// Vita3K emulator project // Copyright (C) 2022 Vita3K team // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License along // with this program; if not, write to the Free Software Foundation, Inc., // 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. #include "SceGxm.h" #include #include #include #include #include #include #include #include #include #include #include #include static Ptr gxmRunDeferredMemoryCallback(KernelState &kernel, const MemState &mem, std::mutex &global_lock, std::uint32_t &return_size, Ptr callback, Ptr userdata, const std::uint32_t size, const SceUID thread_id) { const std::lock_guard guard(global_lock); const ThreadStatePtr thread = lock_and_find(thread_id, kernel.threads, kernel.mutex); const Address final_size_addr = stack_alloc(*thread->cpu, 4); Ptr result(static_cast
(kernel.run_guest_function(thread_id, callback.address(), { userdata.address(), size, final_size_addr }))); return_size = *Ptr(final_size_addr).get(mem); stack_free(*thread->cpu, 4); return result; } #pragma pack(push, 1) struct SceGxmCommandDataCopyInfo { std::uint8_t **dest_pointer; const std::uint8_t *source_data; std::uint32_t source_data_size; SceGxmCommandDataCopyInfo *next = nullptr; }; #pragma pack(pop) struct SceGxmContext { GxmContextState state; std::unique_ptr renderer; std::mutex lock; std::mutex &callback_lock; // NOTE(pent0): This is more sided to render backend, so I don't want to put in context state SceGxmCommandDataCopyInfo *infos = nullptr; SceGxmCommandDataCopyInfo *last_info = nullptr; std::uint8_t *alloc_space = nullptr; std::uint8_t *alloc_space_end = nullptr; BitmapAllocator command_allocator; bool last_precomputed = false; explicit SceGxmContext(std::mutex &callback_lock_) : callback_lock(callback_lock_) { } void reset_recording() { last_precomputed = false; } bool make_new_alloc_space(KernelState &kern, const MemState &mem, const SceUID thread_id) { if (alloc_space && ((state.vdm_buffer_size != 0) || (state.type == SCE_GXM_CONTEXT_TYPE_IMMEDIATE))) { return false; } std::uint32_t actual_size = 0; if (state.vdm_buffer) { alloc_space = state.vdm_buffer.cast().get(mem); actual_size = state.vdm_buffer_size; if (state.type == SCE_GXM_CONTEXT_TYPE_IMMEDIATE) { command_allocator.reset(); command_allocator.set_maximum(state.vdm_buffer_size / sizeof(renderer::Command)); } } else { static constexpr std::uint32_t DEFAULT_SIZE = sizeof(renderer::Command) * 4096; Ptr space = gxmRunDeferredMemoryCallback(kern, mem, callback_lock, actual_size, state.vdm_memory_callback, state.memory_callback_userdata, DEFAULT_SIZE, thread_id); if (!space) { LOG_ERROR("VDM callback runs out of memory!"); return false; } alloc_space = space.cast().get(mem); } alloc_space_end = alloc_space + actual_size; return true; } std::uint8_t *linearly_allocate(KernelState &kern, const MemState &mem, const SceUID thread_id, const std::uint32_t size) { if (state.type != SCE_GXM_CONTEXT_TYPE_DEFERRED) { return nullptr; } if (alloc_space + size > alloc_space_end) { if (!make_new_alloc_space(kern, mem, thread_id)) { return nullptr; } } std::uint8_t *result = alloc_space; alloc_space += size; return result; } template T *linearly_allocate(KernelState &kern, const MemState &mem, const SceUID thread_id) { return reinterpret_cast(linearly_allocate(kern, mem, thread_id, sizeof(T))); } renderer::Command *allocate_new_command(KernelState &kern, const MemState &mem, SceUID current_thread_id) { const std::lock_guard guard(lock); renderer::Command *new_command = nullptr; if (state.type == SCE_GXM_CONTEXT_TYPE_IMMEDIATE) { int size = 1; int offset = command_allocator.allocate_from(0, size); if (offset < 0) { new_command = new renderer::Command; new_command->flags |= renderer::Command::FLAG_FROM_HOST; } else { new_command = reinterpret_cast(alloc_space) + offset; new (new_command) renderer::Command; } } else { new_command = linearly_allocate(kern, mem, current_thread_id); new (new_command) renderer::Command; new_command->flags |= renderer::Command::FLAG_NO_FREE; } return new_command; } void free_new_command(renderer::Command *cmd) { if (!(cmd->flags & renderer::Command::FLAG_NO_FREE)) { if (cmd->flags & renderer::Command::FLAG_FROM_HOST) { delete cmd; } else { const std::lock_guard guard(lock); const std::uint32_t offset = static_cast(cmd - reinterpret_cast(alloc_space)); command_allocator.free(offset, 1); } } } void add_info(SceGxmCommandDataCopyInfo *new_info) { const std::lock_guard guard(lock); if (!infos) { infos = new_info; last_info = new_info; } else { last_info->next = new_info; last_info = new_info; } } SceGxmCommandDataCopyInfo *supply_new_info(KernelState &kern, const MemState &mem, const SceUID thread_id) { const std::lock_guard guard(lock); SceGxmCommandDataCopyInfo *info = linearly_allocate(kern, mem, thread_id); alloc_space += sizeof(SceGxmCommandDataCopyInfo); info->next = nullptr; info->dest_pointer = nullptr; info->source_data = nullptr; info->source_data_size = 0; return info; } }; struct SceGxmRenderTarget { std::unique_ptr renderer; std::uint16_t width; std::uint16_t height; std::uint16_t scenesPerFrame; SceUID driverMemBlock; }; struct SceGxmCommandList { renderer::CommandList *list; SceGxmCommandDataCopyInfo *copy_info; }; // Seems on real vita, this is the maximum size, I got stack corrupt if try to write more static_assert(sizeof(SceGxmCommandList) <= 32); typedef std::uint32_t VertexCacheHash; struct VertexProgramCacheKey { SceGxmRegisteredProgram vertex_program; VertexCacheHash hash; }; typedef std::map> VertexProgramCache; struct FragmentProgramCacheKey { SceGxmRegisteredProgram fragment_program; SceGxmBlendInfo blend_info; }; typedef std::map> FragmentProgramCache; struct SceGxmShaderPatcher { VertexProgramCache vertex_program_cache; FragmentProgramCache fragment_program_cache; SceGxmShaderPatcherParams params; }; // clang-format off static const size_t size_mask_gxp = 228; static const uint8_t mask_gxp[] = { 0x47, 0x58, 0x50, 0x00, 0x01, 0x05, 0x50, 0x03, 0xE1, 0x00, 0x00, 0x00, 0xF6, 0x94, 0xF3, 0x74, 0x73, 0x30, 0xEE, 0xE2, 0x01, 0x00, 0x18, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0xA4, 0x00, 0x00, 0x00, 0x70, 0x00, 0x00, 0x00, 0x02, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x02, 0x00, 0x00, 0x00, 0x74, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x68, 0x00, 0x00, 0x00, 0x64, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x5C, 0x00, 0x00, 0x00, 0xC0, 0x3D, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x50, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x50, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x38, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x04, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0x44, 0xFA, 0x00, 0x00, 0x00, 0xE0, 0x7E, 0x0D, 0x81, 0x40, 0x0E, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x10, 0x00, 0x00, 0x00, 0x01, 0xE1, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x6D, 0x61, 0x73, 0x6B, 0x00, 0x00, 0x00, 0x00, }; // clang-format on static constexpr std::uint32_t DEFAULT_RING_SIZE = 4096; static VertexCacheHash hash_data(const void *data, size_t size) { auto hash = XXH_INLINE_XXH3_64bits(data, size); return VertexCacheHash(hash); } static bool operator<(const SceGxmRegisteredProgram &a, const SceGxmRegisteredProgram &b) { return a.program < b.program; } static bool operator<(const VertexProgramCacheKey &a, const VertexProgramCacheKey &b) { if (a.vertex_program < b.vertex_program) { return true; } if (b.vertex_program < a.vertex_program) { return false; } return b.hash < a.hash; } static bool operator<(const SceGxmBlendInfo &a, const SceGxmBlendInfo &b) { return memcmp(&a, &b, sizeof(a)) < 0; } static bool operator<(const FragmentProgramCacheKey &a, const FragmentProgramCacheKey &b) { if (a.fragment_program < b.fragment_program) { return true; } if (b.fragment_program < a.fragment_program) { return false; } return b.blend_info < a.blend_info; } static int init_texture_base(const char *export_name, SceGxmTexture *texture, Ptr data, SceGxmTextureFormat tex_format, uint32_t width, uint32_t height, uint32_t mipCount, const SceGxmTextureType &texture_type) { if (width > 4096 || height > 4096 || mipCount > 13) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } // data can be empty to be filled out later. texture->mip_count = std::min(15, mipCount - 1); texture->format0 = (tex_format & 0x80000000) >> 31; texture->lod_bias = 31; if ((texture_type == SCE_GXM_TEXTURE_SWIZZLED) || (texture_type == SCE_GXM_TEXTURE_CUBE)) { // Find highest set bit of width and height. It's also the 2^? for width and height static auto highest_set_bit = [](const std::uint32_t num) -> std::uint32_t { for (std::int32_t i = 12; i >= 0; i--) { if (num & (1 << i)) { return static_cast(i); } } return 0; }; texture->uaddr_mode = texture->vaddr_mode = SCE_GXM_TEXTURE_ADDR_MIRROR; texture->height_base2 = highest_set_bit(height); texture->width_base2 = highest_set_bit(width); } else { texture->uaddr_mode = texture->vaddr_mode = SCE_GXM_TEXTURE_ADDR_CLAMP; texture->height = height - 1; texture->width = width - 1; } texture->base_format = (tex_format & 0x1F000000) >> 24; texture->type = texture_type >> 29; texture->data_addr = data.address() >> 2; texture->swizzle_format = (tex_format & 0x7000) >> 12; texture->normalize_mode = 1; texture->min_filter = SCE_GXM_TEXTURE_FILTER_POINT; texture->mag_filter = SCE_GXM_TEXTURE_FILTER_POINT; return 0; } uint16_t get_gxp_texture_count(const SceGxmProgram &program_gxp) { const auto parameters = gxp::program_parameters(program_gxp); uint16_t max_texture_index = 0; for (uint32_t i = 0; i < program_gxp.parameter_count; ++i) { const auto parameter = parameters[i]; if (parameter.category == SCE_GXM_PARAMETER_CATEGORY_SAMPLER) { max_texture_index = std::max(max_texture_index, static_cast(parameter.resource_index)); } } return max_texture_index + 1; } EXPORT(int, _sceGxmBeginScene) { return UNIMPLEMENTED(); } EXPORT(int, sceGxmAddRazorGpuCaptureBuffer) { return UNIMPLEMENTED(); } EXPORT(void, sceGxmSetDefaultRegionClipAndViewport, SceGxmContext *context, uint32_t xMax, uint32_t yMax) { const std::uint32_t xMin = 0; const std::uint32_t yMin = 0; context->state.viewport.offset.x = 0.5f * static_cast(1.0f + xMin + xMax); context->state.viewport.offset.y = 0.5f * (static_cast(1.0 + yMin + yMax)); context->state.viewport.offset.z = 0.5f; context->state.viewport.scale.x = 0.5f * static_cast(1.0f + xMax - xMin); context->state.viewport.scale.y = -0.5f * static_cast(1.0f + yMax - yMin); context->state.viewport.scale.z = 0.5f; context->state.region_clip_min.x = xMin; context->state.region_clip_max.x = xMax; context->state.region_clip_min.y = yMin; context->state.region_clip_max.y = yMax; context->state.region_clip_mode = SCE_GXM_REGION_CLIP_OUTSIDE; if (context->alloc_space) { // Set default region clip and viewport