bsnes/ruby/video/xv.cpp
byuu 81f43a4d01 Update to snes-20100807 release.
This represents a major code restructuring. The dot-based and
scanline-based renderers are now split into two separate core
libraries, asnes and bsnes.

For now at least, these are -internal- names. I'm not entirely decided
on how I'm going to handle releasing these two separate builds.
Regardless, the folders need names.

asnes has had all of the processor subfolders collapsed back into
their parent folders. In other words, ppu's functions were moved into
ppu/sppu, and then ppu was deleted, and then ppu/sppu became the new
ppu. Repeat this for the cpu, smp and dsp and there you go.

asnes/dsp also removed the DSP_STATE_MACHINE option. This was done for
the sake of consistency with the rest of the core.

asnes' debugger mode is currently extremely broken, but I will be
fixing it in time.

And for now, bsnes has kept the processor abstraction layer. I may
keep it around, not sure yet. It doesn't hurt speed or anything, so
I'm not too worried about making a decision right away.

I may throw snesfilter, snesreader and supergameboy into this folder,
just to have everything in one place. The alternate GUI forks are
definitely going in there as dotnet, cocoa and python.

Compiled output goes to the out/ folder now, to prevent conflicts with
a file and folder named bsnes, for instance.
2010-08-07 15:07:24 +00:00

