mirror of
https://github.com/bsnes-emu/bsnes.git
synced 2025-04-02 10:42:14 -04:00
byuu says: This release marks a major step forward, offering full low-level emulation of all four DSP coprocessors based on the NEC uPD77C25 processor core. Many people were responsible for this milestone: Dr. Decapitator for the actual decapping and extraction; Lord Nightmare for the cartridges and some special analysis tools; myself, Jonas Quinn and Cydrak for the uPD77C25 emulation; and all of the donors who raised the necessary $1,000 for the necessary hardware and equipment needed to pull this all off. To say thanks to the donors, I am releasing the uPD77C25 emulation core to the public domain, so that everyone can benefit from it. All four DSP emulations will be improved by this by way of having realistic timing; the DSP-4 will benefit further as the high-level emulation was incomplete and somewhat buggy; and the DSP-3 will benefit the most as the high-levle emulation there was not complete enough to be playable. As a result, most notably, this means bsnes v073 is the first emulator to fully be able to play SD Gundam GX (J)! As bsnes' primary goal is accuracy, the LLE DSP support renders the old HLE DSP support obsolete. Ergo, I have removed the 166KB of HLE source code, and replaced it with the uPD77C25 core, which comprises a mere 20KB of source code. As this LLE module supports save states, this also means that for the first time, DSP-3 and DSP-4 games have save state support. On the other hand, this also means that to run any DSP game, you will need the appropriate program ROM. As these are copyrighted, I cannot distribute them nor tell you where to get them. All I can do is provide you with the necessary filenames and hashes. Changelog (since v072 release): * added NEC uPD77C25 emulation core * added low-level emulation of the DSP-1, DSP-1B, DSP-2, DSP-3, DSP-4 coprocessors * removed high-level emulation of the DSP-n coprocessors * added blargg's libco::ppc.c module, which is far more portable, even running on the PS3 * added software filter support via binary plugins * added debugger (currently Linux-only); but it is as yet unstable * added pause shortcut * updated mightymo's cheat code database
73 lines
2.8 KiB
GLSL
Executable file
73 lines
2.8 KiB
GLSL
Executable file
<?xml version="1.0" encoding="UTF-8"?>
|
|
<shader language="GLSL">
|
|
<vertex><![CDATA[
|
|
uniform vec2 rubyTextureSize;
|
|
|
|
void main() {
|
|
float x = 0.5 * (1.0 / rubyTextureSize.x);
|
|
float y = 0.5 * (1.0 / rubyTextureSize.y);
|
|
vec2 dg1 = vec2( x, y);
|
|
vec2 dg2 = vec2(-x, y);
|
|
vec2 dx = vec2(x, 0.0);
|
|
vec2 dy = vec2(0.0, y);
|
|
|
|
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
|
|
gl_TexCoord[0] = gl_MultiTexCoord0;
|
|
gl_TexCoord[1].xy = gl_TexCoord[0].xy - dg1;
|
|
gl_TexCoord[1].zw = gl_TexCoord[0].xy - dy;
|
|
gl_TexCoord[2].xy = gl_TexCoord[0].xy - dg2;
|
|
gl_TexCoord[2].zw = gl_TexCoord[0].xy + dx;
|
|
gl_TexCoord[3].xy = gl_TexCoord[0].xy + dg1;
|
|
gl_TexCoord[3].zw = gl_TexCoord[0].xy + dy;
|
|
gl_TexCoord[4].xy = gl_TexCoord[0].xy + dg2;
|
|
gl_TexCoord[4].zw = gl_TexCoord[0].xy - dx;
|
|
}
|
|
]]></vertex>
|
|
|
|
<fragment><![CDATA[
|
|
uniform sampler2D rubyTexture;
|
|
|
|
const float mx = 0.325; // start smoothing wt.
|
|
const float k = -0.250; // wt. decrease factor
|
|
const float max_w = 0.25; // max filter weigth
|
|
const float min_w =-0.05; // min filter weigth
|
|
const float lum_add = 0.25; // effects smoothing
|
|
|
|
void main() {
|
|
vec3 c00 = texture2D(rubyTexture, gl_TexCoord[1].xy).xyz;
|
|
vec3 c10 = texture2D(rubyTexture, gl_TexCoord[1].zw).xyz;
|
|
vec3 c20 = texture2D(rubyTexture, gl_TexCoord[2].xy).xyz;
|
|
vec3 c01 = texture2D(rubyTexture, gl_TexCoord[4].zw).xyz;
|
|
vec3 c11 = texture2D(rubyTexture, gl_TexCoord[0].xy).xyz;
|
|
vec3 c21 = texture2D(rubyTexture, gl_TexCoord[2].zw).xyz;
|
|
vec3 c02 = texture2D(rubyTexture, gl_TexCoord[4].xy).xyz;
|
|
vec3 c12 = texture2D(rubyTexture, gl_TexCoord[3].zw).xyz;
|
|
vec3 c22 = texture2D(rubyTexture, gl_TexCoord[3].xy).xyz;
|
|
vec3 dt = vec3(1.0, 1.0, 1.0);
|
|
|
|
float md1 = dot(abs(c00 - c22), dt);
|
|
float md2 = dot(abs(c02 - c20), dt);
|
|
|
|
float w1 = dot(abs(c22 - c11), dt) * md2;
|
|
float w2 = dot(abs(c02 - c11), dt) * md1;
|
|
float w3 = dot(abs(c00 - c11), dt) * md2;
|
|
float w4 = dot(abs(c20 - c11), dt) * md1;
|
|
|
|
float t1 = w1 + w3;
|
|
float t2 = w2 + w4;
|
|
float ww = max(t1, t2) + 0.0001;
|
|
|
|
c11 = (w1 * c00 + w2 * c20 + w3 * c22 + w4 * c02 + ww * c11) / (t1 + t2 + ww);
|
|
|
|
float lc1 = k / (0.12 * dot(c10 + c12 + c11, dt) + lum_add);
|
|
float lc2 = k / (0.12 * dot(c01 + c21 + c11, dt) + lum_add);
|
|
|
|
w1 = clamp(lc1 * dot(abs(c11 - c10), dt) + mx, min_w, max_w);
|
|
w2 = clamp(lc2 * dot(abs(c11 - c21), dt) + mx, min_w, max_w);
|
|
w3 = clamp(lc1 * dot(abs(c11 - c12), dt) + mx, min_w, max_w);
|
|
w4 = clamp(lc2 * dot(abs(c11 - c01), dt) + mx, min_w, max_w);
|
|
|
|
gl_FragColor.xyz = w1 * c10 + w2 * c21 + w3 * c12 + w4 * c01 + (1.0 - w1 - w2 - w3 - w4) * c11;
|
|
}
|
|
]]></fragment>
|
|
</shader>
|