
Cg/HLSL libretro shader tutorial

Hans-Kristian Arntzen, Daniel De Matteis

December 3, 2012

Contents
1 Introduction 1

1.1 The rendering pipeline . 2
1.2 A Cg/HLSL program . 2

2 Hello World 3
2.1 Cg types . 4

2.1.1 Float4 . 4
2.1.2 Semantics . 4

2.2 Putting it together . 6
2.3 Result . 7

3 Expanding further 7
3.1 Lookup textures . 7
3.2 Multipass . 9
3.3 Game-aware shaders . 9

3.3.1 RetroArch config file . 12
3.3.2 How to test when developing for RetroArch? 12
3.3.3 Results . 12

1 Introduction
This document is for a (fresh) shader developer that wants to develop shader
programs for use in various emulators/games. Shader programs run on your
GPU, and thus enables very sophisticated effects to be performed on the picture
which might not be possible in real-time on the CPU. Some introduction to
shader programming in general is given, so more experienced developers that
only need reference for the specification may just skip ahead.

Current emulators that support the specification explained here to a certain
degree are:

• RetroArch

• SNES9x Win32

1

There are three popular shader languages in use today:

• HLSL (High-Level Shading Language, Direct3D)

• GLSL (GL Shading Language, OpenGL)

• Cg (HLSL/GLSL, nVidia)

The spec is for the Cg shading language developed by nVidia. It “wraps” around
OpenGL and HLSL to make shaders written in Cg quite portable. It is also
the shading language implemented on the PlayStation3, thus increasing the
popularity of it.

1.1 The rendering pipeline
With shaders you are able to take control over a large chunk of the GPUs inner
workings by writing your own programs that are uploaded and run on the GPU.
In the old days, GPUs were a big black box that was highly configurable using
endless amount of API calls. In more modern times, rather than giving you
endless amounts of buttons, you are expected to implement the few «buttons»
you actually need, and have a streamlined API.

The rendering pipeline is somewhat complex, but we can in general simplify
it to:

• Vertex processing

• Rasterization

• Fragment processing

• Framebuffer blend

We are allowed to take control of what happens during vertex processing, and
fragment processing.

1.2 A Cg/HLSL program
If you were to process an image on a CPU, you would most likely do something
like this:

f o r (unsigned y = 0 ; y < he ight ; y++) {
f o r (unsigned x = 0 ; x < width ; x++)

out_pixel [y] [x] = proce s s_p ixe l (in_pixe l [y] [x] , y , x) ;
}

We quickly realize that this is highly serial and slow. We see that out_pixel[y][x]
isn’t dependent on out_pixel[y + k][x + k], so we see that we can parallelize
quite a bit.

Essentially, we only need to implement process_pixel() as a single function,
which is called thousands, even millions of time every frame. The only purpose

2

in life for process_pixel() is to process an input, and produce an output. No
state is needed, thus, a “pure” function in computer science terms.

For the Cg program, we need to implement two different functions.
main_vertex() takes care of transforming every incoming vertex from camera

space down to clip space. This essentially means projection of 3D (coordinates
on GPU) down to 2D (your screen)1.

Vertex shaders get various coordinates as input, and uniforms. Every vertex
emitted by the emulator is run through main_vertex which calculates the final
output position2.

While coordinates differ for each invocation, uniforms are constant through-
out every call. Think of it as a global variable that you’re not allowed to change.

Vertex shading can almost be ignored altogether, but since the vertex shader
is run only 4 times, and the fragment shader is run millions of times per frame,
it is a good idea to precalculate values in vertex shader that can later be used
in fragment shader. There are some limitiations to this which will be mentioned
later.

main_fragment() takes care of calculating a pixel color for every single out-
put pixel on the screen. If you’re playing at 1080p, the fragment shader will
have to be run 1920 * 1080 times! This is obviously straining on the GPU unless
the shader is written efficiently.

Obviously, main_fragment is where the real action happens. For many
shaders we can stick with a “dummy” vertex shader which does some very simple
stuff.

The fragment shader receives a handle to a texture (the game frame itself),
and the texture coordinate for the current pixel, and a bunch of uniforms.

A fragment shader’s final output is a color, simple as that. Processing ends
here.