498 lines
16 KiB
C++

#include <sys/ipc.h>
#include <sys/shm.h>
#include <X11/extensions/XShm.h>
#include <X11/extensions/Xv.h>
#include <X11/extensions/Xvlib.h>
extern "C" XvImage* XvShmCreateImage(Display*, XvPortID, int, char*, int, int, XShmSegmentInfo*);
namespace ruby {
class pVideoXv {
public:
uint32_t *buffer;
uint8_t *ytable, *utable, *vtable;
enum XvFormat {
XvFormatRGB32,
XvFormatRGB24,
XvFormatRGB16,
XvFormatRGB15,
XvFormatYUY2,
XvFormatUYVY,
XvFormatUnknown
};
struct {
Display *display;
GC gc;
Window window;
Colormap colormap;
XShmSegmentInfo shminfo;
int port;
int depth;
int visualid;
XvImage *image;
XvFormat format;
uint32_t fourcc;
unsigned width;
unsigned height;
} device;
struct {
Window handle;
bool synchronize;
unsigned width;
unsigned height;
} settings;
bool cap(const string& name) {
if(name == Video::Handle) return true;
if(name == Video::Synchronize) {
return XInternAtom(XOpenDisplay(0), "XV_SYNC_TO_VBLANK", true) != None;
}
return false;
}
any get(const string& name) {
if(name == Video::Handle) return settings.handle;
if(name == Video::Synchronize) return settings.synchronize;
return false;
}
bool set(const string& name, const any& value) {
if(name == Video::Handle) {
settings.handle = any_cast<uintptr_t>(value);
return true;
}
if(name == Video::Synchronize) {
Display *display = XOpenDisplay(0);
Atom atom = XInternAtom(display, "XV_SYNC_TO_VBLANK", true);
if(atom != None && device.port >= 0) {
settings.synchronize = any_cast<bool>(value);
XvSetPortAttribute(display, device.port, atom, settings.synchronize);
return true;
}
return false;
}
return false;
}
void resize(unsigned width, unsigned height) {
if(device.width >= width && device.height >= height) return;
device.width = max(width, device.width);
device.height = max(height, device.height);
XShmDetach(device.display, &device.shminfo);
shmdt(device.shminfo.shmaddr);
shmctl(device.shminfo.shmid, IPC_RMID, NULL);
XFree(device.image);
delete[] buffer;
device.image = XvShmCreateImage(device.display, device.port, device.fourcc, 0, device.width, device.height, &device.shminfo);
device.shminfo.shmid = shmget(IPC_PRIVATE, device.image->data_size, IPC_CREAT | 0777);
device.shminfo.shmaddr = device.image->data = (char*)shmat(device.shminfo.shmid, 0, 0);
device.shminfo.readOnly = false;
XShmAttach(device.display, &device.shminfo);
buffer = new uint32_t[device.width * device.height];
}
bool lock(uint32_t *&data, unsigned &pitch, unsigned width, unsigned height) {
if(width != settings.width || height != settings.height) {
resize(settings.width = width, settings.height = height);
}
pitch = device.width * 4;
return data = buffer;
}
void unlock() {
}
void clear() {
memset(buffer, 0, device.width * device.height * sizeof(uint32_t));
//clear twice in case video is double buffered ...
refresh();
refresh();
}
void refresh() {
unsigned width = settings.width;
unsigned height = settings.height;
XWindowAttributes target;
XGetWindowAttributes(device.display, device.window, &target);
//we must ensure that the child window is the same size as the parent window.
//unfortunately, we cannot hook the parent window resize event notification,
//as we did not create the parent window, nor have any knowledge of the toolkit used.
//therefore, query each window size and resize as needed.
XWindowAttributes parent;
XGetWindowAttributes(device.display, settings.handle, &parent);
if(target.width != parent.width || target.height != parent.height) {
XResizeWindow(device.display, device.window, parent.width, parent.height);
}
//update target width and height attributes
XGetWindowAttributes(device.display, device.window, &target);
switch(device.format) {
case XvFormatRGB32: render_rgb32(width, height); break;
case XvFormatRGB24: render_rgb24(width, height); break;
case XvFormatRGB16: render_rgb16(width, height); break;
case XvFormatRGB15: render_rgb15(width, height); break;
case XvFormatYUY2: render_yuy2 (width, height); break;
case XvFormatUYVY: render_uyvy (width, height); break;
}
XvShmPutImage(device.display, device.port, device.window, device.gc, device.image,
0, 0, width, height,
0, 0, target.width, target.height,
true);
}
bool init() {
device.display = XOpenDisplay(0);
if(!XShmQueryExtension(device.display)) {
fprintf(stderr, "VideoXv: XShm extension not found.\n");
return false;
}
//find an appropriate Xv port
device.port = -1;
XvAdaptorInfo *adaptor_info;
unsigned adaptor_count;
XvQueryAdaptors(device.display, DefaultRootWindow(device.display), &adaptor_count, &adaptor_info);
for(unsigned i = 0; i < adaptor_count; i++) {
//find adaptor that supports both input (memory->drawable) and image (drawable->screen) masks
if(adaptor_info[i].num_formats < 1) continue;
if(!(adaptor_info[i].type & XvInputMask)) continue;
