bsnes/snesreader/libjma/lzma.h
byuu a266a2b5e2 Update to bsnes v066 release.
Major features in this release are: serial controller emulation, a brand new scheduler that supports multiple simultaneous coprocessors, and accuracy improvements.
The serial controller is something devised by blargg. With the proper voltage adjustments (5v-9v), it is possible to wire an SNES controller to a serial port, which can then be used for bidirectional communication between the SNES, and (usually, but not only) a PC. The support in bsnes was added so that such programs could be debugged and ran from within an emulator, and not just on real hardware.
The scheduler rewrite was meant to allow the combination of coprocessors. It was specifically meant to allow the serial controller thread to run alongside the SuperFX and SA-1 coprocessor threads, but it also allows fun things like MSU1 support in SuperFX and SA-1 games, and even creating dev cartridges that utilize both the SuperFX and SA-1 at the same time. The one thing not yet allowed is running multiple instances of the exact same coprocessor at the same time, as this is due to design constraints favoring code inlining.
There are two important accuracy updates. The first is that when PAL video mode is used without being in overscan mode, black bars are shown. Emulators have always shown this black bar at the bottom of the screen, but this is actually incorrect. resxto took pictures from his PAL TV that shows the image is in fact vertically centered in the screen. bsnes has been updated to reflect this.
Also interesting is that I have backported some code from the dot-based PPU renderer. In the game Uniracers, it writes to OAM during Hblank, and expects the write to go to a specific address. In previous releases, that address was hard-coded to go to the required memory location. But the way the hardware really works is that the write goes to the extended attribute address for the last sprite that the PPU fetched, as the PPU is still asserting the OAM address bus. Now, due to the precision limitations, I was not able to also port timing access during the active display period. However, this is sufficient to at least remove the last global hack from the older, speed-focused scanline renderer.
2010-08-01 05:46:17 +00:00

124 lines
3.4 KiB
C++

/*
Copyright (C) 2005-2007 NSRT Team ( http://nsrt.edgeemu.com )
Copyright (C) 2002 Andrea Mazzoleni ( http://advancemame.sf.net )
Copyright (C) 2001-4 Igor Pavlov ( http://www.7-zip.org )
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "lencoder.h"
#ifndef __LZMA_H
#define __LZMA_H
namespace NCompress {
namespace NLZMA {
const UINT32 kNumRepDistances = 4;
const BYTE kNumStates = 12;
const BYTE kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5};
const BYTE kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
const BYTE kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
const BYTE kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
class CState
{
public:
BYTE m_Index;
void Init()
{ m_Index = 0; }
void UpdateChar()
{ m_Index = kLiteralNextStates[m_Index]; }
void UpdateMatch()
{ m_Index = kMatchNextStates[m_Index]; }
void UpdateRep()
{ m_Index = kRepNextStates[m_Index]; }
void UpdateShortRep()
{ m_Index = kShortRepNextStates[m_Index]; }
};
class CBaseCoder
{
protected:
CState m_State;
BYTE m_PreviousByte;
bool m_PeviousIsMatch;
UINT32 m_RepDistances[kNumRepDistances];
void Init()
{
m_State.Init();
m_PreviousByte = 0;
m_PeviousIsMatch = false;
for(UINT32 i = 0 ; i < kNumRepDistances; i++)
m_RepDistances[i] = 0;
}
};
const int kNumPosSlotBits = 6;
const int kDicLogSizeMax = 28;
const int kDistTableSizeMax = kDicLogSizeMax * 2;
extern UINT32 kDistStart[kDistTableSizeMax];
const BYTE kDistDirectBits[kDistTableSizeMax] =
{
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,
10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19,
20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26
};
const UINT32 kNumLenToPosStates = 4;
inline UINT32 GetLenToPosState(UINT32 aLen)
{
aLen -= 2;
if (aLen < kNumLenToPosStates)
return aLen;
return kNumLenToPosStates - 1;
}
const int kMatchMinLen = 2;
const int kMatchMaxLen = kMatchMinLen + NLength::kNumSymbolsTotal - 1;
const int kNumAlignBits = 4;
const int kAlignTableSize = 1 << kNumAlignBits;
const UINT32 kAlignMask = (kAlignTableSize - 1);
const int kStartPosModelIndex = 4;
const int kEndPosModelIndex = 14;
const int kNumPosModels = kEndPosModelIndex - kStartPosModelIndex;
const int kNumFullDistances = 1 << (kEndPosModelIndex / 2);
const int kMainChoiceLiteralIndex = 0;
const int kMainChoiceMatchIndex = 1;
const int kMatchChoiceDistanceIndex= 0;
const int kMatchChoiceRepetitionIndex = 1;
const int kNumMoveBitsForMainChoice = 5;
const int kNumMoveBitsForPosCoders = 5;
const int kNumMoveBitsForAlignCoders = 5;
const int kNumMoveBitsForPosSlotCoder = 5;
const int kNumLitPosStatesBitsEncodingMax = 4;
const int kNumLitContextBitsMax = 8;
}}
#endif