2 Hello World
We’ll start off with the basic vertex shader. No fancy things are being done.
You’ll see a similiar vertex shader in most of the Cg programs out there in the
wild.

void main_vertex (
f l o a t 4 pos : POSITION,
out f l o a t 4 out_pos : POSITION,
uniform f l o a t 4x4 modelViewProj ,
f l o a t 4 c o l o r : COLOR,
out f l o a t 4 out_color : COLOR,
f l o a t 2 tex : TEXCOORD,
out f l o a t 2 out_tex : TEXCOORD

1Since we’re dealing with old school emulators here, which are already 2D, the vertex
shading is very trivial.

2For our emulators this is just 4 times, since we’re rendering a quad on the screen. 3D
games would obviously have a lot more vertices.

3

)
{

out_pos = mul (modelViewProj , pos) ;
out_color = co l o r ;
out_tex = tex ;

}

This looks vaguely familiar to C, and it is. Cg stands for “C for graphics”
after all. We notice some things are happening, notable some new types.

2.1 Cg types
2.1.1 Float4

float4 is a vector type. It contains 4 elements. It could be colors, positions,
whatever. It’s used for vector processing which the GPUs are extremely efficient
at.

2.1.2 Semantics

We see various semantics. The POSITION semantic means that the variable
is tied to vertex coordinates. We see that we have an input POSITION, and
an output (out) POSITION. We thus transform the input to the output with
a matrix multiply with the current model-view projection. Since this matrix is
the same for every vertex, it is a uniform. Remember that the variable names
DO matter. modelViewProj has to be called exactly that, as the emulator will
pass the MVP to this uniform. It is in the specification.

Since we have semantics for the POSITION, etc, we can call them whatever
we want, as the Cg environment figures out what the variables mean.

The transformation happens here:

out_pos = mul (modelViewProj , pos) ;

The COLOR semantic isn’t very interesting for us, but the example code in
nVidias Cg documentation includes it, so we just follow along.

TEXCOORD is the texture coordinate we get from the emulator, and gener-
ally we just pass it to the fragment shader directly. The coordinate will then be
“linearly interpolated” across the fragments. More complex shaders can output
(almost) as many variables they want, that will be linearily interpolated for free
to the fragment shader.

We also need a fragment shader to go along with the vertex shader, and
here’s a basic shader that only outputs the pixel as-is. This is pretty much the
result you’d get if you didn’t run any shader (fixed-function) at all.

f l o a t 4 main_fragment (uniform sampler2D s0 : TEXUNIT0,
f l o a t 2 tex : TEXCOORD) : COLOR

{
return tex2D (s0 , tex) ;

}

4

This is arguably simpler than the vertex shader. Important to notice are:
sampler2D is a handle to a texture in Cg. The semantic here is TEXUNIT0,

which means that it refers to the texture in texture unit 0. This is also part of
the specification.

float2 tex : TEXCOORD is the interpolated coordinate we received from
the vertex shader.

tex2D(s0, tex); simply does texture lookup and returns a COLOR, which
is emitted to the framebuffer. Simple enough. Practically every fragment does
more than one texture lookup. For example, classic pixel shaders look at the
neighbor pixels as well to determine the output. But where is the neighbor
pixel? We’ll revise the fragment shader and try to make a really blurry shader
to demonstrate. We now need to pull up some uniforms. We need to know how
to modify our tex coordinates so that it points to a neighbor pixel.

s t r u c t input
{

f l o a t 2 v ideo_s ize ;
f l o a t 2 t ex ture_s i z e ;
f l o a t 2 output_size ;
f l o a t frame_count ;

} ;

f l o a t 4 main_fragment (uniform sampler2D s0 : TEXUNIT0,
uniform input IN , f l o a t 2 tex : TEXCOORD) : COLOR

{
f l o a t 4 r e s u l t = f l o a t 4 (0 . 0) ;
f l o a t dx = 1 .0 / IN . t ex ture_s i z e . x ;
f l o a t dy = 1 .0 / IN . t ex ture_s i z e . y ;

// Grab some o f the ne ighbor ing p i x e l s and
// blend toge the r f o r a very mushy b lur .
r e s u l t += tex2D (s0 , tex + f l o a t 2 (−dx , −dy)) ;
r e s u l t += tex2D (s0 , tex + f l o a t 2 (dx , −dy)) ;
r e s u l t += tex2D (s0 , tex + f l o a t 2 (0 . 0 , 0 . 0)) ;
r e s u l t += tex2D (s0 , tex + f l o a t 2 (−dx , 0 . 0)) ;
r e turn r e s u l t / 4 . 0 ;