renderer::set_region_clip(*host.renderer, context->renderer.get(), SCE_GXM_REGION_CLIP_OUTSIDE, xMin, xMax, yMin, yMax); if (context->state.viewport.enable == SCE_GXM_VIEWPORT_ENABLED) { renderer::set_viewport_real(*host.renderer, context->renderer.get(), context->state.viewport.offset.x, context->state.viewport.offset.y, context->state.viewport.offset.z, context->state.viewport.scale.x, context->state.viewport.scale.y, context->state.viewport.scale.z); } else { renderer::set_viewport_flat(*host.renderer, context->renderer.get()); } } } static void gxmContextStateRestore(renderer::State &state, MemState &mem, SceGxmContext *context, const bool sync_viewport_and_clip) { if (sync_viewport_and_clip) { renderer::set_region_clip(state, context->renderer.get(), SCE_GXM_REGION_CLIP_OUTSIDE, context->state.region_clip_min.x, context->state.region_clip_max.x, context->state.region_clip_min.y, context->state.region_clip_max.y); if (context->state.viewport.enable == SCE_GXM_VIEWPORT_ENABLED) { renderer::set_viewport_real(state, context->renderer.get(), context->state.viewport.offset.x, context->state.viewport.offset.y, context->state.viewport.offset.z, context->state.viewport.scale.x, context->state.viewport.scale.y, context->state.viewport.scale.z); } else { renderer::set_viewport_flat(state, context->renderer.get()); } } renderer::set_cull_mode(state, context->renderer.get(), context->state.cull_mode); renderer::set_depth_bias(state, context->renderer.get(), true, context->state.front_depth_bias_factor, context->state.front_depth_bias_units); renderer::set_depth_bias(state, context->renderer.get(), false, context->state.back_depth_bias_factor, context->state.back_depth_bias_units); renderer::set_depth_func(state, context->renderer.get(), true, context->state.front_depth_func); renderer::set_depth_func(state, context->renderer.get(), false, context->state.back_depth_func); renderer::set_depth_write_enable_mode(state, context->renderer.get(), true, context->state.front_depth_write_enable); renderer::set_depth_write_enable_mode(state, context->renderer.get(), false, context->state.back_depth_write_enable); renderer::set_point_line_width(state, context->renderer.get(), true, context->state.front_point_line_width); renderer::set_point_line_width(state, context->renderer.get(), false, context->state.back_point_line_width); renderer::set_polygon_mode(state, context->renderer.get(), true, context->state.front_polygon_mode); renderer::set_polygon_mode(state, context->renderer.get(), false, context->state.back_polygon_mode); renderer::set_two_sided_enable(state, context->renderer.get(), context->state.two_sided); renderer::set_stencil_func(state, context->renderer.get(), true, context->state.front_stencil.func, context->state.front_stencil.stencil_fail, context->state.front_stencil.depth_fail, context->state.front_stencil.depth_pass, context->state.front_stencil.compare_mask, context->state.front_stencil.write_mask); renderer::set_stencil_func(state, context->renderer.get(), false, context->state.back_stencil.func, context->state.back_stencil.stencil_fail, context->state.back_stencil.depth_fail, context->state.back_stencil.depth_pass, context->state.back_stencil.compare_mask, context->state.back_stencil.write_mask); renderer::set_stencil_ref(state, context->renderer.get(), true, context->state.front_stencil.ref); renderer::set_stencil_ref(state, context->renderer.get(), false, context->state.back_stencil.ref); if (context->state.vertex_program) { renderer::set_program(state, context->renderer.get(), context->state.vertex_program, false); const SceGxmVertexProgram &gxm_vertex_program = *context->state.vertex_program.get(mem); const SceGxmProgram &vertex_program_gxp = *gxm_vertex_program.program.get(mem); const auto vert_paramters = gxp::program_parameters(vertex_program_gxp); for (uint32_t i = 0; i < vertex_program_gxp.parameter_count; ++i) { const auto parameter = vert_paramters[i]; if (parameter.category == SCE_GXM_PARAMETER_CATEGORY_SAMPLER) { const auto index = parameter.resource_index + SCE_GXM_MAX_TEXTURE_UNITS; if (context->state.textures[index].data_addr != 0) { renderer::set_texture(state, context->renderer.get(), index, context->state.textures[index]); } } } } // The uniform buffer, vertex stream will be uploaded later, for now only need to resync de textures if (context->state.fragment_program) { renderer::set_program(state, context->renderer.get(), context->state.fragment_program, true); const SceGxmFragmentProgram &gxm_fragment_program = *context->state.fragment_program.get(mem); const SceGxmProgram &fragment_program_gxp = *gxm_fragment_program.program.get(mem); const auto frag_paramters = gxp::program_parameters(fragment_program_gxp); for (uint32_t i = 0; i < fragment_program_gxp.parameter_count; ++i) { const auto parameter = frag_paramters[i]; if (parameter.category == SCE_GXM_PARAMETER_CATEGORY_SAMPLER) { const auto index = parameter.resource_index; if (context->state.textures[index].data_addr != 0) { renderer::set_texture(state, context->renderer.get(), index, context->state.textures[index]); } } } } } EXPORT(int, sceGxmBeginCommandList, SceGxmContext *deferredContext) { if (!deferredContext) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (deferredContext->state.type != SCE_GXM_CONTEXT_TYPE_DEFERRED) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if (deferredContext->state.active) { return RET_ERROR(SCE_GXM_ERROR_WITHIN_COMMAND_LIST); } deferredContext->state.fragment_ring_buffer_used = 0; deferredContext->state.vertex_ring_buffer_used = 0; deferredContext->infos = nullptr; deferredContext->last_info = nullptr; if (!deferredContext->make_new_alloc_space(host.kernel, host.mem, thread_id)) { return RET_ERROR(SCE_GXM_ERROR_RESERVE_FAILED); } if (!deferredContext->state.vertex_ring_buffer) { deferredContext->state.vertex_ring_buffer = gxmRunDeferredMemoryCallback(host.kernel, host.mem, host.gxm.callback_lock, deferredContext->state.vertex_ring_buffer_size, deferredContext->state.vertex_memory_callback, deferredContext->state.memory_callback_userdata, DEFAULT_RING_SIZE, thread_id); if (!deferredContext->state.vertex_ring_buffer) { return RET_ERROR(SCE_GXM_ERROR_RESERVE_FAILED); } } if (!deferredContext->state.fragment_ring_buffer) { deferredContext->state.fragment_ring_buffer = gxmRunDeferredMemoryCallback(host.kernel, host.mem, host.gxm.callback_lock, deferredContext->state.fragment_ring_buffer_size, deferredContext->state.fragment_memory_callback, deferredContext->state.memory_callback_userdata, DEFAULT_RING_SIZE, thread_id); if (!deferredContext->state.fragment_ring_buffer) { return RET_ERROR(SCE_GXM_ERROR_RESERVE_FAILED); } } // Set command allocate functions // These commands are never gonna be freed from the server side, so this should be fine to set each begin // command list. Why did I make it set each begin command list, at least this is a prevention of thread die // - no callback gonna run... KernelState *kernel = &host.kernel; MemState *mem = &host.mem; deferredContext->renderer->alloc_func = [deferredContext, kernel, mem, thread_id]() { return deferredContext->allocate_new_command(*kernel, *mem, thread_id); }; deferredContext->renderer->free_func = [deferredContext](renderer::Command *cmd) { return deferredContext->free_new_command(cmd); }; // Begin the command list by white washing previous command list, and restoring deferred state renderer::reset_command_list(deferredContext->renderer->command_list); gxmContextStateRestore(*host.renderer, host.mem, deferredContext, false); deferredContext->state.active = true; return 0; } EXPORT(int, sceGxmBeginScene, SceGxmContext *context, uint32_t flags, const SceGxmRenderTarget *renderTarget, const SceGxmValidRegion *validRegion, SceGxmSyncObject *vertexSyncObject, Ptr fragmentSyncObject, const SceGxmColorSurface *colorSurface, const SceGxmDepthStencilSurface *depthStencil) { if (!context) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (flags & 0xFFFFFFF0) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if (!renderTarget || (vertexSyncObject != nullptr)) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (context->state.type != SCE_GXM_CONTEXT_TYPE_IMMEDIATE) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if (context->state.active) { return RET_ERROR(SCE_GXM_ERROR_WITHIN_SCENE); } context->state.fragment_sync_object = fragmentSyncObject; if (fragmentSyncObject.get(host.mem) != nullptr) { SceGxmSyncObject *sync = fragmentSyncObject.get(host.mem); // Wait for both display queue and fragment stage to be done. // If it's offline render, the sync object already has the display queue subject done, so don't worry. renderer::wishlist(sync, (renderer::SyncObjectSubject)(renderer::SyncObjectSubject::DisplayQueue | renderer::SyncObjectSubject::Fragment)); } // TODO This may not be right. context->state.fragment_ring_buffer_used = 0; context->state.vertex_ring_buffer_used = 0; // It's legal to set at client. context->state.active = true; context->last_precomputed = false; SceGxmColorSurface *color_surface_copy = nullptr; SceGxmDepthStencilSurface *depth_stencil_surface_copy = nullptr; if (colorSurface) { color_surface_copy = new SceGxmColorSurface; *color_surface_copy = *colorSurface; } if (depthStencil) { depth_stencil_surface_copy = new SceGxmDepthStencilSurface; *depth_stencil_surface_copy = *depthStencil; } renderer::set_context(*host.renderer, context->renderer.get(), renderTarget->renderer.get(), color_surface_copy, depth_stencil_surface_copy); const std::uint32_t xmax = (validRegion ? validRegion->xMax : renderTarget->width - 1); const std::uint32_t ymax = (validRegion ? validRegion->yMax : renderTarget->height - 1); host.renderer->scene_processed_since_last_frame++; CALL_EXPORT(sceGxmSetDefaultRegionClipAndViewport, context, xmax, ymax); return 0; } EXPORT(int, sceGxmBeginSceneEx, SceGxmContext *immediateContext, uint32_t flags, const SceGxmRenderTarget *renderTarget, const SceGxmValidRegion *validRegion, SceGxmSyncObject *vertexSyncObject, Ptr fragmentSyncObject, const SceGxmColorSurface *colorSurface, const SceGxmDepthStencilSurface *loadDepthStencilSurface, const SceGxmDepthStencilSurface *storeDepthStencilSurface) { if (!immediateContext) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (flags & 0xFFFFFFF0) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if (!renderTarget || (vertexSyncObject != nullptr)) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (immediateContext->state.type != SCE_GXM_CONTEXT_TYPE_IMMEDIATE) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if (immediateContext->state.active) { return RET_ERROR(SCE_GXM_ERROR_WITHIN_SCENE); } STUBBED("Using sceGxmBeginScene"); return CALL_EXPORT(sceGxmBeginScene, immediateContext, flags, renderTarget, validRegion, vertexSyncObject, fragmentSyncObject, colorSurface, loadDepthStencilSurface); } EXPORT(void, sceGxmColorSurfaceGetClip, const