mupen64plus-core/subprojects/oglft/OGLFT.cpp
2018-08-17 00:26:19 +02:00

1289 lines
39 KiB
C++

/*
* OGLFT: A library for drawing text with OpenGL using the FreeType library
* Copyright (C) 2002 lignum Computing, Inc. <oglft@lignumcomputing.com>
* $Id: OGLFT.cpp,v 1.11 2003/10/01 14:21:18 allen Exp $
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <string.h>
#include <cmath>
#include <iomanip>
#include <iostream>
#include <utility>
#include "OGLFT.h"
int wstrlen(const wchar_t * s)
{
int r = 0;
while (*s++) r++;
return r;
}
namespace OGLFT
{
FT_Library ft_library;
bool Init_FT(void)
{
FT_Error error = FT_Init_FreeType(&ft_library);
if(error != 0) std::cerr << "[OGLFT] Could not initialize the FreeType library." << std::endl;
return (error == 0);
}
bool Uninit_FT(void)
{
FT_Error error = FT_Done_FreeType(ft_library);
if(error != 0) std::cerr << "[OGLFT] Could not terminate the FreeType library." << std::endl;
return (error == 0);
}
// Load a new face
Face::Face (const char* filename, float point_size, FT_UInt resolution)
: point_size_(point_size), resolution_(resolution)
{
valid_ = true;
FT_Face ft_face;
FT_Error error = FT_New_Face(ft_library, filename, 0, &ft_face);
if(error != 0)
{
valid_ = false;
return;
}
// As of FreeType 2.1: only a UNICODE charmap is automatically activated.
// If no charmap is activated automatically, just use the first one.
if(ft_face->charmap == 0 && ft_face->num_charmaps > 0) FT_Select_Charmap(ft_face, ft_face->charmaps[0]->encoding);
faces_.push_back(FaceData(ft_face));
init();
}
// Go with a face that the user has already opened.
Face::Face (FT_Face face, float point_size, FT_UInt resolution)
: point_size_(point_size), resolution_(resolution)
{
valid_ = true;
// As of FreeType 2.1: only a UNICODE charmap is automatically activated.
// If no charmap is activated automatically, just use the first one.
if(face->charmap == 0 && face->num_charmaps > 0) FT_Select_Charmap(face, face->charmaps[0]->encoding);
faces_.push_back(FaceData(face, false));
init();
}
// Standard initialization behavior once the font file is opened.
void Face::init (void)
{
// By default, each glyph is compiled into a display list the first
// time it is encountered
compile_mode_ = COMPILE;
// By default, all drawing is wrapped with push/pop matrix so that the
// MODELVIEW matrix is not modified. If advance_ is set, then subsequent
// drawings follow from the advance of the last glyph rendered.
advance_ = false;
// Initialize the default colors
foreground_color_[R] = 0.; foreground_color_[G] = 0.; foreground_color_[B] = 0.; foreground_color_[A] = 1.;
background_color_[R] = 1.; background_color_[G] = 1.; background_color_[B] = 1.; background_color_[A] = 0.;
// The default positioning of the text is at the origin of the first glyph
horizontal_justification_ = ORIGIN;
vertical_justification_ = BASELINE;
// By default, strings are rendered in their nominal direction
string_rotation_ = 0;
// setCharacterRotationReference calls the virtual function clearCaches()
// so it is up to a subclass to set the real default
rotation_reference_glyph_ = 0;
rotation_reference_face_ = 0;
rotation_offset_y_ = 0.;
}
Face::~Face (void)
{
for(unsigned int i=0; i<faces_.size(); i++)
if(faces_[i].free_on_exit_)
FT_Done_Face(faces_[i].face_);
}
// Add another Face to select characters from
bool Face::addAuxiliaryFace (const char* filename)
{
FT_Face ft_face;
FT_Error error = FT_New_Face(ft_library, filename, 0, &ft_face);
if(error != 0) return false;
faces_.push_back(FaceData(ft_face));
setCharSize();
return true;
}
// Add another Face to select characters from
bool Face::addAuxiliaryFace (FT_Face face)
{
faces_.push_back(FaceData(face, false));
setCharSize();
return true;
}
// Note: Changing the point size also clears the display list cache
void Face::setPointSize (float point_size)
{
if(point_size != point_size_)
{
point_size_ = point_size;
clearCaches();
setCharSize();
}
}
// Note: Changing the resolution also clears the display list cache
void Face::setResolution (FT_UInt resolution)
{
if(resolution != resolution_)
{
resolution_ = resolution;
clearCaches();
setCharSize();
}
}
// Note: Changing the background color also clears the display list cache.