}

Here we use IN.texture_size to determine the the size of the texture. Since
GL maps the whole texture to the interval [0.0, 1.0], 1.0 / IN.texture_size means
we get the offset for a single pixel, simple enough. Almost every shader uses
this. We can calculate these offsets in vertex shader to improve performance
since the coordinates are linearily interpolated anyways, but that is for another
time ... ;)

5

2.2 Putting it together
The final runnable product is a single .cg file with the main_vertex and main_fragment
functions added together. Not very complicated. For the icing on the cake, you
should add a license header.

/∗ Stupid b lur shader .
Author : Your f r i e n d l y ne ighbor .
L i cense : We don ’ t have those th ing s !

∗/

s t r u c t input
{

f l o a t 2 v ideo_s ize ;
f l o a t 2 t ex ture_s i z e ;
f l o a t 2 output_size ;
f l o a t frame_count ;

} ;

void main_vertex (
f l o a t 4 pos : POSITION,
out f l o a t 4 out_pos : POSITION,
uniform f l o a t 4x4 modelViewProj ,
f l o a t 4 c o l o r : COLOR,
out f l o a t 4 out_color : COLOR,
f l o a t 2 tex : TEXCOORD,
out f l o a t 2 out_tex : TEXCOORD

)
{

out_pos = mul (modelViewProj , pos) ;
out_color = co l o r ; out_tex = tex ;

}

f l o a t 4 main_fragment (uniform sampler2D s0 : TEXUNIT0,
uniform input IN , f l o a t 2 tex : TEXCOORD) : COLOR

{
f l o a t 4 r e s u l t = f l o a t 4 (0 . 0) ;
f l o a t dx = 1 .0 / IN . t ex ture_s i z e . x ;
f l o a t dy = 1 .0 / IN . t ex ture_s i z e . y ;

// Grab some o f the ne ighbor ing p i x e l s and blend
// toge the r f o r a very mushy b lur .
r e s u l t += tex2D (s0 , tex + f l o a t 2 (−dx , −dy)) ;
r e s u l t += tex2D (s0 , tex + f l o a t 2 (dx , −dy)) ;
r e s u l t += tex2D (s0 , tex + f l o a t 2 (0 . 0 , 0 . 0)) ;
r e s u l t += tex2D (s0 , tex + f l o a t 2 (−dx , 0 . 0)) ;
r e turn r e s u l t / 4 . 0 ;

6

Figure 1: The result of the shader code.

}

2.3 Result
As you can see, it’s not a practical shader, but it shows the blurring effect to
the extreme.

3 Expanding further

3.1 Lookup textures
We’ll first mention a very popular feature among RetroArch users the ability to
access external textures. This means we have several samplers available for use.
In the config file, we define the textures as so:

t e x tu r e s = " foo ; bar"
foo = path_foo . png
bar = bar_foo . png
foo_l inea r = true # Linear f i l t e r i n g f o r foo .
bar_l inear = true # Linear f i l t e r i n g f o r bar .

7

Figure 2: A shader making use of a lookup texture for the purpose of drawing
a background border.

RetroArch PS3 uses PNG as the main format, RetroArch can use whatever if
Imlib2 support is compiled in. If not, it’s restricted to lop-left ordered, non-RLE
TGA.

From here on, “foo” and “bar” can be found as uniforms in the shaders.
The texture coordinates for the lookup texture will be found in TEXCOORD1.
This can simply be passed along with TEXCOORD0 in the vertex shader as we
did with TEXCOORD0. Here we make a fragment shader that blends in two
background picture at a reduced opacity. Do NOT assign lookup textures to a
certain TEXUNIT, Cg will assign a fitting texture unit to the sampler.

f l o a t 4 main_fragment (uniform sampler2D s0 : TEXUNIT0,
uniform sampler2D foo , uniform sampler2D bar ,
f l o a t 2 tex : TEXCOORD0, f l o a t 2 tex_lut : TEXCOORD1) : COLOR

{
f l o a t 4 bg_sum = (tex2D (foo , tex_lut) + tex2D (bar , tex_lut)) ∗ 0 . 1 5 ;
r e turn l e r p (tex2D (s0 , tex) , bg_sum , bg_sum . a) ; // Alpha blending .