SceGxmColorSurface *surface, uint32_t *xMin, uint32_t *yMin, uint32_t *xMax, uint32_t *yMax) { assert(surface); UNIMPLEMENTED(); } EXPORT(Ptr, sceGxmColorSurfaceGetData, const SceGxmColorSurface *surface) { assert(surface); return surface->data; } EXPORT(SceGxmColorSurfaceDitherMode, sceGxmColorSurfaceGetDitherMode, const SceGxmColorSurface *surface) { assert(surface); STUBBED("SCE_GXM_COLOR_SURFACE_DITHER_DISABLED"); return SceGxmColorSurfaceDitherMode::SCE_GXM_COLOR_SURFACE_DITHER_DISABLED; } EXPORT(SceGxmColorFormat, sceGxmColorSurfaceGetFormat, const SceGxmColorSurface *surface) { assert(surface); return surface->colorFormat; } EXPORT(SceGxmColorSurfaceGammaMode, sceGxmColorSurfaceGetGammaMode, const SceGxmColorSurface *surface) { assert(surface); STUBBED("SCE_GXM_COLOR_SURFACE_GAMMA_NONE"); return SceGxmColorSurfaceGammaMode::SCE_GXM_COLOR_SURFACE_GAMMA_NONE; } EXPORT(SceGxmColorSurfaceScaleMode, sceGxmColorSurfaceGetScaleMode, const SceGxmColorSurface *surface) { assert(surface); return surface->downscale ? SCE_GXM_COLOR_SURFACE_SCALE_MSAA_DOWNSCALE : SCE_GXM_COLOR_SURFACE_SCALE_NONE; } EXPORT(uint32_t, sceGxmColorSurfaceGetStrideInPixels, const SceGxmColorSurface *surface) { assert(surface); return surface->strideInPixels; } EXPORT(SceGxmColorSurfaceType, sceGxmColorSurfaceGetType, const SceGxmColorSurface *surface) { assert(surface); return surface->surfaceType; } EXPORT(int, sceGxmColorSurfaceInit, SceGxmColorSurface *surface, SceGxmColorFormat colorFormat, SceGxmColorSurfaceType surfaceType, SceGxmColorSurfaceScaleMode scaleMode, SceGxmOutputRegisterSize outputRegisterSize, uint32_t width, uint32_t height, uint32_t strideInPixels, Ptr data) { if (!surface || !data) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); if (width > 4096 || height > 4096) return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); if (strideInPixels & 1) return RET_ERROR(SCE_GXM_ERROR_INVALID_ALIGNMENT); if ((strideInPixels < width) || ((data.address() & 3) != 0)) return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); memset(surface, 0, sizeof(*surface)); surface->disabled = 0; surface->downscale = scaleMode == SCE_GXM_COLOR_SURFACE_SCALE_MSAA_DOWNSCALE; surface->width = width; surface->height = height; surface->strideInPixels = strideInPixels; surface->data = data; surface->colorFormat = colorFormat; surface->surfaceType = surfaceType; surface->outputRegisterSize = outputRegisterSize; SceGxmTextureFormat tex_format; if (!gxm::convert_color_format_to_texture_format(colorFormat, tex_format)) { LOG_WARN("Unable to convert color surface type 0x{:X} to texture format enum for background texture of color surface!", static_cast(colorFormat)); } // Create background object, for here don't return an error if (init_texture_base(export_name, &surface->backgroundTex, surface->data, tex_format, surface->width, surface->height, 1, SCE_GXM_TEXTURE_LINEAR) != SCE_KERNEL_OK) { LOG_WARN("Unable to initialize background object control texture!"); } return 0; } EXPORT(int, sceGxmColorSurfaceInitDisabled, SceGxmColorSurface *surface) { if (!surface) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); surface->disabled = 1; return 0; } EXPORT(bool, sceGxmColorSurfaceIsEnabled, const SceGxmColorSurface *surface) { assert(surface); return !surface->disabled; } EXPORT(void, sceGxmColorSurfaceSetClip, SceGxmColorSurface *surface, uint32_t xMin, uint32_t yMin, uint32_t xMax, uint32_t yMax) { assert(surface); UNIMPLEMENTED(); } EXPORT(int, sceGxmColorSurfaceSetData, SceGxmColorSurface *surface, Ptr data) { if (!surface) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (data.address() & 3) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } surface->data = data; surface->backgroundTex.data_addr = data.address() >> 2; return 0; } EXPORT(int, sceGxmColorSurfaceSetDitherMode, SceGxmColorSurface *surface, SceGxmColorSurfaceDitherMode ditherMode) { if (!surface) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } return UNIMPLEMENTED(); } EXPORT(int, sceGxmTextureSetFormat, SceGxmTexture *tex, SceGxmTextureFormat format); EXPORT(int, sceGxmColorSurfaceSetFormat, SceGxmColorSurface *surface, SceGxmColorFormat format) { if (!surface) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } surface->colorFormat = format; SceGxmTextureFormat tex_format; if (!gxm::convert_color_format_to_texture_format(format, tex_format)) { LOG_WARN("Unable to convert color surface type 0x{:X} to texture format enum for background texture of color surface!", static_cast(format)); } CALL_EXPORT(sceGxmTextureSetFormat, &surface->backgroundTex, tex_format); } EXPORT(int, sceGxmColorSurfaceSetGammaMode, SceGxmColorSurface *surface, SceGxmColorSurfaceGammaMode gammaMode) { if (!surface) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } return UNIMPLEMENTED(); } EXPORT(void, sceGxmColorSurfaceSetScaleMode, SceGxmColorSurface *surface, SceGxmColorSurfaceScaleMode scaleMode) { assert(surface); UNIMPLEMENTED(); } EXPORT(int, sceGxmCreateContext, const SceGxmContextParams *params, Ptr *context) { if (!params || !context) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); if (params->hostMemSize < sizeof(SceGxmContext)) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } *context = params->hostMem.cast(); SceGxmContext *const ctx = context->get(host.mem); new (ctx) SceGxmContext(host.gxm.callback_lock); ctx->state.fragment_ring_buffer = params->fragmentRingBufferMem; ctx->state.vertex_ring_buffer = params->vertexRingBufferMem; ctx->state.fragment_ring_buffer_size = params->fragmentRingBufferMemSize; ctx->state.vertex_ring_buffer_size = params->vertexRingBufferMemSize; ctx->state.type = SCE_GXM_CONTEXT_TYPE_IMMEDIATE; if (!renderer::create_context(*host.renderer, ctx->renderer)) { context->reset(); return RET_ERROR(SCE_GXM_ERROR_DRIVER); } // Set VDM buffer space ctx->state.vdm_buffer = params->vdmRingBufferMem; ctx->state.vdm_buffer_size = params->vdmRingBufferMemSize; ctx->make_new_alloc_space(host.kernel, host.mem, thread_id); // Set command allocate functions // The command buffer will not be reallocated, so this is fine to use this thread ID KernelState *kernel = &host.kernel; MemState *mem = &host.mem; ctx->renderer->alloc_func = [ctx, kernel, mem, thread_id]() { return ctx->allocate_new_command(*kernel, *mem, thread_id); }; ctx->renderer->free_func = [ctx](renderer::Command *cmd) { return ctx->free_new_command(cmd); }; return 0; } EXPORT(int, sceGxmCreateDeferredContext, SceGxmDeferredContextParams *params, Ptr *deferredContext) { if (!params || !deferredContext) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); if (params->hostMemSize < sizeof(SceGxmContext)) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } *deferredContext = params->hostMem.cast(); SceGxmContext *const ctx = deferredContext->get(host.mem); new (ctx) SceGxmContext(host.gxm.callback_lock); ctx->state.vertex_memory_callback = params->vertexCallback; ctx->state.fragment_memory_callback = params->fragmentCallback; ctx->state.vdm_memory_callback = params->vdmCallback; ctx->state.memory_callback_userdata = params->userData; ctx->state.type = SCE_GXM_CONTEXT_TYPE_DEFERRED; // Create a generic context. This is only used for storing command list ctx->renderer = std::make_unique(); return 0; } EXPORT(int, sceGxmCreateRenderTarget, const SceGxmRenderTargetParams *params, Ptr *renderTarget) { if (!params) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (params->flags & 0xFFFF00EC) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if (!renderTarget) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } *renderTarget = alloc(host.mem, __FUNCTION__); if (!*renderTarget) { return RET_ERROR(SCE_GXM_ERROR_OUT_OF_MEMORY); } SceGxmRenderTarget *const rt = renderTarget->get(host.mem); if (!renderer::create_render_target(*host.renderer, rt->renderer, params)) { free(host.mem, *renderTarget); return RET_ERROR(SCE_GXM_ERROR_DRIVER); } rt->width = params->width; rt->height = params->height; rt->scenesPerFrame = params->scenesPerFrame; rt->driverMemBlock = params->driverMemBlock; return 0; } EXPORT(float, sceGxmDepthStencilSurfaceGetBackgroundDepth, const SceGxmDepthStencilSurface *surface) { assert(surface); return surface->backgroundDepth; } EXPORT(bool, sceGxmDepthStencilSurfaceGetBackgroundMask, const SceGxmDepthStencilSurface *surface) { assert(surface); return surface->control.get(host.mem)->backgroundMask; } EXPORT(uint8_t, sceGxmDepthStencilSurfaceGetBackgroundStencil, const SceGxmDepthStencilSurface *surface) { assert(surface); return surface->control.get(host.mem)->backgroundStencil; } EXPORT(SceGxmDepthStencilForceLoadMode, sceGxmDepthStencilSurfaceGetForceLoadMode, const SceGxmDepthStencilSurface *surface) { assert(surface); return static_cast(surface->zlsControl & SCE_GXM_DEPTH_STENCIL_FORCE_LOAD_ENABLED); } EXPORT(SceGxmDepthStencilForceStoreMode, sceGxmDepthStencilSurfaceGetForceStoreMode, const SceGxmDepthStencilSurface *surface) { assert(surface); // TODO: Implement on the renderer side return static_cast(surface->zlsControl & SCE_GXM_DEPTH_STENCIL_FORCE_STORE_ENABLED); } EXPORT(int, sceGxmDepthStencilSurfaceGetFormat, const SceGxmDepthStencilSurface *surface) { assert(surface); return UNIMPLEMENTED(); } EXPORT(uint32_t, sceGxmDepthStencilSurfaceGetStrideInSamples, const SceGxmDepthStencilSurface *surface) { assert(surface); return UNIMPLEMENTED(); } EXPORT(int, sceGxmDepthStencilSurfaceInit, SceGxmDepthStencilSurface *surface, SceGxmDepthStencilFormat depthStencilFormat, SceGxmDepthStencilSurfaceType surfaceType, uint32_t strideInSamples, Ptr depthData, Ptr stencilData) { if (!surface) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if ((strideInSamples == 0) || ((strideInSamples % SCE_GXM_TILE_SIZEX) != 0)) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } SceGxmDepthStencilSurface tmp_surface; tmp_surface.depthData = depthData; tmp_surface.stencilData = stencilData; tmp_surface.zlsControl = SCE_GXM_DEPTH_STENCIL_FORCE_LOAD_DISABLED | SCE_GXM_DEPTH_STENCIL_FORCE_STORE_DISABLED; tmp_surface.control = alloc(host.mem, "gxm depth stencil control"); SceGxmDepthStencilControl control; control.disabled = false; control.format = depthStencilFormat; control.backgroundStencil = 0; memcpy(tmp_surface.control.get(host.mem), &control, sizeof(SceGxmDepthStencilControl)); memcpy(surface, &tmp_surface, sizeof(SceGxmDepthStencilSurface)); return 0; } EXPORT(int, sceGxmDepthStencilSurfaceInitDisabled, SceGxmDepthStencilSurface *surface) { if (!surface) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } SceGxmDepthStencilSurface tmp_surface; tmp_surface.control = alloc(host.mem, "gxm depth stencil control"); SceGxmDepthStencilControl control; control.disabled = true; memcpy(tmp_surface.control.get(host.mem), &control, sizeof(SceGxmDepthStencilControl)); memcpy(surface, &tmp_surface, sizeof(SceGxmDepthStencilSurface)); return 