s_scale;
v->ov = (y * 0.5f + 0.5f) * t_scale;
}
void __stdcall MulMatricesNOSSE(float m1[4][4],float m2[4][4],float r[4][4])
{
/*for (int i=0; i<4; i++)
{
for (int j=0; j<4; j++)
{
r[i][j] =
m1[i][0] * m2[0][j] +
m1[i][1] * m2[1][j] +
m1[i][2] * m2[2][j] +
m1[i][3] * m2[3][j];
}
}*/
r[0][0] = m1[0][0]*m2[0][0] + m1[0][1]*m2[1][0] + m1[0][2]*m2[2][0] + m1[0][3]*m2[3][0];
r[0][1] = m1[0][0]*m2[0][1] + m1[0][1]*m2[1][1] + m1[0][2]*m2[2][1] + m1[0][3]*m2[3][1];
r[0][2] = m1[0][0]*m2[0][2] + m1[0][1]*m2[1][2] + m1[0][2]*m2[2][2] + m1[0][3]*m2[3][2];
r[0][3] = m1[0][0]*m2[0][3] + m1[0][1]*m2[1][3] + m1[0][2]*m2[2][3] + m1[0][3]*m2[3][3];
r[1][0] = m1[1][0]*m2[0][0] + m1[1][1]*m2[1][0] + m1[1][2]*m2[2][0] + m1[1][3]*m2[3][0];
r[1][1] = m1[1][0]*m2[0][1] + m1[1][1]*m2[1][1] + m1[1][2]*m2[2][1] + m1[1][3]*m2[3][1];
r[1][2] = m1[1][0]*m2[0][2] + m1[1][1]*m2[1][2] + m1[1][2]*m2[2][2] + m1[1][3]*m2[3][2];
r[1][3] = m1[1][0]*m2[0][3] + m1[1][1]*m2[1][3] + m1[1][2]*m2[2][3] + m1[1][3]*m2[3][3];
r[2][0] = m1[2][0]*m2[0][0] + m1[2][1]*m2[1][0] + m1[2][2]*m2[2][0] + m1[2][3]*m2[3][0];
r[2][1] = m1[2][0]*m2[0][1] + m1[2][1]*m2[1][1] + m1[2][2]*m2[2][1] + m1[2][3]*m2[3][1];
r[2][2] = m1[2][0]*m2[0][2] + m1[2][1]*m2[1][2] + m1[2][2]*m2[2][2] + m1[2][3]*m2[3][2];
r[2][3] = m1[2][0]*m2[0][3] + m1[2][1]*m2[1][3] + m1[2][2]*m2[2][3] + m1[2][3]*m2[3][3];
r[3][0] = m1[3][0]*m2[0][0] + m1[3][1]*m2[1][0] + m1[3][2]*m2[2][0] + m1[3][3]*m2[3][0];
r[3][1] = m1[3][0]*m2[0][1] + m1[3][1]*m2[1][1] + m1[3][2]*m2[2][1] + m1[3][3]*m2[3][1];
r[3][2] = m1[3][0]*m2[0][2] + m1[3][1]*m2[1][2] + m1[3][2]*m2[2][2] + m1[3][3]*m2[3][2];
r[3][3] = m1[3][0]*m2[0][3] + m1[3][1]*m2[1][3] + m1[3][2]*m2[2][3] + m1[3][3]*m2[3][3];
}
void __stdcall MulMatricesSSE(float m1[4][4],float m2[4][4],float r[4][4])
{
#if defined(__GNUC__) && !defined(NO_ASM)
/* [row][col]*/
typedef float v4sf __attribute__ ((vector_size (16)));
v4sf row0 = __builtin_ia32_loadups(m2[0]);
v4sf row1 = __builtin_ia32_loadups(m2[1]);
v4sf row2 = __builtin_ia32_loadups(m2[2]);
v4sf row3 = __builtin_ia32_loadups(m2[3]);
for (int i = 0; i < 4; ++i)
{
v4sf leftrow = __builtin_ia32_loadups(m1[i]);
// Fill tmp with four copies of leftrow[0]
v4sf tmp = leftrow;
tmp = __builtin_ia32_shufps (tmp, tmp, 0);
// Calculate the four first summands
v4sf destrow = tmp * row0;
// Fill tmp with four copies of leftrow[1]
tmp = leftrow;
tmp = __builtin_ia32_shufps (tmp, tmp, 1 + (1 << 2) + (1 << 4) + (1 << 6));
destrow += tmp * row1;
// Fill tmp with four copies of leftrow[2]
tmp = leftrow;