}

Here’s an example of what can be achieved using borders (which are just a
simple lookup texture):

8

3.2 Multipass
It is sometimes feasible to process an effect in several steps.

shaders = 2
shader0 = pass1 . cg
shader1 = pass2 . cg
sca le_type0 = source
s c a l e 0 = 2 .0
f i l t e r_ l i n e a r 0 = true
f i l t e r_ l i n e a r 1 = f a l s e

3.3 Game-aware shaders
This is a new and exciting feature. It allows shaders to grab data from the
emulator state itself, such as RAM data. This is only implemented for SNES so
far, but the idea is quite extendable and portable.

The basic idea is that we capture RAM data in a certain way (semantic if
you will) from the SNES, and pass it as a uniform to the shader. The shader
can thus act on game state in interesting ways.

As a tool to show this feature, we’ll focus on replicating the simple tech
demo shown on YouTube: http://www.youtube.com/watch?v=4VzaE9q735k

What happens is that when Mario jumps in the water, the screen gets a
“watery” effect applied to it, with a rain lookup texture, and a wavy effect.
When he jumps out of the water, the water effect slowly fades away.

We thus need to know two things:

• Is Mario currently in water or not?

• If not, how long time was it since he jumped out?

Since shaders do not have state associated with it, we have to let the environment
provide the state we need in a certain way. We’ll call this concept a semantic.

To capture a RAM value directly, we can use the “capture” semantic. To
record the time when the RAM value last changed, we can use the “transi-
tion” semantic. We obviously also need to know where in RAM we can find
this information. Luckily, the guys over at SMW Central know the answer:
http://www.smwcentral.net/?p=map&type=ram

We see:

$7E :0075 , byte , Flag , Player i s in water f l a g . #$00 = No ; #$01 = Yes .

Bank $7E and $7F are mapped to WRAM $0000-$FFFF and $10000-$1FFFF
respectively. Thus, our WRAM address is $0075.

In the config file, we can now set up the uniforms we’ll want to be captured
in the config file.

imports = "mario_water ; mario_water_time"
mario_water_semantic = capture

9

http://www.youtube.com/watch?v=4VzaE9q735k
http://www.smwcentral.net/?p=map&type=ram

Capture the RAM value as− i s .
mario_water_wram = 0075
This va lue i s hex !
mario_water_time_semantic = t r a n s i t i o n
Capture the frame count when t h i s v a r i ab l e l a s t changed .
Use with IN . frame_count , to c r e a t e a fade−out e f f e c t .
mario_water_time_wram = 0075

The amount of possible “semantics” are practically endless. It might be
worthwhile to attempt some possibility to run custom code that keeps track of
the shader uniforms in more sophisticated ways later on. Do note that there is
also a %s_mask value which will let you bitmask the RAM value to check for
bit-flags more easily.

Now that we got that part down, let’s work on the shader design. In the
fragment shader we simply render both the full water effect, and the «normal»
texture, and let a “blend” variable decide. We can say that 1.0 is full water
effect, 0.0 is no effect. We can start working on our vertex shader. We will do
something useful here for once.

s t r u c t input
{

f l o a t frame_count ;
} ;

void main_vertex (
f l o a t 4 pos : POSITION,
out f l o a t 4 out_pos : POSITION,
uniform f l o a t 4x4 modelViewProj ,
f l o a t 4 c o l o r : COLOR,
out f l o a t 4 out_color : COLOR,

f l o a t 2 tex : TEXCOORD0,
out f l o a t 2 out_tex : TEXCOORD0,
f l o a t 2 tex1 : TEXCOORD1,
out f l o a t 2 out_tex1 : TEXCOORD1,

// Even i f the data should have been int ,
// Cg doesn ’ t seem to
uniform f l o a t mario_water ,
// support i n t e g e r uni forms
uniform f l o a t mario_water_time ,
uniform input IN ,
// Blend f a c t o r i s passed to fragment shader .
// We’ l l output the same value in every vertex ,
// so every fragment w i l l get the same value
// f o r b lend_factor s i n c e the re i s nothing to i n t e r p o l a t e .
out f l o a t b lend_factor)

{

10

out_pos = mul (modelViewProj , pos) ;
out_color = co l o r ;
out_tex = tex ;
out_tex1 = tex1 ;
f l o a t t rans i t i on_t ime = 0 .5 ∗
(IN . frame_count mario_water_time) / 6 0 . 0 ;