0; } EXPORT(bool, sceGxmDepthStencilSurfaceIsEnabled, const SceGxmDepthStencilSurface *surface) { assert(surface); return !surface->control.get(host.mem)->disabled; } EXPORT(void, sceGxmDepthStencilSurfaceSetBackgroundDepth, SceGxmDepthStencilSurface *surface, float depth) { assert(surface); surface->backgroundDepth = depth; } EXPORT(void, sceGxmDepthStencilSurfaceSetBackgroundMask, SceGxmDepthStencilSurface *surface, bool mask) { assert(surface); surface->control.get(host.mem)->backgroundMask = mask; } EXPORT(void, sceGxmDepthStencilSurfaceSetBackgroundStencil, SceGxmDepthStencilSurface *surface, uint8_t stencil) { assert(surface); surface->control.get(host.mem)->backgroundStencil = stencil; } EXPORT(void, sceGxmDepthStencilSurfaceSetForceLoadMode, SceGxmDepthStencilSurface *surface, SceGxmDepthStencilForceLoadMode forceLoad) { assert(surface); surface->zlsControl = (forceLoad & SCE_GXM_DEPTH_STENCIL_FORCE_LOAD_ENABLED) | (surface->zlsControl & ~SCE_GXM_DEPTH_STENCIL_FORCE_LOAD_ENABLED); } EXPORT(void, sceGxmDepthStencilSurfaceSetForceStoreMode, SceGxmDepthStencilSurface *surface, SceGxmDepthStencilForceStoreMode forceStore) { assert(surface); surface->zlsControl = (forceStore & SCE_GXM_DEPTH_STENCIL_FORCE_STORE_ENABLED) | (surface->zlsControl & ~SCE_GXM_DEPTH_STENCIL_FORCE_STORE_ENABLED); } EXPORT(int, sceGxmDestroyContext, Ptr context) { if (!context) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); renderer::destroy_context(*host.renderer, context.get(host.mem)->renderer); return 0; } EXPORT(int, sceGxmDestroyDeferredContext, SceGxmContext *deferredContext) { if (!deferredContext) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } return UNIMPLEMENTED(); } EXPORT(int, sceGxmDestroyRenderTarget, Ptr renderTarget) { MemState &mem = host.mem; if (!renderTarget) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); renderer::destroy_render_target(*host.renderer, renderTarget.get(mem)->renderer); free(mem, renderTarget); return 0; } EXPORT(int, sceGxmDisplayQueueAddEntry, Ptr oldBuffer, Ptr newBuffer, Ptr callbackData) { if (!oldBuffer || !newBuffer) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); DisplayCallback display_callback; const Address address = alloc(host.mem, host.gxm.params.displayQueueCallbackDataSize, __FUNCTION__); const Ptr ptr(address); memcpy(ptr.get(host.mem), callbackData.get(host.mem), host.gxm.params.displayQueueCallbackDataSize); // Block future rendering by setting value2 of sync object SceGxmSyncObject *oldBufferSync = oldBuffer.get(host.mem); SceGxmSyncObject *newBufferSync = newBuffer.get(host.mem); renderer::wishlist_display_entry(oldBufferSync); renderer::wishlist_display_entry(newBufferSync); renderer::subject_in_progress_display_entry(oldBufferSync); renderer::subject_in_progress_display_entry(newBufferSync); display_callback.data = address; display_callback.pc = host.gxm.params.displayQueueCallback.address(); display_callback.old_buffer = oldBuffer.address(); display_callback.new_buffer = newBuffer.address(); host.gxm.display_queue.push(display_callback); host.renderer->average_scene_per_frame = host.renderer->scene_processed_since_last_frame; host.renderer->scene_processed_since_last_frame = 0; return 0; } EXPORT(int, sceGxmDisplayQueueFinish) { return 0; } static void gxmSetUniformBuffers(renderer::State &state, GxmState &gxm, SceGxmContext *context, const SceGxmProgram &program, const UniformBuffers &buffers, const UniformBufferSizes &sizes, KernelState &kern, const MemState &mem, const SceUID current_thread) { for (std::size_t i = 0; i < buffers.size(); i++) { if (!buffers[i] || sizes.at(i) == 0) { continue; } std::uint32_t bytes_to_copy = sizes.at(i) * 4; if (sizes.at(i) == SCE_GXM_MAX_UB_IN_FLOAT_UNIT) { auto ite = gxm.memory_mapped_regions.lower_bound(buffers[i].address()); if ((ite != gxm.memory_mapped_regions.end()) && ((ite->first + ite->second.size) > buffers[i].address())) { // Bound the size bytes_to_copy = std::min(ite->first + ite->second.size - buffers[i].address(), bytes_to_copy); } // Check other UB friends and bound the size for (std::size_t j = 0; j < SCE_GXM_MAX_UNIFORM_BUFFERS; j++) { if (i == j) { continue; } if (buffers[j].address() > buffers[i].address()) { bytes_to_copy = std::min(buffers[j].address() - buffers[i].address(), bytes_to_copy); } } } std::uint8_t **dest = renderer::set_uniform_buffer(state, context->renderer.get(), !program.is_fragment(), i, bytes_to_copy); if (dest) { // Calculate the number of bytes if (context->state.type == SCE_GXM_CONTEXT_TYPE_DEFERRED) { SceGxmCommandDataCopyInfo *new_info = context->supply_new_info(kern, mem, current_thread); new_info->dest_pointer = dest; new_info->source_data = buffers[i].cast().get(mem); new_info->source_data_size = bytes_to_copy; context->add_info(new_info); } else { std::uint8_t *a_copy = new std::uint8_t[bytes_to_copy]; std::memcpy(a_copy, buffers[i].get(mem), bytes_to_copy); *dest = a_copy; } } } } static int gxmDrawElementGeneral(HostState &host, const char *export_name, const SceUID thread_id, SceGxmContext *context, SceGxmPrimitiveType primType, SceGxmIndexFormat indexType, const void *indexData, uint32_t indexCount, uint32_t instanceCount) { if (!context || !indexData) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); if (!context->state.active) { if (context->state.type == SCE_GXM_CONTEXT_TYPE_DEFERRED) { return RET_ERROR(SCE_GXM_ERROR_NOT_WITHIN_COMMAND_LIST); } else { return RET_ERROR(SCE_GXM_ERROR_NOT_WITHIN_SCENE); } } if (!context->state.fragment_program || !context->state.vertex_program) { return RET_ERROR(SCE_GXM_ERROR_NULL_PROGRAM); } if (context->state.vertex_last_reserve_status == SceGxmLastReserveStatus::Reserved) { const auto vertex_program = context->state.vertex_program.get(host.mem); const auto program = vertex_program->program.get(host.mem); const size_t size = (size_t)program->default_uniform_buffer_count * 4; const size_t next_used = context->state.vertex_ring_buffer_used + size; assert(next_used <= context->state.vertex_ring_buffer_size); if (next_used > context->state.vertex_ring_buffer_size) { if (context->state.type == SCE_GXM_CONTEXT_TYPE_IMMEDIATE) { return RET_ERROR(SCE_GXM_ERROR_RESERVE_FAILED); // TODO: Does not actually return this on immediate context } else { context->state.vertex_ring_buffer = gxmRunDeferredMemoryCallback(host.kernel, host.mem, host.gxm.callback_lock, context->state.vertex_ring_buffer_size, context->state.vertex_memory_callback, context->state.memory_callback_userdata, DEFAULT_RING_SIZE, thread_id); if (!context->state.vertex_ring_buffer) { return RET_ERROR(SCE_GXM_ERROR_RESERVE_FAILED); } context->state.vertex_ring_buffer_used = 0; } } else { context->state.vertex_ring_buffer_used = next_used; } context->state.vertex_last_reserve_status = SceGxmLastReserveStatus::Available; } if (context->state.fragment_last_reserve_status == SceGxmLastReserveStatus::Reserved) { const auto fragment_program = context->state.fragment_program.get(host.mem); const auto program = fragment_program->program.get(host.mem); const size_t size = (size_t)program->default_uniform_buffer_count * 4; const size_t next_used = context->state.fragment_ring_buffer_used + size; assert(next_used <= context->state.fragment_ring_buffer_size); if (next_used > context->state.fragment_ring_buffer_size) { if (context->state.type == SCE_GXM_CONTEXT_TYPE_IMMEDIATE) { return RET_ERROR(SCE_GXM_ERROR_RESERVE_FAILED); // TODO: Does not actually return this on immediate context } else { context->state.fragment_ring_buffer = gxmRunDeferredMemoryCallback(host.kernel, host.mem, host.gxm.callback_lock, context->state.fragment_ring_buffer_size, context->state.fragment_memory_callback, context->state.memory_callback_userdata, DEFAULT_RING_SIZE, thread_id); if (!context->state.fragment_ring_buffer) { return RET_ERROR(SCE_GXM_ERROR_RESERVE_FAILED); } context->state.fragment_ring_buffer_used = 0; } } else { context->state.fragment_ring_buffer_used = next_used; } context->state.fragment_last_reserve_status = SceGxmLastReserveStatus::Available; } const SceGxmFragmentProgram &gxm_fragment_program = *context->state.fragment_program.get(host.mem); const SceGxmVertexProgram &gxm_vertex_program = *context->state.vertex_program.get(host.mem); // Set uniforms const SceGxmProgram &vertex_program_gxp = *gxm_vertex_program.program.get(host.mem); const SceGxmProgram &fragment_program_gxp = *gxm_fragment_program.program.get(host.mem); gxmSetUniformBuffers(*host.renderer, host.gxm, context, vertex_program_gxp, context->state.vertex_uniform_buffers, gxm_vertex_program.renderer_data->uniform_buffer_sizes, host.kernel, host.mem, thread_id); gxmSetUniformBuffers(*host.renderer, host.gxm, context, fragment_program_gxp, context->state.fragment_uniform_buffers, gxm_fragment_program.renderer_data->uniform_buffer_sizes, host.kernel, host.mem, thread_id); if (context->last_precomputed) { // Need to re-set the data const auto frag_paramters = gxp::program_parameters(fragment_program_gxp); const auto vert_paramters = gxp::program_parameters(vertex_program_gxp); auto &textures = context->state.textures; for (uint32_t i = 0; i < fragment_program_gxp.parameter_count; ++i) { const auto parameter = frag_paramters[i]; if (parameter.category == SCE_GXM_PARAMETER_CATEGORY_SAMPLER) { const auto index = parameter.resource_index; renderer::set_texture(*host.renderer, context->renderer.get(), index, textures[index]); } } for (uint32_t i = 0; i < vertex_program_gxp.parameter_count; ++i) { const auto parameter = vert_paramters[i]; if (parameter.category == SCE_GXM_PARAMETER_CATEGORY_SAMPLER) { const auto index = parameter.resource_index + SCE_GXM_MAX_TEXTURE_UNITS; renderer::set_texture(*host.renderer, context->renderer.get(), index, textures[index]); } } renderer::set_program(*host.renderer, context->renderer.get(), context->state.vertex_program, false); renderer::set_program(*host.renderer, context->renderer.get(), context->state.fragment_program, true); context->last_precomputed = false; } // Update vertex data. We should stores a copy of the data to pass it to GPU later, since another scene // may start to overwrite stuff when this scene is being processed in our queue (in case of OpenGL). size_t max_index = 0; if (indexType == SCE_GXM_INDEX_FORMAT_U16) { const uint16_t *const data = static_cast(indexData); max_index = *std::max_element(&data[0], &data[indexCount]); } else { const uint32_t *const data = static_cast(indexData); max_index = *std::max_element(&data[0], &data[indexCount]); } size_t max_data_length[SCE_GXM_MAX_VERTEX_STREAMS] = {}; std::uint32_t stream_used = 0; for (const SceGxmVertexAttribute &attribute : gxm_vertex_program.attributes) { const SceGxmAttributeFormat attribute_format = static_cast(attribute.format); const size_t attribute_size = gxm::attribute_format_size(attribute_format) * attribute.componentCount; const