void Face::setBackgroundColor (GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha)
{
if(background_color_[R] != red||background_color_[G] != green||background_color_[B] != blue||background_color_[A] != alpha)
{
background_color_[R] = red;
background_color_[G] = green;
background_color_[B] = blue;
background_color_[A] = alpha;
}
}
// Note: Changing the foreground color also clears the display list cache.
void Face::setForegroundColor (GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha)
{
if(foreground_color_[R] != red||foreground_color_[G] != green||foreground_color_[B] != blue||foreground_color_[A] != alpha)
{
foreground_color_[R] = red;
foreground_color_[G] = green;
foreground_color_[B] = blue;
foreground_color_[A] = alpha;
}
}
// Note: Changing the foreground color also clears the display list cache.
void Face::setForegroundColor (const GLfloat foreground_color[4])
{
foreground_color_[R] = foreground_color[R];
foreground_color_[G] = foreground_color[G];
foreground_color_[B] = foreground_color[B];
foreground_color_[A] = foreground_color[A];
}
// Note: Changing the background color also clears the display list cache.
void Face::setBackgroundColor (const GLfloat background_color[4])
{
background_color_[R] = background_color[R];
background_color_[G] = background_color[G];
background_color_[B] = background_color[B];
background_color_[A] = background_color[A];
}
// Note: Changing the string rotation angle clears the display list cache
void Face::setStringRotation (GLfloat string_rotation)
{
if(string_rotation != string_rotation_)
{
string_rotation_ = string_rotation;
clearCaches();
// Note that this affects ALL glyphs accessed through
// the Face, both the vector and the raster glyphs. Very nice!
if (string_rotation_ != 0)
{
float angle;
if (string_rotation_<0)
angle = 360.0f - fmod(fabs(string_rotation_), 360.f);
else
angle = fmod(string_rotation_, 360.f);
FT_Matrix rotation_matrix;
FT_Vector sinus;
FT_Vector_Unit(&sinus, (FT_Angle)(angle * 0x10000L));
rotation_matrix.xx = sinus.x;
rotation_matrix.xy = -sinus.y;
rotation_matrix.yx = sinus.y;
rotation_matrix.yy = sinus.x;
for(unsigned int i=0; i<faces_.size(); i++) FT_Set_Transform(faces_[i].face_, &rotation_matrix, 0);
}
else for(unsigned int i=0; i<faces_.size(); i++) FT_Set_Transform(faces_[i].face_, 0, 0);
}
}
// Note: Changing the rotation reference character clears the display list cache.
void Face::setCharacterRotationReference (unsigned char c)
{
unsigned int f;
FT_UInt glyph_index = 0;
for(f=0; f<faces_.size(); f++)
{
glyph_index = FT_Get_Char_Index(faces_[f].face_, c);
if(glyph_index != 0) break;
}
if(f<faces_.size() && glyph_index != rotation_reference_glyph_)
{
FT_Error error = FT_Load_Glyph(faces_[f].face_, glyph_index, FT_LOAD_DEFAULT);
if(error != 0) return;
rotation_reference_glyph_ = glyph_index;
rotation_reference_face_ = faces_[f].face_;
setRotationOffset();
clearCaches();
}
}
BBox Face::measure (const char* s)
{
BBox bbox;
char c;
if((c = *s++) != 0)
{
bbox = measure((unsigned char)c);
for(c = *s; c != 0; c = *++s)
{
BBox char_bbox = measure((unsigned char)c);
bbox += char_bbox;
}
}
// make sure the origin is at 0,0
if (bbox.x_min_ != 0)
{
bbox.x_max_ -= bbox.x_min_;
bbox.x_min_ = 0;
}
if (bbox.y_min_ != 0)
{
bbox.y_max_ -= bbox.y_min_;
bbox.y_min_ = 0;
}
return bbox;
}
BBox Face::measureRaw (const char* s)
{
BBox bbox;
for(char c = *s; c != 0; c = *++s)
{
BBox char_bbox;
unsigned int f;
FT_UInt glyph_index = 0;
for(f=0; f<faces_.size(); f++)
{
glyph_index = FT_Get_Char_Index(faces_[f].face_, c);
if(glyph_index != 0) break;
}
if(glyph_index == 0) continue;
FT_Error error = FT_Load_Glyph(faces_[f].face_, glyph_index, FT_LOAD_DEFAULT);
if(error != 0) continue;
FT_Glyph glyph;
error = FT_Get_Glyph(faces_[f].face_->glyph, &glyph);
if(error != 0) continue;
FT_BBox ft_bbox;
FT_Glyph_Get_CBox(glyph, ft_glyph_bbox_unscaled, &ft_bbox);
FT_Done_Glyph(glyph);
char_bbox = ft_bbox;
char_bbox.advance_ = faces_[f].face_->glyph->advance;
bbox += char_bbox;
}