// I f Mario i s in the water ($0075 != 0) ,
// i t ’ s always 1 . . .
i f (mario_water > 0 . 0)

b lend_factor = 1 . 0 ;
// Fade out from 1 .0 towards 0 .0 as
// t rans i t i on_t ime grows l a r g e r .
e l s e

b lend_factor = exp(− t rans i t i on_t ime) ;
}

All fine and dandy so far, now we just need to use this blend_factor in our
fragment shader somehow ... Let’s move on to the fragment shader where we
blend.

f l o a t apply_wave (f l o a t 2 pos , f l o a t 2 src , f l o a t cnt)
{

f l o a t 2 d i f f = pos − s r c ;
f l o a t d i s t = 300 .0 ∗ s q r t (dot (d i f f , d i f f)) ;
d i s t −= 0.15 ∗ cnt ;
r e turn s i n (d i s t) ;

}

// Fancy sh i z z to c r e a t e a wave .
f l o a t 4 water_texture (f l o a t 4 output , f l o a t 2 s ca l e , f l o a t cnt)
{

f l o a t r e s = apply_wave (s ca l e , src0 , cnt) ;
r e s += apply_wave (s ca l e , src1 , cnt) ;
r e s += apply_wave (s ca l e , src2 , cnt) ;
r e s += apply_wave (s ca l e , src3 , cnt) ;
r e s += apply_wave (s ca l e , src4 , cnt) ;
r e s += apply_wave (s ca l e , src5 , cnt) ;
r e s += apply_wave (s ca l e , src6 , cnt) ;
r e turn output ∗ (0 . 95 + 0.012 ∗ r e s) ;

}

f l o a t 4 main_fragment
(

uniform input IN ,
f l o a t 2 tex : TEXCOORD0, uniform sampler2D s0 : TEXUNIT0,
uniform sampler2D rain , f l o a t 2 tex1 : TEXCOORD1,

11

in f l o a t b lend_factor // Passed from vertex
) : COLOR
{

f l o a t 4 water_tex = water_texture (tex2D (s0 , tex) , tex1 , IN . frame_count) ;
f l o a t 4 normal_tex = tex2D (s0 , tex) ;
f l o a t 4 rain_tex = tex2D (rain , tex1) ;

// F i r s t , blend normal and water t ex tu re together ,
// then add the ra in t ex ture with alpha blending on top
return l e r p (l e r p (normal_tex , water_tex , b lend_factor) ,
rain_tex , rain_tex . a ∗ blend_factor ∗ 0 . 5) ;

}

3.3.1 RetroArch config file

shaders = 1
shader0 = mario . cg
f i l t e r_ l i n e a r 0 = true
imports = "mario_water ; mario_water_time"
mario_water_semantic = capture
mario_water_time_semantic = t r a n s i t i o n
mario_water_wram = 0075
mario_water_time_wram = 0075
t ex tu r e s = ra in
ra in = ra in . tga
ra in_ l in ea r = true

3.3.2 How to test when developing for RetroArch?

To develop these kinds of shaders, I’d recommend using RetroArch w/ Cg sup-
port, and a debugging tool for your emulator of choice to peek at RAM values
(build it for bSNES yourself with options=debugger).

After written, the shader should translate nicely over to RetroArch with
some slight changes to the config.

3.3.3 Results

Here are some screenshots of the mario effect (in Super Mario World SNES) we
developed. Obviously this is a very simple example showing what can be done.
It’s not confined to overlays. The imagination is the limit here.

12

Figure 3: Super Mario World prior to Mario jumping in water.

13

Figure 4: Super Mario World with a game aware shader applying a LUT texture
as soon as Mario jumps into the water.

14

Index
B
bSNES, 12

C
Cg, 2, 4, 12

G
GLSL, 2

H
HLSL, 2

O
OpenGL, 2

P
PlayStation3, 2

R
RetroArch, 1, 12

S
SNES9x, 1

15

	Introduction
	The rendering pipeline
	A Cg/HLSL program

	Hello World
	Cg types
	Float4
	Semantics

	Putting it together
	Result

	Expanding further
	Lookup textures
	Multipass
	Game-aware shaders
	RetroArch config file
	How to test when developing for RetroArch?
	Results