SceGxmVertexStream &stream = gxm_vertex_program.streams[attribute.streamIndex]; const SceGxmIndexSource index_source = static_cast(stream.indexSource); const size_t data_passed_length = gxm::is_stream_instancing(index_source) ? ((instanceCount - 1) * stream.stride) : (max_index * stream.stride); const size_t data_length = attribute.offset + data_passed_length + attribute_size; max_data_length[attribute.streamIndex] = std::max(max_data_length[attribute.streamIndex], data_length); stream_used |= (1 << attribute.streamIndex); } // Copy and queue upload for (size_t stream_index = 0; stream_index < SCE_GXM_MAX_VERTEX_STREAMS; ++stream_index) { // Upload it if (stream_used & (1 << static_cast(stream_index))) { const size_t data_length = max_data_length[stream_index]; const std::uint8_t *const data = context->state.stream_data[stream_index].cast().get(host.mem); std::uint8_t **dat_copy_to = renderer::set_vertex_stream(*host.renderer, context->renderer.get(), stream_index, data_length); if (dat_copy_to) { if (context->state.type == SCE_GXM_CONTEXT_TYPE_DEFERRED) { SceGxmCommandDataCopyInfo *new_info = context->supply_new_info(host.kernel, host.mem, thread_id); new_info->dest_pointer = dat_copy_to; new_info->source_data = data; new_info->source_data_size = data_length; context->add_info(new_info); } else { std::uint8_t *a_copy = new std::uint8_t[data_length]; std::memcpy(a_copy, data, data_length); *dat_copy_to = a_copy; } } } } // Fragment texture is copied so no need to set it here. // Add draw command renderer::draw(*host.renderer, context->renderer.get(), primType, indexType, indexData, indexCount, instanceCount); return 0; } EXPORT(int, sceGxmDraw, SceGxmContext *context, SceGxmPrimitiveType primType, SceGxmIndexFormat indexType, const void *indexData, uint32_t indexCount) { return gxmDrawElementGeneral(host, export_name, thread_id, context, primType, indexType, indexData, indexCount, 1); } EXPORT(int, sceGxmDrawInstanced, SceGxmContext *context, SceGxmPrimitiveType primType, SceGxmIndexFormat indexType, const void *indexData, uint32_t indexCount, uint32_t indexWrap) { if (indexCount % indexWrap != 0) { LOG_WARN("Extra vertexes are requested to be drawn (ignored)"); } return gxmDrawElementGeneral(host, export_name, thread_id, context, primType, indexType, indexData, indexWrap, indexCount / indexWrap); } EXPORT(int, sceGxmDrawPrecomputed, SceGxmContext *context, SceGxmPrecomputedDraw *draw) { if (!context) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (!context->state.active) { if (context->state.type == SCE_GXM_CONTEXT_TYPE_DEFERRED) { return RET_ERROR(SCE_GXM_ERROR_NOT_WITHIN_COMMAND_LIST); } else { return RET_ERROR(SCE_GXM_ERROR_NOT_WITHIN_SCENE); } } if (!draw) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } SceGxmPrecomputedVertexState *vertex_state = context->state.precomputed_vertex_state.cast().get(host.mem); SceGxmPrecomputedFragmentState *fragment_state = context->state.precomputed_fragment_state.cast().get(host.mem); // not sure if precomputed uses current program... maybe it does? // anyway states have to be made on a program to program basis so this should be safe const Ptr fragment_program_gptr = fragment_state ? fragment_state->program : context->state.fragment_program; const Ptr vertex_program_gptr = vertex_state ? vertex_state->program : context->state.vertex_program; const SceGxmFragmentProgram *fragment_program = fragment_program_gptr.get(host.mem); const SceGxmVertexProgram *vertex_program = vertex_program_gptr.get(host.mem); if (!vertex_program || !fragment_program) { return RET_ERROR(SCE_GXM_ERROR_NULL_PROGRAM); } renderer::set_program(*host.renderer, context->renderer.get(), fragment_program_gptr, true); renderer::set_program(*host.renderer, context->renderer.get(), vertex_program_gptr, false); // Set uniforms const SceGxmProgram &vertex_program_gxp = *vertex_program->program.get(host.mem); const SceGxmProgram &fragment_program_gxp = *fragment_program->program.get(host.mem); gxmSetUniformBuffers(*host.renderer, host.gxm, context, vertex_program_gxp, (vertex_state ? (*vertex_state->uniform_buffers.get(host.mem)) : context->state.vertex_uniform_buffers), vertex_program->renderer_data->uniform_buffer_sizes, host.kernel, host.mem, thread_id); gxmSetUniformBuffers(*host.renderer, host.gxm, context, fragment_program_gxp, (fragment_state ? (*fragment_state->uniform_buffers.get(host.mem)) : context->state.fragment_uniform_buffers), fragment_program->renderer_data->uniform_buffer_sizes, host.kernel, host.mem, thread_id); // Update vertex data. We should stores a copy of the data to pass it to GPU later, since another scene // may start to overwrite stuff when this scene is being processed in our queue (in case of OpenGL). size_t max_index = 0; if (draw->index_format == SCE_GXM_INDEX_FORMAT_U16) { const uint16_t *const data = draw->index_data.cast().get(host.mem); max_index = *std::max_element(&data[0], &data[draw->vertex_count]); } else { const uint32_t *const data = draw->index_data.cast().get(host.mem); max_index = *std::max_element(&data[0], &data[draw->vertex_count]); } const auto frag_paramters = gxp::program_parameters(fragment_program_gxp); SceGxmTexture *frag_textures = fragment_state ? fragment_state->textures.get(host.mem) : context->state.textures.data(); for (uint32_t i = 0; i < fragment_program_gxp.parameter_count; ++i) { const auto parameter = frag_paramters[i]; if (parameter.category == SCE_GXM_PARAMETER_CATEGORY_SAMPLER) { const auto index = parameter.resource_index; renderer::set_texture(*host.renderer, context->renderer.get(), index, frag_textures[index]); } } const auto vert_paramters = gxp::program_parameters(vertex_program_gxp); SceGxmTexture *vert_textures = vertex_state ? vertex_state->textures.get(host.mem) : (context->state.textures.data() + SCE_GXM_MAX_TEXTURE_UNITS); for (uint32_t i = 0; i < vertex_program_gxp.parameter_count; ++i) { const auto parameter = vert_paramters[i]; if (parameter.category == SCE_GXM_PARAMETER_CATEGORY_SAMPLER) { const auto index = parameter.resource_index; renderer::set_texture(*host.renderer, context->renderer.get(), index + SCE_GXM_MAX_TEXTURE_UNITS, vert_textures[index]); } } size_t max_data_length[SCE_GXM_MAX_VERTEX_STREAMS] = {}; std::uint32_t stream_used = 0; for (const SceGxmVertexAttribute &attribute : vertex_program->attributes) { const SceGxmAttributeFormat attribute_format = static_cast(attribute.format); const size_t attribute_size = gxm::attribute_format_size(attribute_format) * attribute.componentCount; const SceGxmVertexStream &stream = vertex_program->streams[attribute.streamIndex]; const SceGxmIndexSource index_source = static_cast(stream.indexSource); const size_t data_passed_length = gxm::is_stream_instancing(index_source) ? ((draw->instance_count - 1) * stream.stride) : (max_index * stream.stride); const size_t data_length = attribute.offset + data_passed_length + attribute_size; max_data_length[attribute.streamIndex] = std::max(max_data_length[attribute.streamIndex], data_length); stream_used |= (1 << attribute.streamIndex); } auto stream_data = draw->stream_data.get(host.mem); // Copy and queue upload for (size_t stream_index = 0; stream_index < SCE_GXM_MAX_VERTEX_STREAMS; ++stream_index) { // Upload it if (stream_used & (1 << static_cast(stream_index))) { const size_t data_length = max_data_length[stream_index]; const std::uint8_t *const data = stream_data[stream_index].cast().get(host.mem); std::uint8_t **dest_copy = renderer::set_vertex_stream(*host.renderer, context->renderer.get(), stream_index, data_length); if (dest_copy) { if (context->state.type == SCE_GXM_CONTEXT_TYPE_DEFERRED) { SceGxmCommandDataCopyInfo *new_info = context->supply_new_info(host.kernel, host.mem, thread_id); new_info->dest_pointer = dest_copy; new_info->source_data = data; new_info->source_data_size = data_length; context->add_info(new_info); } else { std::uint8_t *a_copy = new std::uint8_t[data_length]; std::memcpy(a_copy, data, data_length); *dest_copy = a_copy; } } } } // Fragment texture is copied so no need to set it here. // Add draw command renderer::draw(*host.renderer, context->renderer.get(), draw->type, draw->index_format, draw->index_data.get(host.mem), draw->vertex_count, draw->instance_count); context->last_precomputed = true; return 0; } EXPORT(int, sceGxmEndCommandList, SceGxmContext *deferredContext, SceGxmCommandList *commandList) { if (deferredContext->state.type != SCE_GXM_CONTEXT_TYPE_DEFERRED) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if (!deferredContext->state.active) { return RET_ERROR(SCE_GXM_ERROR_NOT_WITHIN_COMMAND_LIST); } // Try to allocate memory for storing command list from renderer int total_to_allocate = (sizeof(renderer::CommandList) + sizeof(renderer::Command) - 1) / sizeof(renderer::Command); { const std::lock_guard guard(deferredContext->lock); commandList->copy_info = deferredContext->infos; commandList->list = deferredContext->linearly_allocate(host.kernel, host.mem, thread_id); } *commandList->list = deferredContext->renderer->command_list; // Reset active state deferredContext->state.active = false; deferredContext->reset_recording(); renderer::reset_command_list(deferredContext->renderer->command_list); return 0; } EXPORT(int, sceGxmEndScene, SceGxmContext *context, SceGxmNotification *vertexNotification, SceGxmNotification *fragmentNotification) { const MemState &mem = host.mem; if (!context) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (context->state.type != SCE_GXM_CONTEXT_TYPE_IMMEDIATE) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if (!context->state.active) { return RET_ERROR(SCE_GXM_ERROR_WITHIN_SCENE); } // Add command to end the scene renderer::sync_surface_data(*host.renderer, context->renderer.get()); // Add NOP for SceGxmFinish renderer::add_command(context->renderer.get(), renderer::CommandOpcode::Nop, &context->renderer->render_finish_status, ++host.renderer->last_scene_id); if (vertexNotification) { renderer::add_command(context->renderer.get(), renderer::CommandOpcode::SignalNotification, nullptr, *vertexNotification, true); } if (fragmentNotification) { renderer::add_command(context->renderer.get(), renderer::CommandOpcode::SignalNotification, nullptr, *fragmentNotification, false); } if (context->state.fragment_sync_object) { // Add NOP for our sync object SceGxmSyncObject *sync = context->state.fragment_sync_object.get(mem); renderer::add_command(context->renderer.get(), renderer::CommandOpcode::SignalSyncObject, nullptr, context->state.fragment_sync_object); renderer::subject_in_progress(sync, renderer::SyncObjectSubject::Fragment); } // Submit our command list renderer::submit_command_list(*host.renderer, context->renderer.get(), context->renderer->command_list); renderer::reset_command_list(context->renderer->command_list); context->state.active = false; return 0; } EXPORT(int, sceGxmExecuteCommandList, SceGxmContext *context, SceGxmCommandList *commandList) { if (!context) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (context->state.type != SCE_GXM_CONTEXT_TYPE_IMMEDIATE) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if (!context->state.active) { return RET_ERROR(SCE_GXM_ERROR_NOT_WITHIN_SCENE); } // Finalise by copy values SceGxmCommandDataCopyInfo *copy_info = commandList->copy_info; while (copy_info) { std::uint8_t *data_allocated = new std::uint8_t[copy_info->source_data_size]; std::memcpy(data_allocated, copy_info->source_data, copy_info->source_data_size); *copy_info->dest_pointer = data_allocated; copy_info = copy_info->next; } // Emit a jump to the first command of given command list // Since only one immediate context exists per process, direct linking like this should be fine! (I hope) renderer::CommandList &imm_cmds = context->renderer->command_list; imm_cmds.last->next = commandList->list->first; imm_cmds.last = commandList->list->last; // Restore back our GXM state gxmContextStateRestore(*host.renderer, host.mem, context, true); return 0; } EXPORT(void, sceGxmFinish, SceGxmContext *context) { assert(context); if (!context) return; // Wait on this context's rendering finish code. There is one for sync object and one specifically // for SceGxmFinish. renderer::finish(*host.renderer, *context->renderer); } EXPORT(SceGxmPassType, sceGxmFragmentProgramGetPassType, const SceGxmFragmentProgram *fragmentProgram) { assert(fragmentProgram); STUBBED("SCE_GXM_PASS_TYPE_OPAQUE"); return SceGxmPassType::SCE_GXM_PASS_TYPE_OPAQUE; } EXPORT(Ptr, sceGxmFragmentProgramGetProgram, const SceGxmFragmentProgram *fragmentProgram) { assert(fragmentProgram); return fragmentProgram->program; } EXPORT(bool, sceGxmFragmentProgramIsEnabled, const SceGxmFragmentProgram *fragmentProgram) { assert(fragmentProgram); return UNIMPLEMENTED(); } EXPORT(int, sceGxmGetContextType, const SceGxmContext *context, SceGxmContextType *type) { if (!context || !type) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } *type = context->state.type; return 0; } EXPORT(int, sceGxmGetDeferredContextFragmentBuffer, const SceGxmContext *deferredContext, Ptr *mem) { if (!deferredContext || !mem) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (deferredContext->state.type != SCE_GXM_CONTEXT_TYPE_DEFERRED) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if (deferredContext->state.active) { return RET_ERROR(SCE_GXM_ERROR_WITHIN_COMMAND_LIST); } *mem = deferredContext->state.fragment_ring_buffer; return 0; } EXPORT(int, sceGxmGetDeferredContextVdmBuffer, const SceGxmContext *deferredContext, Ptr *mem) { if (!deferredContext || !mem) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (deferredContext->state.type != SCE_GXM_CONTEXT_TYPE_DEFERRED) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if (deferredContext->state.active) { return RET_ERROR(SCE_GXM_ERROR_WITHIN_COMMAND_LIST); } *mem = deferredContext->state.vdm_buffer; return 0; } EXPORT(int, sceGxmGetDeferredContextVertexBuffer, const SceGxmContext *deferredContext, Ptr *mem) { if (!deferredContext || !mem) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (deferredContext->state.type != SCE_GXM_CONTEXT_TYPE_DEFERRED) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if (deferredContext->state.active) { return RET_ERROR(SCE_GXM_ERROR_WITHIN_COMMAND_LIST); } *mem = deferredContext->state.vertex_ring_buffer; return 0; } EXPORT(Ptr, sceGxmGetNotificationRegion) { return host.gxm.notification_region; } EXPORT(int, sceGxmGetParameterBufferThreshold, uint32_t *parameterBufferSize) { if (!parameterBufferSize) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } return UNIMPLEMENTED(); } EXPORT(uint32_t, sceGxmGetPrecomputedDrawSize, const SceGxmVertexProgram *vertexProgram) { assert(vertexProgram); uint16_t max_stream_index = 0; for (const SceGxmVertexAttribute &attribute : vertexProgram->attributes) { max_stream_index = std::max(attribute.streamIndex, max_stream_index); } return (max_stream_index + 1) * sizeof(StreamData); } EXPORT(uint32_t, sceGxmGetPrecomputedFragmentStateSize, const SceGxmFragmentProgram *fragmentProgram) { assert(fragmentProgram); const auto &fragment_program_gxp = *fragmentProgram->program.get(host.mem); const uint16_t texture_count = get_gxp_texture_count(fragment_program_gxp); return texture_count * sizeof(TextureData) + sizeof(UniformBuffers); } EXPORT(uint32_t, sceGxmGetPrecomputedVertexStateSize, const SceGxmVertexProgram *vertexProgram) { assert(vertexProgram); const auto &vertex_program_gxp = *vertexProgram->program.get(host.mem); const uint16_t texture_count = get_gxp_texture_count(vertex_program_gxp); return texture_count * sizeof(TextureData) + sizeof(UniformBuffers); } EXPORT(int, sceGxmGetRenderTargetMemSize, const SceGxmRenderTargetParams *params, uint32_t *hostMemSize) { if (!params) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } *hostMemSize = uint32_t(MB(2)); return STUBBED("2MB host mem"); } struct GxmThreadParams { KernelState *kernel = nullptr; MemState *mem = nullptr; SceUID thid = SCE_KERNEL_ERROR_ILLEGAL_THREAD_ID; GxmState *gxm = nullptr; renderer::State *renderer = nullptr; std::shared_ptr host_may_destroy_params = std::shared_ptr(SDL_CreateSemaphore(0), SDL_DestroySemaphore); }; static int SDLCALL thread_function(void *data) { const GxmThreadParams params = *static_cast(data); SDL_SemPost(params.host_may_destroy_params.get()); while (true) { auto display_callback = params.gxm->display_queue.pop(); if (!display_callback) break; SceGxmSyncObject *oldBuffer = Ptr(display_callback->old_buffer).get(*params.mem); SceGxmSyncObject *newBuffer = Ptr(display_callback->new_buffer).get(*params.mem); // Wait for fragment on the new buffer to finish renderer::wishlist(newBuffer, renderer::SyncObjectSubject::Fragment); // Now run callback const ThreadStatePtr display_thread = util::find(params.thid, params.kernel->threads); display_thread->run_guest_function(display_callback->pc, { display_callback->data }); free(*params.mem, display_callback->data); // Should not block anymore. renderer::subject_done_display_entry(oldBuffer); renderer::subject_done_display_entry(newBuffer); } return 0; } EXPORT(int, sceGxmInitialize, const SceGxmInitializeParams *params) { if (!params) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (((params->flags != 0x00000000U) && (params->flags != 0x00010000U) && (params->flags != 0x00020000U)) || (params->parameterBufferSize & 0x3FFFF)) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if ((params->displayQueueMaxPendingCount * params->displayQueueCallbackDataSize) > 0x200) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } host.gxm.params = *params; host.gxm.display_queue.maxPendingCount_ = params->displayQueueMaxPendingCount; const ThreadStatePtr main_thread = util::find(thread_id, host.kernel.threads); const ThreadStatePtr display_queue_thread = host.kernel.create_thread(host.mem, "SceGxmDisplayQueue", Ptr(0), SCE_KERNEL_HIGHEST_PRIORITY_USER, SCE_KERNEL_THREAD_CPU_AFFINITY_MASK_DEFAULT, SCE_KERNEL_STACK_SIZE_USER_DEFAULT, nullptr); if (!display_queue_thread) { return RET_ERROR(SCE_GXM_ERROR_DRIVER); } host.gxm.display_queue_thread = display_queue_thread->id; GxmThreadParams gxm_params; gxm_params.mem = &host.mem; gxm_params.kernel = &host.kernel; gxm_params.thid = host.gxm.display_queue_thread; gxm_params.gxm = &host.gxm; gxm_params.renderer = host.renderer.get(); SDL_CreateThread(&thread_function, "SceGxmDisplayQueue", &gxm_params); SDL_SemWait(gxm_params.host_may_destroy_params.get()); host.gxm.notification_region = Ptr(alloc(host.mem, MB(1), "SceGxmNotificationRegion")); memset(host.gxm.notification_region.get(host.mem), 0, MB(1)); return 0; } EXPORT(int, sceGxmIsDebugVersion) { return UNIMPLEMENTED(); } EXPORT(int, sceGxmMapFragmentUsseMemory, Ptr base, uint32_t size, uint32_t *offset) { STUBBED("always return success"); if (!base || !offset) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } // TODO What should this be? *offset = base.address(); return 0; } EXPORT(int, sceGxmMapMemory, Ptr base, uint32_t size, uint32_t attribs) { if (!base) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } // Check if it has already been mapped // Some games intentionally overlapping mapped region. Nothing we can do. Allow it, bear your own consequences. GxmState &gxm = host.gxm; auto ite = gxm.memory_mapped_regions.lower_bound(base.address()); if ((ite == gxm.memory_mapped_regions.end()) || (ite->first != base.address())) { gxm.memory_mapped_regions.emplace(base.address(), MemoryMapInfo{ base.address(), size, attribs }); return 0; } return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } EXPORT(int, sceGxmMapVertexUsseMemory, Ptr base, uint32_t size, uint32_t *offset) { STUBBED("always return success"); if (!base || !offset) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } // TODO What should this be? *offset = base.address(); return 0; } EXPORT(int, sceGxmMidSceneFlush, SceGxmContext *immediateContext, uint32_t flags, SceGxmSyncObject *vertexSyncObject, const Ptr vertexNotification) { STUBBED("STUB"); if (!immediateContext) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if ((flags & 0xFFFFFFFE) || (immediateContext->state.type != SCE_GXM_CONTEXT_TYPE_IMMEDIATE)) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if (vertexSyncObject != nullptr) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (vertexNotification) { volatile uint32_t *val = vertexNotification.get(host.mem)->address.get(host.mem); *val = vertexNotification.get(host.mem)->value; } return 0; } EXPORT(int, _sceGxmMidSceneFlush, SceGxmContext *immediateContext, uint32_t flags, SceGxmSyncObject *vertexSyncObject, const Ptr vertexNotification) { return CALL_EXPORT(sceGxmMidSceneFlush, immediateContext, flags, vertexSyncObject, vertexNotification); } EXPORT(int, sceGxmNotificationWait, const SceGxmNotification *notification) { if (!notification) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } // TODO: This is so horrible volatile std::uint32_t *value = notification->address.get(host.mem); const std::uint32_t target_value = notification->value; while (*value != target_value) { } return 0; } EXPORT(int, sceGxmPadHeartbeat, const SceGxmColorSurface *displaySurface, SceGxmSyncObject *displaySyncObject) { if (!displaySurface || !displaySyncObject) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); return 0; } EXPORT(int, sceGxmPadTriggerGpuPaTrace) { return UNIMPLEMENTED(); } EXPORT(int, sceGxmPopUserMarker) { return UNIMPLEMENTED(); } EXPORT(int, sceGxmPrecomputedDrawInit, SceGxmPrecomputedDraw *state, Ptr program, Ptr extra_data) { if (!state || !program || !extra_data) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (extra_data.address() & 0xF) { return