return bbox;
}
BBox Face::measure (const wchar_t* s)
{
BBox bbox;
int i;
if(wstrlen(s) > 0)
{
bbox = measure(s[0]);
for(i = 1; i < wstrlen(s); i++)
{
BBox char_bbox = measure(s[i]);
bbox += char_bbox;
}
}
// make sure the origin is at 0,0
if (bbox.x_min_ != 0)
{
bbox.x_max_ -= bbox.x_min_;
bbox.x_min_ = 0;
}
if (bbox.y_min_ != 0)
{
bbox.y_max_ -= bbox.y_min_;
bbox.y_min_ = 0;
}
return bbox;
}
BBox Face::measureRaw (const wchar_t* s)
{
BBox bbox;
int i;
for(i = 0; i < wstrlen(s); i++)
{
BBox char_bbox;
unsigned int f;
FT_UInt glyph_index = 0;
for(f=0; f<faces_.size(); f++)
{
glyph_index = FT_Get_Char_Index(faces_[f].face_, s[i]);
if(glyph_index != 0) break;
}
if(glyph_index == 0)
{
continue;
}
FT_Error error = FT_Load_Glyph(faces_[f].face_, glyph_index, FT_LOAD_DEFAULT);
if(error != 0) continue;
FT_Glyph glyph;
error = FT_Get_Glyph(faces_[f].face_->glyph, &glyph);
if(error != 0) continue;
FT_BBox ft_bbox;
FT_Glyph_Get_CBox(glyph, ft_glyph_bbox_unscaled, &ft_bbox);
FT_Done_Glyph(glyph);
char_bbox = ft_bbox;
char_bbox.advance_ = faces_[f].face_->glyph->advance;
bbox += char_bbox;
}
return bbox;
}
// Measure the bounding box as if the (latin1) string were not rotated
BBox Face::measure_nominal (const char* s)
{
if(string_rotation_ == 0.) return measure(s);
for(unsigned int f=0; f<faces_.size(); f++) FT_Set_Transform(faces_[f].face_, 0, 0);
BBox bbox = measure(s);
float angle;
if(string_rotation_<0.)
angle = 360.0f - fmod(fabs(string_rotation_), 360.f);
else
angle = fmod(string_rotation_, 360.f);
FT_Matrix rotation_matrix;
FT_Vector sinus;
FT_Vector_Unit(&sinus, (FT_Angle)(angle * 0x10000L));
rotation_matrix.xx = sinus.x;
rotation_matrix.xy = -sinus.y;
rotation_matrix.yx = sinus.y;
rotation_matrix.yy = sinus.x;
for(unsigned int f=0; f<faces_.size(); f++) FT_Set_Transform(faces_[f].face_, &rotation_matrix, 0);
return bbox;
}
// Measure the bounding box as if the (UNICODE) string were not rotated
BBox Face::measure_nominal (const wchar_t* s)
{
if(string_rotation_ == 0.)return measure(s);
for(unsigned int f=0; f<faces_.size(); f++)FT_Set_Transform(faces_[f].face_, 0, 0);
BBox bbox = measure(s);
float angle;
if(string_rotation_<0.0)
angle = 360.0f - fmod(fabs(string_rotation_), 360.f);
else
angle = fmod(string_rotation_, 360.f);
FT_Matrix rotation_matrix;
FT_Vector sinus;
FT_Vector_Unit(&sinus, (FT_Angle)(angle * 0x10000L));
rotation_matrix.xx = sinus.x;
rotation_matrix.xy = -sinus.y;
rotation_matrix.yx = sinus.y;
rotation_matrix.yy = sinus.x;
for(unsigned int f=0; f<faces_.size(); f++)FT_Set_Transform(faces_[f].face_, &rotation_matrix, 0);
return bbox;
}
// Compile a (latin1) character glyph into a display list and cache
// it for later
GLuint Face::compile (unsigned char c)
{
// See if we've done it already
GDLCI fgi = glyph_dlists_.find(c);
if(fgi != glyph_dlists_.end())return fgi->second;
unsigned int f;
FT_UInt glyph_index = 0;
for(f=0; f<faces_.size(); f++)
{
glyph_index = FT_Get_Char_Index(faces_[f].face_, c);
if(glyph_index != 0) break;
}
if(glyph_index == 0)return 0;
GLuint dlist = compileGlyph(faces_[f].face_, glyph_index);
glyph_dlists_[ c ] = dlist;
return dlist;
}
// Compile a (UNICODE) character glyph into a display list and cache
// it for later
GLuint Face::compile (const wchar_t c)
{
// See if we've done it already
GDLCI fgi = glyph_dlists_.find(c);
if(fgi != glyph_dlists_.end())return fgi->second;
unsigned int f;
FT_UInt glyph_index = 0;
for(f=0; f<faces_.size(); f++)
{
glyph_index = FT_Get_Char_Index(faces_[f].face_, c);
if(glyph_index != 0) break;
}
if(glyph_index == 0)return 0;
GLuint dlist = compileGlyph(faces_[f].face_, glyph_index);
glyph_dlists_[ c ] = dlist;
return dlist;
}
// Assume the MODELVIEW matrix is already set and draw the (latin1)
// string. Note: this routine now ignores almost all settings:
// including the position (both modelview and raster), color,
// justification and advance settings. Consider this to be the raw
// drawing routine for which you are responsible for most of the
// setup.
