bsnes/pixelshaders/GLSL/Pixellate.shader
Tim Allen 6b4104867f Update to v075 release.
byuu says:

This release brings improved Super Game Boy emulation, the final SHA256
hashes for the DSP-(1,1B,2,3,4) and ST-(0010,0011) coprocessors, user
interface improvements, and major internal code restructuring.

Changelog (since v074):
- completely rewrote memory sub-system to support 1-byte granularity in
  XML mapping
- removed Memory inheritance and MMIO class completely, any address can
  be mapped to any function now
- SuperFX: removed SuperFXBus : Bus, now implemented manually
- SA-1: removed SA1Bus : Bus, now implemented manually
- entire bus mapping is now static, happens once on cartridge load
- as a result, read/write handlers now handle MMC mapping; slower
  average case, far faster worst case
- namespace memory is no more, RAM arrays are stored inside the chips
  they are owned by now
- GameBoy: improved CPU HALT emulation, fixes Zelda: Link's Awakening
  scrolling
- GameBoy: added serial emulation (cannot connect to another GB yet),
  fixes Shin Megami Tensei - Devichil
- GameBoy: improved LCD STAT emulation, fixes Sagaia
- ui: added fullscreen support (F11 key), video settings allows for
  three scale settings
- ui: fixed brightness, contrast, gamma, audio volume, input frequency
  values on program startup
- ui: since Qt is dead, config file becomes bsnes.cfg once again
- Super Game Boy: you can now load the BIOS without a game inserted to
  see a pretty white box
- ui-gameboy: can be built without SNES components now
- libsnes: now a UI target, compile with 'make ui=ui-libsnes'
- libsnes: added WRAM, APURAM, VRAM, OAM, CGRAM access (cheat search,
  etc)
- source: removed launcher/, as the Qt port is now gone
- source: Makefile restructuring to better support new ui targets
- source: lots of other internal code cleanup work
2011-01-27 19:52:34 +11:00

44 lines
1.7 KiB
GLSL
Executable file

<?xml version="1.0" encoding="UTF-8"?>
<shader language="GLSL">
<vertex><![CDATA[
void main() {
gl_Position = ftransform();
gl_TexCoord[0] = gl_MultiTexCoord0;
}
]]></vertex>
<fragment><![CDATA[
uniform sampler2D rubyTexture;
uniform vec2 rubyTextureSize;
void main() {
vec2 texelSize = 1.0 / rubyTextureSize;
vec2 range;
range.x = dFdx(gl_TexCoord[0].x) / 2.0 * 0.99;
range.y = dFdy(gl_TexCoord[0].y) / 2.0 * 0.99;
float left = gl_TexCoord[0].x - range.x;
float top = gl_TexCoord[0].y + range.y;
float right = gl_TexCoord[0].x + range.x;
float bottom = gl_TexCoord[0].y - range.y;
vec4 topLeftColor = texture2D(rubyTexture, (floor(vec2(left, top) / texelSize) + 0.5) * texelSize);
vec4 bottomRightColor = texture2D(rubyTexture, (floor(vec2(right, bottom) / texelSize) + 0.5) * texelSize);
vec4 bottomLeftColor = texture2D(rubyTexture, (floor(vec2(left, bottom) / texelSize) + 0.5) * texelSize);
vec4 topRightColor = texture2D(rubyTexture, (floor(vec2(right, top) / texelSize) + 0.5) * texelSize);
vec2 border = clamp(round(gl_TexCoord[0] / texelSize) * texelSize, vec2(left, bottom), vec2(right, top));
float totalArea = 4.0 * range.x * range.y;
vec4 averageColor;
averageColor = ((border.x - left) * (top - border.y) / totalArea) * topLeftColor;
averageColor += ((right - border.x) * (border.y - bottom) / totalArea) * bottomRightColor;
averageColor += ((border.x - left) * (border.y - bottom) / totalArea) * bottomLeftColor;
averageColor += ((right - border.x) * (top - border.y) / totalArea) * topRightColor;
gl_FragColor = averageColor;
}
]]></fragment>
</shader>