RET_ERROR(SCE_GXM_ERROR_INVALID_ALIGNMENT); } SceGxmPrecomputedDraw new_draw; new_draw.program = program; uint16_t max_stream_index = 0; const auto &gxm_vertex_program = *program.get(host.mem); for (const SceGxmVertexAttribute &attribute : gxm_vertex_program.attributes) { max_stream_index = std::max(attribute.streamIndex, max_stream_index); } new_draw.stream_count = max_stream_index + 1; new_draw.stream_data = extra_data.cast(); *state = new_draw; return 0; } EXPORT(int, sceGxmPrecomputedDrawSetAllVertexStreams, SceGxmPrecomputedDraw *state, const Ptr *stream_data) { if (!state) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } const auto state_stream_data = state->stream_data.get(host.mem); for (int i = 0; i < state->stream_count; ++i) { state_stream_data[i] = stream_data[i]; } return 0; } EXPORT(int, sceGxmPrecomputedDrawSetParams, SceGxmPrecomputedDraw *state, SceGxmPrimitiveType type, SceGxmIndexFormat index_format, Ptr index_data, uint32_t vertex_count) { if (!state || !index_data) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } state->type = type; state->index_format = index_format; state->index_data = index_data; state->vertex_count = vertex_count; state->instance_count = 1; return 0; } EXPORT(int, sceGxmPrecomputedDrawSetParamsInstanced, SceGxmPrecomputedDraw *precomputedDraw, SceGxmPrimitiveType primType, SceGxmIndexFormat indexType, Ptr indexData, uint32_t indexCount, uint32_t indexWrap) { if (!precomputedDraw || !indexData) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } precomputedDraw->type = primType; precomputedDraw->index_format = indexType; precomputedDraw->index_data = indexData; if (indexWrap == 0) { precomputedDraw->vertex_count = 0; precomputedDraw->instance_count = 0; } else { precomputedDraw->vertex_count = indexWrap; precomputedDraw->instance_count = indexCount / indexWrap; } return 0; } EXPORT(int, sceGxmPrecomputedDrawSetVertexStream, SceGxmPrecomputedDraw *state, uint32_t streamIndex, Ptr streamData) { if (!state) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (streamIndex > (SCE_GXM_MAX_VERTEX_STREAMS - 1)) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if (!streamData) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } const auto stream_data = state->stream_data.get(host.mem); stream_data[streamIndex] = streamData; return 0; } EXPORT(Ptr, sceGxmPrecomputedFragmentStateGetDefaultUniformBuffer, const SceGxmPrecomputedFragmentState *state) { UniformBuffers &uniform_buffers = *state->uniform_buffers.get(host.mem); return uniform_buffers[SCE_GXM_DEFAULT_UNIFORM_BUFFER_CONTAINER_INDEX]; } EXPORT(int, sceGxmPrecomputedFragmentStateInit, SceGxmPrecomputedFragmentState *state, Ptr program, Ptr extra_data) { if (!state || !program || !extra_data) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (extra_data.address() & 0xF) { return RET_ERROR(SCE_GXM_ERROR_INVALID_ALIGNMENT); } SceGxmPrecomputedFragmentState new_state; new_state.program = program; const auto &fragment_program_gxp = *program.get(host.mem)->program.get(host.mem); new_state.texture_count = get_gxp_texture_count(fragment_program_gxp); new_state.textures = extra_data.cast(); new_state.uniform_buffers = (extra_data.cast() + new_state.texture_count).cast(); *state = new_state; return 0; } EXPORT(int, sceGxmPrecomputedFragmentStateSetAllAuxiliarySurfaces) { return UNIMPLEMENTED(); } EXPORT(int, sceGxmPrecomputedFragmentStateSetAllTextures, SceGxmPrecomputedFragmentState *state, Ptr textures) { if (!state || !textures) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } const auto state_textures = state->textures.get(host.mem); for (int i = 0; i < state->texture_count; ++i) { state_textures[i] = textures.get(host.mem)[i]; } return 0; } EXPORT(int, sceGxmPrecomputedFragmentStateSetAllUniformBuffers, SceGxmPrecomputedFragmentState *precomputedState, Ptr const *bufferDataArray) { if (!precomputedState || !precomputedState->uniform_buffers || !bufferDataArray) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); UniformBuffers *uniform_buffers = precomputedState->uniform_buffers.get(host.mem); if (!uniform_buffers) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); for (auto b = 0; b < SCE_GXM_MAX_UNIFORM_BUFFERS; b++) (*uniform_buffers)[b] = bufferDataArray[b]; return 0; } EXPORT(int, sceGxmPrecomputedFragmentStateSetDefaultUniformBuffer, SceGxmPrecomputedFragmentState *state, Ptr buffer) { if (!state || !buffer) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } UniformBuffers &uniform_buffers = *state->uniform_buffers.get(host.mem); uniform_buffers[SCE_GXM_DEFAULT_UNIFORM_BUFFER_CONTAINER_INDEX] = buffer; return 0; } EXPORT(int, sceGxmPrecomputedFragmentStateSetTexture, SceGxmPrecomputedFragmentState *state, uint32_t index, const SceGxmTexture *texture) { if (!state) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (index > (SCE_GXM_MAX_TEXTURE_UNITS - 1)) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if (!texture) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } const auto state_textures = state->textures.get(host.mem); state_textures[index] = *texture; return 0; } EXPORT(int, sceGxmPrecomputedFragmentStateSetUniformBuffer, SceGxmPrecomputedFragmentState *precomputedState, uint32_t bufferIndex, Ptr bufferData) { if (!precomputedState) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (bufferIndex > (SCE_GXM_MAX_UNIFORM_BUFFERS - 1)) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if (!bufferData) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } auto &state_uniform_buffers = *precomputedState->uniform_buffers.get(host.mem); state_uniform_buffers[bufferIndex] = bufferData; return 0; } EXPORT(Ptr, sceGxmPrecomputedVertexStateGetDefaultUniformBuffer, SceGxmPrecomputedVertexState *state) { UniformBuffers &uniform_buffers = *state->uniform_buffers.get(host.mem); return uniform_buffers[SCE_GXM_DEFAULT_UNIFORM_BUFFER_CONTAINER_INDEX]; } EXPORT(int, sceGxmPrecomputedVertexStateInit, SceGxmPrecomputedVertexState *state, Ptr program, Ptr extra_data) { if (!state || !program || !extra_data) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (extra_data.address() & 0xF) { return RET_ERROR(SCE_GXM_ERROR_INVALID_ALIGNMENT); } SceGxmPrecomputedVertexState new_state; new_state.program = program; const auto &vertex_program_gxp = *program.get(host.mem)->program.get(host.mem); new_state.texture_count = get_gxp_texture_count(vertex_program_gxp); new_state.textures = extra_data.cast(); new_state.uniform_buffers = (extra_data.cast() + new_state.texture_count).cast(); *state = new_state; return 0; } EXPORT(int, sceGxmPrecomputedVertexStateSetAllTextures, SceGxmPrecomputedVertexState *precomputedState, Ptr textureArray) { if (!precomputedState || !textureArray) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } const auto state_textures = precomputedState->textures.get(host.mem); for (int i = 0; i < precomputedState->texture_count; ++i) { state_textures[i] = textureArray.get(host.mem)[i]; } return 0; } EXPORT(int, sceGxmPrecomputedVertexStateSetAllUniformBuffers, SceGxmPrecomputedVertexState *precomputedState, Ptr const *bufferDataArray) { if (!precomputedState || !precomputedState->uniform_buffers || !bufferDataArray) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); UniformBuffers *uniform_buffers = precomputedState->uniform_buffers.get(host.mem); if (!uniform_buffers) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); for (auto b = 0; b < SCE_GXM_MAX_UNIFORM_BUFFERS; b++) (*uniform_buffers)[b] = bufferDataArray[b]; return 0; } EXPORT(int, sceGxmPrecomputedVertexStateSetDefaultUniformBuffer, SceGxmPrecomputedVertexState *state, Ptr buffer) { if (!state || !buffer) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } UniformBuffers &uniform_buffers = *state->uniform_buffers.get(host.mem); uniform_buffers[SCE_GXM_DEFAULT_UNIFORM_BUFFER_CONTAINER_INDEX] = buffer; return 0; } EXPORT(int, sceGxmPrecomputedVertexStateSetTexture, SceGxmPrecomputedVertexState *precomputedState, uint32_t textureIndex, const SceGxmTexture *texture) { if (!precomputedState || !texture) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } const auto state_textures = precomputedState->textures.get(host.mem); state_textures[textureIndex] = *texture; return 0; } EXPORT(int, sceGxmPrecomputedVertexStateSetUniformBuffer, SceGxmPrecomputedVertexState *precomputedState, uint32_t bufferIndex, Ptr bufferData) { if (!precomputedState) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (bufferIndex > (SCE_GXM_MAX_UNIFORM_BUFFERS - 1)) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if (!bufferData) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } UniformBuffers &uniform_buffers = *precomputedState->uniform_buffers.get(host.mem); uniform_buffers[bufferIndex] = bufferData; return 0; } EXPORT(int, sceGxmProgramCheck, const SceGxmProgram *program) { if (!program) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); if (memcmp(&program->magic, "GXP", 4) != 0) return RET_ERROR(SCE_GXM_ERROR_NULL_PROGRAM); return 0; } EXPORT(Ptr, sceGxmProgramFindParameterByName, const SceGxmProgram *program, const char *name) { const MemState &mem = host.mem; assert(program); if (!program || !name) return Ptr(); const SceGxmProgramParameter *const parameters = reinterpret_cast(reinterpret_cast(&program->parameters_offset) + program->parameters_offset); for (uint32_t i = 0; i < program->parameter_count; ++i) { const SceGxmProgramParameter *const parameter = ¶meters[i]; const uint8_t *const parameter_bytes = reinterpret_cast(parameter); const char *const parameter_name = reinterpret_cast(parameter_bytes + parameter->name_offset); if (strcmp(parameter_name, name) == 0) { const Address parameter_address = static_cast
(parameter_bytes - &mem.memory[0]); return Ptr(parameter_address); } } return Ptr(); } EXPORT(Ptr, sceGxmProgramFindParameterBySemantic, const SceGxmProgram *program, SceGxmParameterSemantic semantic, uint32_t index) { const MemState &mem = host.mem; if (semantic == SCE_GXM_PARAMETER_SEMANTIC_NONE) { return Ptr(); } assert(program); if (!program) return Ptr(); const SceGxmProgramParameter *const parameters = reinterpret_cast(reinterpret_cast(&program->parameters_offset) + program->parameters_offset); for (uint32_t i = 0; i < program->parameter_count; ++i) { const SceGxmProgramParameter *const parameter = ¶meters[i]; const uint8_t *const parameter_bytes = reinterpret_cast(parameter); if ((parameter->semantic == semantic) && (parameter->semantic_index == index)) { const Address parameter_address = static_cast
