bsnes/ruby/audio/openal.cpp
Tim Allen e0815b55b9 Update to v094r28 release.
byuu says:

This WIP substantially restructures the ruby API for the first time
since that project started.

It is my hope that with this restructuring, destruction of the ruby
objects should now be deterministic, which should fix the crashing on
closing the emulator on Linux. We'll see I guess ... either way, it
removed two layers of wrappers from ruby, so it's a pretty nice code
cleanup.

It won't compile on Windows due to a few issues I didn't see until
uploading the WIP, too lazy to upload another. But I fixed all the
compilation issues locally, so it'll work on Windows again with the next
WIP (unless I break something else.)

(Kind of annoying that Linux defines glActiveTexture but Windows
doesn't.)
2015-06-20 15:44:05 +10:00

194 lines
5.1 KiB
C++

#if defined(PLATFORM_MACOSX)
#include <OpenAL/al.h>
#include <OpenAL/alc.h>
#else
#include <AL/al.h>
#include <AL/alc.h>
#endif
struct AudioOpenAL : Audio {
~AudioOpenAL() { term(); }
struct {
ALCdevice* handle = nullptr;
ALCcontext* context = nullptr;
ALuint source = 0;
ALenum format = AL_FORMAT_STEREO16;
unsigned latency = 0;
unsigned queueLength = 0;
} device;
struct {
uint32_t* data = nullptr;
unsigned length = 0;
unsigned size = 0;
} buffer;
struct {
bool synchronize = true;
unsigned frequency = 22050;
unsigned latency = 40;
} settings;
auto cap(const string& name) -> bool {
if(name == Audio::Synchronize) return true;
if(name == Audio::Frequency) return true;
if(name == Audio::Latency) return true;
return false;
}
auto get(const string& name) -> any {
if(name == Audio::Synchronize) return settings.synchronize;
if(name == Audio::Frequency) return settings.frequency;
if(name == Audio::Latency) return settings.latency;
return {};
}
auto set(const string& name, const any& value) -> bool {
if(name == Audio::Synchronize && value.is<bool>()) {
settings.synchronize = value.get<bool>();
return true;
}
if(name == Audio::Frequency && value.is<unsigned>()) {
settings.frequency = value.get<unsigned>();
return true;
}
if(name == Audio::Latency && value.is<unsigned>()) {
if(settings.latency != value.get<unsigned>()) {
settings.latency = value.get<unsigned>();
updateLatency();
}
return true;
}
return false;
}
auto sample(uint16_t left, uint16_t right) -> void {
buffer.data[buffer.length++] = left << 0 | right << 16;
if(buffer.length < buffer.size) return;
ALuint albuffer = 0;
int processed = 0;
while(true) {
alGetSourcei(device.source, AL_BUFFERS_PROCESSED, &processed);
while(processed--) {
alSourceUnqueueBuffers(device.source, 1, &albuffer);
alDeleteBuffers(1, &albuffer);
device.queueLength--;
}
//wait for buffer playback to catch up to sample generation if not synchronizing
if(settings.synchronize == false || device.queueLength < 3) break;
}
if(device.queueLength < 3) {
alGenBuffers(1, &albuffer);
alBufferData(albuffer, device.format, buffer.data, buffer.size * 4, settings.frequency);
alSourceQueueBuffers(device.source, 1, &albuffer);
device.queueLength++;
}
ALint playing;
alGetSourcei(device.source, AL_SOURCE_STATE, &playing);
if(playing != AL_PLAYING) alSourcePlay(device.source);
buffer.length = 0;
}
auto clear() -> void {
}
auto init() -> bool {
updateLatency();
device.queueLength = 0;
bool success = false;
if(device.handle = alcOpenDevice(nullptr)) {
if(device.context = alcCreateContext(device.handle, nullptr)) {
alcMakeContextCurrent(device.context);
alGenSources(1, &device.source);
//alSourcef (device.source, AL_PITCH, 1.0);
//alSourcef (device.source, AL_GAIN, 1.0);
//alSource3f(device.source, AL_POSITION, 0.0, 0.0, 0.0);
//alSource3f(device.source, AL_VELOCITY, 0.0, 0.0, 0.0);
//alSource3f(device.source, AL_DIRECTION, 0.0, 0.0, 0.0);
//alSourcef (device.source, AL_ROLLOFF_FACTOR, 0.0);
//alSourcei (device.source, AL_SOURCE_RELATIVE, AL_TRUE);
alListener3f(AL_POSITION, 0.0, 0.0, 0.0);
alListener3f(AL_VELOCITY, 0.0, 0.0, 0.0);
ALfloat listener_orientation[] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
alListenerfv(AL_ORIENTATION, listener_orientation);
success = true;
}
}
if(success == false) {
term();
return false;
}
return true;
}
auto term() -> void {
if(alIsSource(device.source) == AL_TRUE) {
int playing = 0;
alGetSourcei(device.source, AL_SOURCE_STATE, &playing);
if(playing == AL_PLAYING) {
alSourceStop(device.source);
int queued = 0;
alGetSourcei(device.source, AL_BUFFERS_QUEUED, &queued);
while(queued--) {
ALuint albuffer = 0;
alSourceUnqueueBuffers(device.source, 1, &albuffer);
alDeleteBuffers(1, &albuffer);
device.queueLength--;
}
}
alDeleteSources(1, &device.source);
device.source = 0;
}
if(device.context) {
alcMakeContextCurrent(nullptr);
alcDestroyContext(device.context);
device.context = 0;
}
if(device.handle) {
alcCloseDevice(device.handle);
device.handle = 0;
}
if(buffer.data) {
delete[] buffer.data;
buffer.data = 0;
}
}
private:
auto queryDevices() -> lstring {
lstring result;
const char* buffer = alcGetString(nullptr, ALC_DEVICE_SPECIFIER);
if(!buffer) return result;
while(buffer[0] || buffer[1]) {
result.append(buffer);
while(buffer[0]) buffer++;
}
return result;
}
auto updateLatency() -> void {
if(buffer.data) delete[] buffer.data;
buffer.size = settings.frequency * settings.latency / 1000.0 + 0.5;
buffer.data = new uint32_t[buffer.size]();
}
};