tmp = __builtin_ia32_shufps (tmp, tmp, 2 + (2 << 2) + (2 << 4) + (2 << 6));
destrow += tmp * row2;
// Fill tmp with four copies of leftrow[3]
tmp = leftrow;
tmp = __builtin_ia32_shufps (tmp, tmp, 3 + (3 << 2) + (3 << 4) + (3 << 6));
destrow += tmp * row3;
__builtin_ia32_storeups(r[i], destrow);
}
#elif !defined(NO_ASM)
__asm
{
mov eax, dword ptr [r]
mov ecx, dword ptr [m1]
mov edx, dword ptr [m2]
movaps xmm0,[edx]
movaps xmm1,[edx+16]
movaps xmm2,[edx+32]
movaps xmm3,[edx+48]
// r[0][0],r[0][1],r[0][2],r[0][3]
movaps xmm4,xmmword ptr[ecx]
movaps xmm5,xmm4
movaps xmm6,xmm4
movaps xmm7,xmm4
shufps xmm4,xmm4,00000000b
shufps xmm5,xmm5,01010101b
shufps xmm6,xmm6,10101010b
shufps xmm7,xmm7,11111111b
mulps xmm4,xmm0
mulps xmm5,xmm1
mulps xmm6,xmm2
mulps xmm7,xmm3
addps xmm4,xmm5
addps xmm4,xmm6
addps xmm4,xmm7
movaps xmmword ptr[eax],xmm4
// r[1][0],r[1][1],r[1][2],r[1][3]
movaps xmm4,xmmword ptr[ecx+16]
movaps xmm5,xmm4
movaps xmm6,xmm4
movaps xmm7,xmm4
shufps xmm4,xmm4,00000000b
shufps xmm5,xmm5,01010101b
shufps xmm6,xmm6,10101010b
shufps xmm7,xmm7,11111111b
mulps xmm4,xmm0
mulps xmm5,xmm1
mulps xmm6,xmm2
mulps xmm7,xmm3
addps xmm4,xmm5
addps xmm4,xmm6
addps xmm4,xmm7
movaps xmmword ptr[eax+16],xmm4
// r[2][0],r[2][1],r[2][2],r[2][3]
movaps xmm4,xmmword ptr[ecx+32]
movaps xmm5,xmm4
movaps xmm6,xmm4
movaps xmm7,xmm4
shufps xmm4,xmm4,00000000b
shufps xmm5,xmm5,01010101b
shufps xmm6,xmm6,10101010b
shufps xmm7,xmm7,11111111b
mulps xmm4,xmm0
mulps xmm5,xmm1
mulps xmm6,xmm2
mulps xmm7,xmm3
addps xmm4,xmm5
addps xmm4,xmm6
addps xmm4,xmm7
movaps xmmword ptr[eax+32],xmm4
// r[3][0],r[3][1],r[3][2],r[3][3]
movaps xmm4,xmmword ptr[ecx+48]
movaps xmm5,xmm4
movaps xmm6,xmm4
movaps xmm7,xmm4
shufps xmm4,xmm4,00000000b
shufps xmm5,xmm5,01010101b
shufps xmm6,xmm6,10101010b
shufps xmm7,xmm7,11111111b
mulps xmm4,xmm0
mulps xmm5,xmm1
mulps xmm6,xmm2
mulps xmm7,xmm3
addps xmm4,xmm5
addps xmm4,xmm6
addps xmm4,xmm7
movaps xmmword ptr[eax+48],xmm4
}
#endif // _WIN32
}
MULMATRIX MulMatrices = MulMatricesNOSSE;
void math_init()
{
BOOL IsSSE = FALSE;
#if defined(__GNUC__) && !defined(NO_ASM)
int edx, eax;
asm volatile("cpuid":"=a"(eax),"=d"(edx):"0"(1):"ecx","ebx");
// Check for SSE
if (edx & (1 << 25))
IsSSE = TRUE;
#elif !defined(NO_ASM)
DWORD dwEdx;
__try
{
__asm
{
mov eax,1
cpuid
mov dwEdx,edx
}
}
__except(EXCEPTION_EXECUTE_HANDLER)
{
return;
}
if (dwEdx & (1<<25))
{
if (dwEdx & (1<<24))
{
__try
{
__asm xorps xmm0, xmm0
IsSSE = TRUE;
}
__except(EXCEPTION_EXECUTE_HANDLER)
{
return;
}
}
}
#endif // _WIN32
if (IsSSE)
{
MulMatrices = MulMatricesSSE;
LOG("SSE detected.\n");
}
}