#ifdef DSP2_CPP //convert bitmap to bitplane tile void DSP2::op01() { //op01 size is always 32 bytes input and output //the hardware does strange things if you vary the size unsigned char c0, c1, c2, c3; unsigned char *p1 = status.parameters; unsigned char *p2a = status.output; unsigned char *p2b = status.output + 16; //halfway //process 8 blocks of 4 bytes each for(int j = 0; j < 8; j++) { c0 = *p1++; c1 = *p1++; c2 = *p1++; c3 = *p1++; *p2a++ = (c0 & 0x10) << 3 | (c0 & 0x01) << 6 | (c1 & 0x10) << 1 | (c1 & 0x01) << 4 | (c2 & 0x10) >> 1 | (c2 & 0x01) << 2 | (c3 & 0x10) >> 3 | (c3 & 0x01); *p2a++ = (c0 & 0x20) << 2 | (c0 & 0x02) << 5 | (c1 & 0x20) | (c1 & 0x02) << 3 | (c2 & 0x20) >> 2 | (c2 & 0x02) << 1 | (c3 & 0x20) >> 4 | (c3 & 0x02) >> 1; *p2b++ = (c0 & 0x40) << 1 | (c0 & 0x04) << 4 | (c1 & 0x40) >> 1 | (c1 & 0x04) << 2 | (c2 & 0x40) >> 3 | (c2 & 0x04) | (c3 & 0x40) >> 5 | (c3 & 0x04) >> 2; *p2b++ = (c0 & 0x80) | (c0 & 0x08) << 3 | (c1 & 0x80) >> 2 | (c1 & 0x08) << 1 | (c2 & 0x80) >> 4 | (c2 & 0x08) >> 1 | (c3 & 0x80) >> 6 | (c3 & 0x08) >> 3; } } //set transparent color void DSP2::op03() { status.op05transparent = status.parameters[0]; } //replace bitmap using transparent color void DSP2::op05() { uint8 color; // Overlay bitmap with transparency. // Input: // // Bitmap 1: i[0] <=> i[size-1] // Bitmap 2: i[size] <=> i[2*size-1] // // Output: // // Bitmap 3: o[0] <=> o[size-1] // // Processing: // // Process all 4-bit pixels (nibbles) in the bitmap // // if ( BM2_pixel == transparent_color ) // pixelout = BM1_pixel // else // pixelout = BM2_pixel // The max size bitmap is limited to 255 because the size parameter is a byte // I think size=0 is an error. The behavior of the chip on size=0 is to // return the last value written to DR if you read DR on Op05 with // size = 0. I don't think it's worth implementing this quirk unless it's // proven necessary. unsigned char c1, c2; unsigned char *p1 = status.parameters; unsigned char *p2 = status.parameters + status.op05len; unsigned char *p3 = status.output; color = status.op05transparent & 0x0f; for(int n = 0; n < status.op05len; n++) { c1 = *p1++; c2 = *p2++; *p3++ = ( ((c2 >> 4) == color ) ? c1 & 0xf0 : c2 & 0xf0 ) | ( ((c2 & 0x0f) == color ) ? c1 & 0x0f : c2 & 0x0f ); } } //reverse bitmap void DSP2::op06() { // Input: // size // bitmap int i, j; for(i = 0, j = status.op06len - 1; i < status.op06len; i++, j--) { status.output[j] = (status.parameters[i] << 4) | (status.parameters[i] >> 4); } } //multiply void DSP2::op09() { status.out_count = 4; status.op09word1 = status.parameters[0] | (status.parameters[1] << 8); status.op09word2 = status.parameters[2] | (status.parameters[3] << 8); uint32 r; r = status.op09word1 * status.op09word2; status.output[0] = r; status.output[1] = r >> 8; status.output[2] = r >> 16; status.output[3] = r >> 24; } //scale bitmap void DSP2::op0d() { // Bit accurate hardware algorithm - uses fixed point math // This should match the DSP2 Op0D output exactly // I wouldn't recommend using this unless you're doing hardware debug. // In some situations it has small visual artifacts that // are not readily apparent on a TV screen but show up clearly // on a monitor. Use Overload's scaling instead. // This is for hardware verification testing. // // One note: the HW can do odd byte scaling but since we divide // by two to get the count of bytes this won't work well for // odd byte scaling (in any of the current algorithm implementations). // So far I haven't seen Dungeon Master use it. // If it does we can adjust the parameters and code to work with it uint32 multiplier; // Any size int >= 32-bits uint32 pixloc; // match size of multiplier int i, j; uint8 pixelarray[512]; if(status.op0dinlen <= status.op0doutlen) { multiplier = 0x10000; // In our self defined fixed point 0x10000 == 1 } else { multiplier = (status.op0dinlen << 17) / ((status.op0doutlen << 1) + 1); } pixloc = 0; for(i = 0; i < status.op0doutlen * 2; i++) { j = pixloc >> 16; if(j & 1) { pixelarray[i] = (status.parameters[j >> 1] & 0x0f); } else { pixelarray[i] = (status.parameters[j >> 1] & 0xf0) >> 4; } pixloc += multiplier; } for(i = 0; i < status.op0doutlen; i++) { status.output[i] = (pixelarray[i << 1] << 4) | pixelarray[(i << 1) + 1]; } } #endif