if(!(adaptor_info[i].type & XvImageMask)) continue;
device.port = adaptor_info[i].base_id;
device.depth = adaptor_info[i].formats->depth;
device.visualid = adaptor_info[i].formats->visual_id;
break;
}
XvFreeAdaptorInfo(adaptor_info);
if(device.port < 0) {
fprintf(stderr, "VideoXv: failed to find valid XvPort.\n");
return false;
}
//create child window to attach to parent window.
//this is so that even if parent window visual depth doesn't match Xv visual
//(common with composited windows), Xv can still render to child window.
XWindowAttributes window_attributes;
XGetWindowAttributes(device.display, settings.handle, &window_attributes);
XVisualInfo visualtemplate;
visualtemplate.visualid = device.visualid;
visualtemplate.screen = DefaultScreen(device.display);
visualtemplate.depth = device.depth;
visualtemplate.visual = 0;
int visualmatches = 0;
XVisualInfo *visualinfo = XGetVisualInfo(device.display, VisualIDMask | VisualScreenMask | VisualDepthMask, &visualtemplate, &visualmatches);
if(visualmatches < 1 || !visualinfo->visual) {
if(visualinfo) XFree(visualinfo);
fprintf(stderr, "VideoXv: unable to find Xv-compatible visual.\n");
return false;
}
device.colormap = XCreateColormap(device.display, settings.handle, visualinfo->visual, AllocNone);
XSetWindowAttributes attributes;
attributes.colormap = device.colormap;
attributes.border_pixel = 0;
attributes.event_mask = StructureNotifyMask;
device.window = XCreateWindow(device.display, /* parent = */ settings.handle,
/* x = */ 0, /* y = */ 0, window_attributes.width, window_attributes.height,
/* border_width = */ 0, device.depth, InputOutput, visualinfo->visual,
CWColormap | CWBorderPixel | CWEventMask, &attributes);
XFree(visualinfo);
XSetWindowBackground(device.display, device.window, /* color = */ 0);
XMapWindow(device.display, device.window);
device.gc = XCreateGC(device.display, device.window, 0, 0);
//set colorkey to auto paint, so that Xv video output is always visible
Atom atom = XInternAtom(device.display, "XV_AUTOPAINT_COLORKEY", true);
if(atom != None) XvSetPortAttribute(device.display, device.port, atom, 1);
//find optimal rendering format
device.format = XvFormatUnknown;
signed format_count;
XvImageFormatValues *format = XvListImageFormats(device.display, device.port, &format_count);
if(device.format == XvFormatUnknown) for(signed i = 0; i < format_count; i++) {
if(format[i].type == XvRGB && format[i].bits_per_pixel == 32) {
device.format = XvFormatRGB32;
device.fourcc = format[i].id;
break;
}
}
if(device.format == XvFormatUnknown) for(signed i = 0; i < format_count; i++) {
if(format[i].type == XvRGB && format[i].bits_per_pixel == 24) {
device.format = XvFormatRGB24;
device.fourcc = format[i].id;
break;
}
}
if(device.format == XvFormatUnknown) for(signed i = 0; i < format_count; i++) {
if(format[i].type == XvRGB && format[i].bits_per_pixel <= 16 && format[i].red_mask == 0xf800) {
device.format = XvFormatRGB16;
device.fourcc = format[i].id;
break;
}
}
if(device.format == XvFormatUnknown) for(signed i = 0; i < format_count; i++) {
if(format[i].type == XvRGB && format[i].bits_per_pixel <= 16 && format[i].red_mask == 0x7c00) {
device.format = XvFormatRGB15;
device.fourcc = format[i].id;
break;
}
}
if(device.format == XvFormatUnknown) for(signed i = 0; i < format_count; i++) {
if(format[i].type == XvYUV && format[i].bits_per_pixel == 16 && format[i].format == XvPacked) {
if(format[i].component_order[0] == 'Y' && format[i].component_order[1] == 'U'
&& format[i].component_order[2] == 'Y' && format[i].component_order[3] == 'V'
) {
device.format = XvFormatYUY2;
device.fourcc = format[i].id;
break;
}
}
}
if(device.format == XvFormatUnknown) for(signed i = 0; i < format_count; i++) {
if(format[i].type == XvYUV && format[i].bits_per_pixel == 16 && format[i].format == XvPacked) {
if(format[i].component_order[0] == 'U' && format[i].component_order[1] == 'Y'
&& format[i].component_order[2] == 'V' && format[i].component_order[3] == 'Y'
) {
device.format = XvFormatUYVY;
device.fourcc = format[i].id;
break;
}
}
}
free(format);
if(device.format == XvFormatUnknown) {
fprintf(stderr, "VideoXv: unable to find a supported image format.\n");
return false;
}
device.width = 256;
device.height = 256;
device.image = XvShmCreateImage(device.display, device.port, device.fourcc, 0, device.width, device.height, &device.shminfo);
if(!device.image) {
fprintf(stderr, "VideoXv: XShmCreateImage failed.\n");
return false;
}
device.shminfo.shmid = shmget(IPC_PRIVATE, device.image->data_size, IPC_CREAT | 0777);
device.shminfo.shmaddr = device.image->data = (char*)shmat(device.shminfo.shmid, 0, 0);
device.shminfo.readOnly = false;
if(!XShmAttach(device.display, &device.shminfo)) {
fprintf(stderr, "VideoXv: XShmAttach failed.\n");