void Face::draw (const char* s)
{
DLCI character_display_list = character_display_lists_.begin();
for(char c = *s; c != 0; c = *++s)
{
if(character_display_list != character_display_lists_.end())
{
glCallList(*character_display_list);
character_display_list++;
}
draw((unsigned char)c);
}
}
// Assume the MODELVIEW matrix is already set and draw the (UNICODE)
// string. Note: this routine now ignores almost all settings:
// including the position (both modelview and raster), color,
// justification and advance settings. Consider this to be the raw
// drawing routine for which you are responsible for most of the
// setup.
void Face::draw (const wchar_t* s)
{
DLCI character_display_list = character_display_lists_.begin();
int i;
for(i = 0; i < wstrlen(s); i++)
{
if(character_display_list != character_display_lists_.end())
{
glCallList(*character_display_list);
character_display_list++;
}
draw(s[i]);
}
}
// Assume the MODELVIEW matrix is already setup and draw the
// (latin1) character.
void Face::draw (unsigned char c)
{
// See if we've done it already
GDLCI fgi = glyph_dlists_.find(c);
if(fgi != glyph_dlists_.end())
{
glCallList(fgi->second);
return;
}
unsigned int f;
FT_UInt glyph_index = 0;
for(f=0; f<faces_.size(); f++)
{
glyph_index = FT_Get_Char_Index(faces_[f].face_, c);
if(glyph_index != 0) break;
}
if(glyph_index == 0) return;
if(compile_mode_ == COMPILE)
{
GLuint dlist = compile(c);
glCallList(dlist);
}
else renderGlyph(faces_[f].face_, glyph_index);
}
// Assume the MODELVIEW matrix is already setup and draw the
// (UNICODE) character.
void Face::draw (const wchar_t c)
{
// See if we've done it already
GDLCI fgi = glyph_dlists_.find(c);
if(fgi != glyph_dlists_.end())
{
glCallList(fgi->second);
return;
}
unsigned int f;
FT_UInt glyph_index = 0;
for(f=0; f<faces_.size(); f++)
{
glyph_index = FT_Get_Char_Index(faces_[f].face_, c);
if(glyph_index != 0) break;
}
if(glyph_index == 0) return;
if(compile_mode_ == COMPILE)
{
GLuint dlist = compile(c);
glCallList(dlist);
}
else renderGlyph(faces_[f].face_, glyph_index);
}
// Draw the (latin1) character at the given position. The MODELVIEW
// matrix is modified by the glyph advance.
void Face::draw (GLfloat x, GLfloat y, unsigned char c)
{
glTranslatef(x, y, 0.);
glColor4f(foreground_color_[R], foreground_color_[G], foreground_color_[B], foreground_color_[A]);
glRasterPos3i(0, 0, 0);
draw(c);
}
// Draw the (latin1) character at the given position. The MODELVIEW
// matrix is modified by the glyph advance.
void Face::draw (GLfloat x, GLfloat y, GLfloat z, unsigned char c)
{
glTranslatef(x, y, z);
glColor4f(foreground_color_[R], foreground_color_[G], foreground_color_[B], foreground_color_[A]);
glRasterPos3i(0, 0, 0);
draw(c);
}
// Draw the (UNICODE) character at the given position. The MODELVIEW
// matrix is modified by the glyph advance.
void Face::draw (GLfloat x, GLfloat y, wchar_t c)
{
glTranslatef(x, y, 0.);
glColor4f(foreground_color_[R], foreground_color_[G], foreground_color_[B],
foreground_color_[A]);
glRasterPos3i(0, 0, 0);
draw(c);
}
// Draw the (UNICODE) character at the given position. The MODELVIEW
// matrix is modified by the glyph advance.
void Face::draw (GLfloat x, GLfloat y, GLfloat z, wchar_t c)
{
glTranslatef(x, y, z);
glColor4f(foreground_color_[R], foreground_color_[G], foreground_color_[B], foreground_color_[A]);
glRasterPos3i(0, 0, 0);
draw(c);
}
// Draw the (latin1) string at the given position.