return false;
}
buffer = new uint32_t[device.width * device.height];
settings.width = 256;
settings.height = 256;
init_yuv_tables();
clear();
return true;
}
void term() {
XShmDetach(device.display, &device.shminfo);
shmdt(device.shminfo.shmaddr);
shmctl(device.shminfo.shmid, IPC_RMID, NULL);
XFree(device.image);
if(device.window) {
XUnmapWindow(device.display, device.window);
device.window = 0;
}
if(device.colormap) {
XFreeColormap(device.display, device.colormap);
device.colormap = 0;
}
if(buffer) { delete[] buffer; buffer = 0; }
if(ytable) { delete[] ytable; ytable = 0; }
if(utable) { delete[] utable; utable = 0; }
if(vtable) { delete[] vtable; vtable = 0; }
}
void render_rgb32(unsigned width, unsigned height) {
uint32_t *input = (uint32_t*)buffer;
uint32_t *output = (uint32_t*)device.image->data;
for(unsigned y = 0; y < height; y++) {
memcpy(output, input, width * 4);
input += device.width;
output += device.width;
}
}
void render_rgb24(unsigned width, unsigned height) {
uint32_t *input = (uint32_t*)buffer;
uint8_t *output = (uint8_t*)device.image->data;
for(unsigned y = 0; y < height; y++) {
for(unsigned x = 0; x < width; x++) {
uint32_t p = *input++;
*output++ = p;
*output++ = p >> 8;
*output++ = p >> 16;
}
input += (device.width - width);
output += (device.width - width) * 3;
}
}
void render_rgb16(unsigned width, unsigned height) {
uint32_t *input = (uint32_t*)buffer;
uint16_t *output = (uint16_t*)device.image->data;
for(unsigned y = 0; y < height; y++) {
for(unsigned x = 0; x < width; x++) {
uint32_t p = *input++;
*output++ = ((p >> 8) & 0xf800) | ((p >> 5) & 0x07e0) | ((p >> 3) & 0x001f); //RGB32->RGB16
}
input += device.width - width;
output += device.width - width;
}
}
void render_rgb15(unsigned width, unsigned height) {
uint32_t *input = (uint32_t*)buffer;
uint16_t *output = (uint16_t*)device.image->data;
for(unsigned y = 0; y < height; y++) {
for(unsigned x = 0; x < width; x++) {
uint32_t p = *input++;
*output++ = ((p >> 9) & 0x7c00) | ((p >> 6) & 0x03e0) | ((p >> 3) & 0x001f); //RGB32->RGB15
}
input += device.width - width;
output += device.width - width;
}
}
void render_yuy2(unsigned width, unsigned height) {
uint32_t *input = (uint32_t*)buffer;
uint16_t *output = (uint16_t*)device.image->data;
for(unsigned y = 0; y < height; y++) {
for(unsigned x = 0; x < width >> 1; x++) {
uint32_t p0 = *input++;
uint32_t p1 = *input++;
p0 = ((p0 >> 8) & 0xf800) + ((p0 >> 5) & 0x07e0) + ((p0 >> 3) & 0x001f); //RGB32->RGB16
p1 = ((p1 >> 8) & 0xf800) + ((p1 >> 5) & 0x07e0) + ((p1 >> 3) & 0x001f); //RGB32->RGB16
uint8_t u = (utable[p0] + utable[p1]) >> 1;
uint8_t v = (vtable[p0] + vtable[p1]) >> 1;
*output++ = (u << 8) | ytable[p0];
*output++ = (v << 8) | ytable[p1];
}
input += device.width - width;
output += device.width - width;
}
}
void render_uyvy(unsigned width, unsigned height) {
uint32_t *input = (uint32_t*)buffer;
uint16_t *output = (uint16_t*)device.image->data;
for(unsigned y = 0; y < height; y++) {
for(unsigned x = 0; x < width >> 1; x++) {
uint32_t p0 = *input++;
uint32_t p1 = *input++;
p0 = ((p0 >> 8) & 0xf800) + ((p0 >> 5) & 0x07e0) + ((p0 >> 3) & 0x001f);
p1 = ((p1 >> 8) & 0xf800) + ((p1 >> 5) & 0x07e0) + ((p1 >> 3) & 0x001f);
uint8_t u = (utable[p0] + utable[p1]) >> 1;
uint8_t v = (vtable[p0] + vtable[p1]) >> 1;
*output++ = (ytable[p0] << 8) | u;
*output++ = (ytable[p1] << 8) | v;
}
input += device.width - width;
output += device.width - width;
}
}
void init_yuv_tables() {
ytable = new uint8_t[65536];
utable = new uint8_t[65536];
vtable = new uint8_t[65536];
for(unsigned i = 0; i < 65536; i++) {
//extract RGB565 color data from i
uint8_t r = (i >> 11) & 31, g = (i >> 5) & 63, b = (i) & 31;
r = (r << 3) | (r >> 2); //R5->R8
g = (g << 2) | (g >> 4); //G6->G8
b = (b << 3) | (b >> 2); //B5->B8
//ITU-R Recommendation BT.601
//double lr = 0.299, lg = 0.587, lb = 0.114;
int y = int( +(double(r) * 0.257) + (double(g) * 0.504) + (double(b) * 0.098) + 16.0 );
int u = int( -(double(r) * 0.148) - (double(g) * 0.291) + (double(b) * 0.439) + 128.0 );
int v = int( +(double(r) * 0.439) - (double(g) * 0.368) - (double(b) * 0.071) + 128.0 );
//ITU-R Recommendation BT.709
//double lr = 0.2126, lg = 0.7152, lb = 0.0722;
//int y = int( double(r) * lr + double(g) * lg + double(b) * lb );
//int u = int( (double(b) - y) / (2.0 - 2.0 * lb) + 128.0 );
//int v = int( (double(r) - y) / (2.0 - 2.0 * lr) + 128.0 );
ytable[i] = y < 0 ? 0 : y > 255 ? 255 : y;
utable[i] = u < 0 ? 0 : u > 255 ? 255 : u;
vtable[i] = v < 0 ? 0 : v > 255 ? 255 : v;
}
}
pVideoXv() {
device.window = 0;
device.colormap = 0;
device.port = -1;
ytable = 0;
utable = 0;
vtable = 0;
settings.handle = 0;
settings.synchronize = false;
}
~pVideoXv() {
term();
}
};
DeclareVideo(Xv)
};