void Face::draw (GLfloat x, GLfloat y, const char* s, float *sizebox)
{
// sizebox is xmin,ymin, xmax,ymax
if(!advance_) glPushMatrix();
if(horizontal_justification_ != ORIGIN || vertical_justification_ != BASELINE)
{
glPushMatrix();
GLfloat dx = 0, dy = 0;
switch (horizontal_justification_)
{
case LEFT: dx = -sizebox[0] + 1; break;
case CENTER: dx = -(sizebox[0] + sizebox[2])/ 2.0f; break;
case RIGHT: dx = -sizebox[2] - 1; break;
default: break;
}
switch (vertical_justification_)
{
case BOTTOM: dy = -sizebox[1] + 1; break;
case MIDDLE: dy = -(sizebox[1] + sizebox[3])/ 2.0f; break;
case TOP: dy = -sizebox[3] - 1; break;
default: break;
}
// There is probably a less expensive way to compute this
glRotatef(string_rotation_, 0., 0., 1.);
glTranslatef(dx, dy, 0);
glRotatef(-string_rotation_, 0., 0., 1.);
}
glTranslatef(x, y, 0.);
glColor4f(foreground_color_[R], foreground_color_[G], foreground_color_[B], foreground_color_[A]);
glRasterPos3i(0, 0, 0);
draw(s);
if(horizontal_justification_ != ORIGIN || vertical_justification_ != BASELINE) glPopMatrix();
if(!advance_) glPopMatrix();
}
// Draw the (latin1) string at the given position.
void Face::draw (GLfloat x, GLfloat y, GLfloat z, const char* s)
{
if(!advance_) glPushMatrix();
if(horizontal_justification_ != ORIGIN || vertical_justification_ != BASELINE)
{
glPushMatrix();
BBox bbox = measure_nominal(s);
GLfloat dx = 0, dy = 0;
switch (horizontal_justification_)
{
case LEFT: dx = -bbox.x_min_; break;
case CENTER: dx = -(bbox.x_min_ + bbox.x_max_)/ 2.0f; break;
case RIGHT: dx = -bbox.x_max_; break;
default: break;
}
switch (vertical_justification_)
{
case BOTTOM: dy = -bbox.y_min_; break;
case MIDDLE: dy = -(bbox.y_min_ + bbox.y_max_)/ 2.0f; break;
case TOP: dy = -bbox.y_max_; break;
default: break;
}
// There is probably a less expensive way to compute this
glRotatef(string_rotation_, 0., 0., 1.);
glTranslatef(dx, dy, 0);
glRotatef(-string_rotation_, 0., 0., 1.);
}
glTranslatef(x, y, z);
glColor4f(foreground_color_[R], foreground_color_[G], foreground_color_[B], foreground_color_[A]);
glRasterPos3i(0, 0, 0);
draw(s);
if(horizontal_justification_ != ORIGIN || vertical_justification_ != BASELINE) glPopMatrix();
if(!advance_) glPopMatrix();
}
// Draw the (UNICODE) string at the given position.
void Face::draw (GLfloat x, GLfloat y, const wchar_t* s)
{
if(!advance_)
glPushMatrix();
if(horizontal_justification_!=ORIGIN||vertical_justification_!=BASELINE)
{
glPushMatrix();
BBox bbox = measure_nominal(s);
GLfloat dx = 0, dy = 0;
switch (horizontal_justification_)
{
case LEFT:
dx = -bbox.x_min_; break;
case CENTER:
dx = -(bbox.x_min_ + bbox.x_max_)/ 2.0f; break;
case RIGHT:
dx = -bbox.x_max_; break;
default:
break;
}
switch (vertical_justification_)
{
case BOTTOM:
dy = -bbox.y_min_; break;
case MIDDLE:
dy = -(bbox.y_min_ + bbox.y_max_)/ 2.0f; break;
case TOP:
dy = -bbox.y_max_; break;
default:
break;
}
// There is probably a less expensive way to compute this
glRotatef(string_rotation_, 0., 0., 1.);
glTranslatef(dx, dy, 0);
glRotatef(-string_rotation_, 0., 0., 1.);
}
glTranslatef(x, y, 0.);
glColor4f(foreground_color_[R], foreground_color_[G], foreground_color_[B],
foreground_color_[A]);
glRasterPos3i(0, 0, 0);
draw(s);
if(horizontal_justification_ != ORIGIN ||
vertical_justification_ != BASELINE)
glPopMatrix();
if(!advance_)
glPopMatrix();
}
// Draw the (UNICODE) string at the given position.
void Face::draw (GLfloat x, GLfloat y, GLfloat z, const wchar_t* s)
{
if(!advance_) glPushMatrix();
if(horizontal_justification_!= ORIGIN||vertical_justification_!= BASELINE)
{
glPushMatrix();
// In 3D, we need to exert more care in the computation of the
// bounding box of the text. NOTE: Needs to be fixed up for
// polygonal faces, too...
BBox bbox;
// Code from measure_nominal, but changed to use measureRaw instead
if(string_rotation_ == 0.) bbox = measureRaw(s);
else
{
for(unsigned int f=0; f<faces_.size(); f++)
FT_Set_Transform(faces_[f].face_, 0, 0);
bbox = measureRaw(s);
float angle;
if(string_rotation_<0.0)
angle = 360.0f - fmod(fabs(string_rotation_), 360.f);
else
angle = fmod(string_rotation_, 360.f);
FT_Matrix rotation_matrix;
FT_Vector sinus;
FT_Vector_Unit(&sinus, (FT_Angle)(angle * 0x10000L));
rotation_matrix.xx = sinus.x;
rotation_matrix.xy = -sinus.y;
rotation_matrix.yx = sinus.y;
rotation_matrix.yy = sinus.x;
for(unsigned int f=0; f<faces_.size(); f++)
FT_Set_Transform(faces_[f].face_, &rotation_matrix, 0);
}
GLfloat dx = 0, dy = 0;
switch (horizontal_justification_)
{
case LEFT:
dx = bbox.x_min_; break;
case CENTER:
dx = (bbox.x_min_ + bbox.x_max_)/ 2; break;
case RIGHT:
dx = bbox.x_max_; break;
default:
break;
}
switch (vertical_justification_)
{
case BOTTOM:
dy = bbox.y_min_; break;
case MIDDLE:
dy = (bbox.y_min_ + bbox.y_max_)/2; break;
case TOP:
dy = bbox.y_max_; break;
default:
break;
}
GLint viewport[4];
GLdouble modelview[16], projection[16];
glGetIntegerv(GL_VIEWPORT, viewport);
glGetDoublev(GL_MODELVIEW_MATRIX, modelview);
glGetDoublev(GL_PROJECTION_MATRIX, projection);
GLdouble x0, y0, z0;
gluUnProject(0, 0, 0, modelview, projection, viewport, &x0, &y0, &z0);
GLdouble dx_m, dy_m, dz_m;
gluUnProject(dx, dy, 0., modelview, projection, viewport,&dx_m,&dy_m,&dz_m);
glTranslated(x0-dx_m, y0-dy_m, z0-dz_m);
}
glTranslatef(x, y, z);
glColor4f(foreground_color_[R], foreground_color_[G], foreground_color_[B], foreground_color_[A]);
glRasterPos3i(0, 0, 0);
draw(s);
if(horizontal_justification_!=ORIGIN||vertical_justification_!= BASELINE)
glPopMatrix();
if(!advance_)
glPopMatrix();
}
Raster::Raster (const char* filename, float point_size, FT_UInt resolution)
: Face(filename, point_size, resolution)
{
if(!isValid()) return;
init();
}
Raster::Raster (FT_Face face, float point_size, FT_UInt resolution)
: Face(face, point_size, resolution)
{
init();
}
void Raster::init (void)
{
character_rotation_z_ = 0;
setCharSize();
setCharacterRotationReference('o');
}
Raster::~Raster (void)
{
clearCaches();
}
void Raster::setCharacterRotationZ (GLfloat character_rotation_z)
{
if(character_rotation_z != character_rotation_z_)
{
character_rotation_z_ = character_rotation_z;
clearCaches();
}
}
double Raster::height (void)const
{
if(faces_[0].face_->height > 0) return faces_[0].face_->height / 64.;
else return faces_[0].face_->size->metrics.y_ppem;
}
BBox Raster::measure (unsigned char c)
{
BBox bbox;
// For starters, just get the unscaled glyph bounding box
unsigned int f;
FT_UInt glyph_index = 0;
for(f=0; f<faces_.size(); f++)
{
glyph_index = FT_Get_Char_Index(faces_[f].face_, c);
if(glyph_index != 0) break;
}
if(glyph_index == 0) return bbox;
FT_Error error = FT_Load_Glyph(faces_[f].face_, glyph_index, FT_LOAD_DEFAULT);
if(error != 0) return bbox;
FT_Glyph glyph;
error = FT_Get_Glyph(faces_[f].face_->glyph, &glyph);
if(error != 0) return bbox;
FT_BBox ft_bbox;
FT_Glyph_Get_CBox(glyph, ft_glyph_bbox_unscaled, &ft_bbox);
FT_Done_Glyph(glyph);
bbox = ft_bbox;
bbox.advance_ = faces_[f].face_->glyph->advance;
// In order to be accurate regarding the placement of text not
// aligned at the glyph's origin (CENTER/MIDDLE), the bounding box
// of the raster format has to be projected back into the
// view's coordinates
GLint viewport[4];
GLdouble modelview[16], projection[16];
glGetIntegerv(GL_VIEWPORT, viewport);
glGetDoublev(GL_MODELVIEW_MATRIX, modelview);
glGetDoublev(GL_PROJECTION_MATRIX, projection);
// Well, first we have to get the Origin, since that is the basis
// of the bounding box
GLdouble x0, y0, z0;
gluUnProject(0., 0., 0., modelview, projection, viewport, &x0, &y0, &z0);
GLdouble x, y, z;
gluUnProject(bbox.x_min_, bbox.y_min_, 0., modelview, projection, viewport, &x, &y, &z);
bbox.x_min_ = (float) (x - x0);
bbox.y_min_ = (float) (y - y0);
gluUnProject(bbox.x_max_, bbox.y_max_, 0., modelview, projection, viewport, &x, &y, &z);
bbox.x_max_ = (float) (x - x0);
bbox.y_max_ = (float) (y - y0);
gluUnProject(bbox.advance_.dx_, bbox.advance_.dy_, 0., modelview, projection, viewport, &x, &y, &z);
bbox.advance_.dx_ = (float) (x - x0);
bbox.advance_.dy_ = (float) (y - y0);
return bbox;
}
BBox Raster::measure (wchar_t c)
{
BBox bbox;
// For starters, just get the unscaled glyph bounding box
unsigned int f;
FT_UInt glyph_index = 0;
for(f=0; f<faces_.size(); f++)
{
glyph_index = FT_Get_Char_Index(faces_[f].face_, c);
if(glyph_index != 0) break;
}
if(glyph_index == 0) return bbox;
FT_Error error = FT_Load_Glyph(faces_[f].face_, glyph_index,
FT_LOAD_DEFAULT);
if(error != 0) return bbox;
FT_Glyph glyph;
error = FT_Get_Glyph(faces_[f].face_->glyph, &glyph);
if(error != 0) return bbox;
FT_BBox ft_bbox;
FT_Glyph_Get_CBox(glyph, ft_glyph_bbox_unscaled, &ft_bbox);
FT_Done_Glyph(glyph);
bbox = ft_bbox;
bbox.advance_ = faces_[f].face_->glyph->advance;
// In order to be accurate regarding the placement of text not
// aligned at the glyph's origin (CENTER/MIDDLE), the bounding box
// of the raster format has to be projected back into the
// view's coordinates
GLint viewport[4];
GLdouble modelview[16], projection[16];
glGetIntegerv(GL_VIEWPORT, viewport);
glGetDoublev(GL_MODELVIEW_MATRIX, modelview);
glGetDoublev(GL_PROJECTION_MATRIX, projection);
// Well, first we have to get the Origin, since that is the basis
// of the bounding box
GLdouble x0, y0, z0;
gluUnProject(0., 0., 0., modelview, projection, viewport, &x0, &y0, &z0);
GLdouble x, y, z;
gluUnProject(bbox.x_min_, bbox.y_min_, 0., modelview, projection, viewport, &x, &y, &z);
bbox.x_min_ = (float) (x - x0);
bbox.y_min_ = (float) (y - y0);
gluUnProject(bbox.x_max_, bbox.y_max_, 0., modelview, projection, viewport, &x, &y, &z);
bbox.x_max_ = (float) (x - x0);
bbox.y_max_ = (float) (y - y0);
gluUnProject(bbox.advance_.dx_, bbox.advance_.dy_, 0., modelview, projection, viewport, &x, &y, &z);
bbox.advance_.dx_ = (float) (x - x0);
bbox.advance_.dy_ = (float) (y - y0);
return bbox;
}
GLuint Raster::compileGlyph (FT_Face face, FT_UInt glyph_index)
{
GLuint dlist = glGenLists(1);
glNewList(dlist, GL_COMPILE);
renderGlyph(face, glyph_index);
glEndList();
return dlist;
}
void Raster::setCharSize (void)
{
FT_Error error;
for(unsigned int i=0; i<faces_.size(); i++)
{
error = FT_Set_Char_Size(faces_[i].face_,(FT_F26Dot6)(point_size_ * 64),(FT_F26Dot6)(point_size_ * 64),resolution_,resolution_);
if(error != 0) return;
}
if(rotation_reference_glyph_ != 0) setRotationOffset();
}
void Raster::setRotationOffset (void)
{
FT_Error error = FT_Load_Glyph(rotation_reference_face_, rotation_reference_glyph_, FT_LOAD_RENDER);
if(error != 0) return;
rotation_offset_y_ = rotation_reference_face_->glyph->bitmap.rows / 2.0f;
}
void Raster::clearCaches (void)
{
GDLI fgi = glyph_dlists_.begin();
for(; fgi != glyph_dlists_.end(); ++fgi)
{
glDeleteLists(fgi->second, 1);
}
glyph_dlists_.clear();
}
Monochrome::Monochrome (const char* filename, float point_size, FT_UInt resolution)
: Raster(filename, point_size, resolution)
{
return;
}
Monochrome::Monochrome (FT_Face face, float point_size, FT_UInt resolution)
: Raster(face, point_size, resolution)
{
return;
}
Monochrome::~Monochrome (void)
{
return;
}
GLubyte* Monochrome::invertBitmap (const FT_Bitmap& bitmap)
{
// In FreeType 2.0.9, the pitch of bitmaps was rounded up to an
// even number. In general, this disagrees with what we had been
// using for OpenGL.
int width = bitmap.width / 8 + ((bitmap.width & 7)> 0 ? 1 : 0);
GLubyte* inverse = new GLubyte[ bitmap.rows * width ];
GLubyte* inverse_ptr = inverse;
for(unsigned int r=0; r<bitmap.rows; r++)
{
GLubyte* bitmap_ptr = &bitmap.buffer[bitmap.pitch * (bitmap.rows - r - 1)];
memmove(inverse_ptr, bitmap_ptr, width);
inverse_ptr += width;
bitmap_ptr += width;
}
return inverse;
}
void Monochrome::renderGlyph (FT_Face face, FT_UInt glyph_index)
{
// Start by retrieving the glyph's data.
FT_Error error = FT_Load_Glyph(face, glyph_index, FT_LOAD_DEFAULT);
if(error != 0) return;
FT_Glyph original_glyph;
FT_Glyph glyph;
error = FT_Get_Glyph(face->glyph, &original_glyph);
if(error != 0) return;
error = FT_Glyph_Copy(original_glyph, &glyph);
FT_Done_Glyph(original_glyph);
if(error != 0) return;
// If the individual characters are rotated (as distinct from string
// rotation), then apply that extra rotation here. This is equivalent
// to the sequence
// glTranslate(x_center,y_center);
// glRotate(angle);
// glTranslate(-x_center,-y_center);
// which is used for the polygonal styles. The deal with the raster
// styles is that you must retain the advance from the string rotation
// so that the glyphs are laid out properly. So, we make a copy of
// the string rotated glyph, and then rotate that and add back an
// additional offset to (in effect) restore the proper origin and
// advance of the glyph.
if(character_rotation_z_ != 0.)
{
FT_Matrix rotation_matrix;
FT_Vector sinus;
FT_Vector_Unit(&sinus, (FT_Angle)(character_rotation_z_ * 0x10000L));
rotation_matrix.xx = sinus.x;
rotation_matrix.xy = -sinus.y;
rotation_matrix.yx = sinus.y;
rotation_matrix.yy = sinus.x;
FT_Vector original_offset, rotation_offset;
original_offset.x = (face->glyph->metrics.width / 2 + face->glyph->metrics.horiBearingX)/ 64 * 0x10000L;
original_offset.y = (FT_Pos)(rotation_offset_y_ * 0x10000L);
rotation_offset = original_offset;
FT_Vector_Rotate(&rotation_offset, (FT_Angle)(character_rotation_z_ * 0x10000L));
rotation_offset.x = original_offset.x - rotation_offset.x;
rotation_offset.y = original_offset.y - rotation_offset.y;
rotation_offset.x /= 1024;
rotation_offset.y /= 1024;
error = FT_Glyph_Transform(glyph, &rotation_matrix, &rotation_offset);
}
error = FT_Glyph_To_Bitmap(&glyph, FT_RENDER_MODE_MONO, 0, 1);
if(error != 0)
{
FT_Done_Glyph(glyph);
return;
}
FT_BitmapGlyph bitmap_glyph = (FT_BitmapGlyph) glyph;
// Evidently, in FreeType2, you can only get "upside-down" bitmaps and
// OpenGL won't invert a bitmap with PixelZoom, so we have to invert the
// glyph's bitmap ourselves.
GLubyte* inverted_bitmap = invertBitmap(bitmap_glyph->bitmap);
glBitmap(bitmap_glyph->bitmap.width, bitmap_glyph->bitmap.rows,
(GLfloat) -bitmap_glyph->left,
(GLfloat) (bitmap_glyph->bitmap.rows - bitmap_glyph->top),
face->glyph->advance.x / 64.0f,
face->glyph->advance.y / 64.0f,
inverted_bitmap);
FT_Done_Glyph(glyph);
delete[] inverted_bitmap;
}
} // close OGLFT namespace