(parameter_bytes - &mem.memory[0]); return Ptr(parameter_address); } } return Ptr(); } EXPORT(Ptr, _sceGxmProgramFindParameterBySemantic, const SceGxmProgram *program, SceGxmParameterSemantic semantic, uint32_t index) { return export_sceGxmProgramFindParameterBySemantic(host, thread_id, export_name, program, semantic, index); } EXPORT(uint32_t, sceGxmProgramGetDefaultUniformBufferSize, const SceGxmProgram *program) { return program->default_uniform_buffer_count * sizeof(Ptr); } EXPORT(uint32_t, sceGxmProgramGetFragmentProgramInputs, Ptr program_) { const auto program = program_.get(host.mem); return static_cast(gxp::get_fragment_inputs(*program)); } EXPORT(int, sceGxmProgramGetOutputRegisterFormat, const SceGxmProgram *program, SceGxmParameterType *type, uint32_t *componentCount) { if (!program || !type || !componentCount) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); if (!program->is_fragment()) return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); return UNIMPLEMENTED(); } EXPORT(Ptr, sceGxmProgramGetParameter, const SceGxmProgram *program, uint32_t index) { const SceGxmProgramParameter *const parameters = reinterpret_cast(reinterpret_cast(&program->parameters_offset) + program->parameters_offset); const SceGxmProgramParameter *const parameter = ¶meters[index]; const uint8_t *const parameter_bytes = reinterpret_cast(parameter); const Address parameter_address = static_cast
(parameter_bytes - &host.mem.memory[0]); return Ptr(parameter_address); } EXPORT(uint32_t, sceGxmProgramGetParameterCount, const SceGxmProgram *program) { assert(program); return program->parameter_count; } EXPORT(uint32_t, sceGxmProgramGetSize, const SceGxmProgram *program) { assert(program); return program->size; } EXPORT(SceGxmProgramType, sceGxmProgramGetType, const SceGxmProgram *program) { assert(program); return program->get_type(); } EXPORT(uint32_t, sceGxmProgramGetVertexProgramOutputs, Ptr program_) { const auto program = program_.get(host.mem); return static_cast(gxp::get_vertex_outputs(*program)); } EXPORT(bool, sceGxmProgramIsDepthReplaceUsed, const SceGxmProgram *program) { assert(program); return program->is_depth_replace_used(); } EXPORT(bool, sceGxmProgramIsDiscardUsed, const SceGxmProgram *program) { assert(program); return program->is_discard_used(); } EXPORT(bool, sceGxmProgramIsEquivalent, const SceGxmProgram *programA, const SceGxmProgram *programB) { if (!programA || !programB) { LOG_ERROR("SCE_GXM_ERROR_INVALID_POINTER"); return false; } return (programA->size == programB->size) && (memcmp(programA, programB, programA->size) == 0); } EXPORT(bool, sceGxmProgramIsFragColorUsed, const SceGxmProgram *program) { assert(program); return program->is_frag_color_used(); } EXPORT(bool, sceGxmProgramIsNativeColorUsed, const SceGxmProgram *program) { assert(program); return program->is_native_color(); } EXPORT(bool, sceGxmProgramIsSpriteCoordUsed, const SceGxmProgram *program) { assert(program); return program->is_sprite_coord_used(); } EXPORT(uint32_t, sceGxmProgramParameterGetArraySize, const SceGxmProgramParameter *parameter) { assert(parameter); return parameter->array_size; } EXPORT(int, sceGxmProgramParameterGetCategory, const SceGxmProgramParameter *parameter) { assert(parameter); return parameter->category; } EXPORT(uint32_t, sceGxmProgramParameterGetComponentCount, const SceGxmProgramParameter *parameter) { assert(parameter); return parameter->component_count; } EXPORT(uint32_t, sceGxmProgramParameterGetContainerIndex, const SceGxmProgramParameter *parameter) { assert(parameter); return parameter->container_index; } EXPORT(uint32_t, sceGxmProgramParameterGetIndex, const SceGxmProgram *program, const SceGxmProgramParameter *parameter) { uint64_t parameter_offset = program->parameters_offset; if (parameter_offset > 0) parameter_offset += (uint64_t)&program->parameters_offset; return (uint32_t)((uint64_t)parameter - parameter_offset) >> 4; } EXPORT(Ptr, sceGxmProgramParameterGetName, Ptr parameter) { if (!parameter) return {}; return Ptr(parameter.address() + parameter.get(host.mem)->name_offset); } EXPORT(uint32_t, sceGxmProgramParameterGetResourceIndex, const SceGxmProgramParameter *parameter) { assert(parameter); return parameter->resource_index; } EXPORT(int, sceGxmProgramParameterGetSemantic, const SceGxmProgramParameter *parameter) { assert(parameter); if (parameter->category != SCE_GXM_PARAMETER_CATEGORY_ATTRIBUTE) return SCE_GXM_PARAMETER_SEMANTIC_NONE; return parameter->semantic; } EXPORT(int, _sceGxmProgramParameterGetSemantic, const SceGxmProgramParameter *parameter) { return export_sceGxmProgramParameterGetSemantic(host, thread_id, export_name, parameter); } EXPORT(uint32_t, sceGxmProgramParameterGetSemanticIndex, const SceGxmProgramParameter *parameter) { return parameter->semantic_index & 0xf; } EXPORT(int, sceGxmProgramParameterGetType, const SceGxmProgramParameter *parameter) { return parameter->type; } EXPORT(bool, sceGxmProgramParameterIsRegFormat, const SceGxmProgram *program, const SceGxmProgramParameter *parameter) { if (program->is_fragment()) { return false; } if (parameter->category != SceGxmParameterCategory::SCE_GXM_PARAMETER_CATEGORY_ATTRIBUTE) { return false; } return UNIMPLEMENTED(); } EXPORT(bool, sceGxmProgramParameterIsSamplerCube, const SceGxmProgramParameter *parameter) { return parameter->is_sampler_cube(); } EXPORT(int, sceGxmPushUserMarker) { return UNIMPLEMENTED(); } EXPORT(int, sceGxmRemoveRazorGpuCaptureBuffer) { return UNIMPLEMENTED(); } EXPORT(int, sceGxmRenderTargetGetDriverMemBlock, const SceGxmRenderTarget *renderTarget, SceUID *driverMemBlock) { if (!renderTarget || !driverMemBlock) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } *driverMemBlock = renderTarget->driverMemBlock; return 0; } EXPORT(int, sceGxmReserveFragmentDefaultUniformBuffer, SceGxmContext *context, Ptr *uniformBuffer) { if (!context || !uniformBuffer) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); *uniformBuffer = context->state.fragment_ring_buffer.cast() + static_cast(context->state.fragment_ring_buffer_used); context->state.fragment_last_reserve_status = SceGxmLastReserveStatus::Reserved; context->state.fragment_uniform_buffers[SCE_GXM_DEFAULT_UNIFORM_BUFFER_CONTAINER_INDEX] = *uniformBuffer; return 0; } EXPORT(int, sceGxmRenderTargetGetHostMem) { return UNIMPLEMENTED(); } EXPORT(int, sceGxmReserveVertexDefaultUniformBuffer, SceGxmContext *context, Ptr *uniformBuffer) { if (!context || !uniformBuffer) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); *uniformBuffer = context->state.vertex_ring_buffer.cast() + static_cast(context->state.vertex_ring_buffer_used); context->state.vertex_last_reserve_status = SceGxmLastReserveStatus::Reserved; context->state.vertex_uniform_buffers[SCE_GXM_DEFAULT_UNIFORM_BUFFER_CONTAINER_INDEX] = *uniformBuffer; return 0; } EXPORT(int, sceGxmSetAuxiliarySurface) { return UNIMPLEMENTED(); } EXPORT(void, sceGxmSetBackDepthBias, SceGxmContext *context, int32_t factor, int32_t units) { if ((context->state.back_depth_bias_factor != factor) || (context->state.back_depth_bias_units != units)) { context->state.back_depth_bias_factor = factor; context->state.back_depth_bias_units = units; if (context->alloc_space) { renderer::set_depth_bias(*host.renderer, context->renderer.get(), false, factor, units); } } } EXPORT(void, sceGxmSetBackDepthFunc, SceGxmContext *context, SceGxmDepthFunc depthFunc) { if (context->state.back_depth_func != depthFunc) { context->state.back_depth_func = depthFunc; if (context->alloc_space) { renderer::set_depth_func(*host.renderer, context->renderer.get(), false, depthFunc); } } } EXPORT(void, sceGxmSetBackDepthWriteEnable, SceGxmContext *context, SceGxmDepthWriteMode enable) { if (context->state.back_depth_write_enable != enable) { context->state.back_depth_write_enable = enable; if (context->alloc_space) { renderer::set_depth_write_enable_mode(*host.renderer, context->renderer.get(), false, enable); } } } EXPORT(void, sceGxmSetBackFragmentProgramEnable, SceGxmContext *context, SceGxmFragmentProgramMode enable) { renderer::set_side_fragment_program_enable(*host.renderer, context->renderer.get(), false, enable); } EXPORT(void, sceGxmSetBackLineFillLastPixelEnable, SceGxmContext *context, SceGxmLineFillLastPixelMode enable) { UNIMPLEMENTED(); } EXPORT(void, sceGxmSetBackPointLineWidth, SceGxmContext *context, uint32_t width) { if (context->state.back_point_line_width != width) { context->state.back_point_line_width = width; if (context->alloc_space) { renderer::set_point_line_width(*host.renderer, context->renderer.get(), false, width); } } } EXPORT(void, sceGxmSetBackPolygonMode, SceGxmContext *context, SceGxmPolygonMode mode) { if (context->state.back_polygon_mode != mode) { context->state.back_polygon_mode = mode; if (context->alloc_space) { renderer::set_polygon_mode(*host.renderer, context->renderer.get(), false, mode); } } } EXPORT(void, sceGxmSetBackStencilFunc, SceGxmContext *context, SceGxmStencilFunc func, SceGxmStencilOp stencilFail, SceGxmStencilOp depthFail, SceGxmStencilOp depthPass, uint8_t compareMask, uint8_t writeMask) { if ((context->state.back_stencil.func != func) || (context->state.back_stencil.stencil_fail != stencilFail) || (context->state.back_stencil.depth_fail != depthFail) || (context->state.back_stencil.depth_pass != depthPass) || (context->state.back_stencil.compare_mask != compareMask) || (context->state.back_stencil.write_mask != writeMask)) { context->state.back_stencil.func = func; context->state.back_stencil.stencil_fail = stencilFail; context->state.back_stencil.depth_fail = depthFail; context->state.back_stencil.depth_pass = depthPass; context->state.back_stencil.compare_mask = compareMask; context->state.back_stencil.write_mask = writeMask; if (context->alloc_space) { renderer::set_stencil_func(*host.renderer, context->renderer.get(), false, func, stencilFail, depthFail, depthPass, compareMask, writeMask); } } } EXPORT(void, sceGxmSetBackStencilRef, SceGxmContext *context, uint8_t sref) { if (context->state.back_stencil.ref != sref) { context->state.back_stencil.ref = sref; if (context->alloc_space) renderer::set_stencil_ref(*host.renderer, context->renderer.get(), false, sref); } } EXPORT(void, sceGxmSetBackVisibilityTestEnable, SceGxmContext *context, SceGxmVisibilityTestMode enable) { UNIMPLEMENTED(); } EXPORT(void, sceGxmSetBackVisibilityTestIndex, SceGxmContext *context, uint32_t index) { UNIMPLEMENTED(); } EXPORT(void, sceGxmSetBackVisibilityTestOp, SceGxmContext *context, SceGxmVisibilityTestOp op) { UNIMPLEMENTED(); } EXPORT(void, sceGxmSetCullMode, SceGxmContext *context, SceGxmCullMode mode) { if (context->state.cull_mode != mode) { context->state.cull_mode = mode; if (context->alloc_space) renderer::set_cull_mode(*host.renderer, context->renderer.get(), mode); } } static constexpr const std::uint32_t SCE_GXM_DEFERRED_CONTEXT_MINIMUM_BUFFER_SIZE = 1024; EXPORT(int, sceGxmSetDeferredContextFragmentBuffer, SceGxmContext *deferredContext, Ptr mem, uint32_t size) { if (!deferredContext) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (deferredContext->state.type != SCE_GXM_CONTEXT_TYPE_DEFERRED) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if (deferredContext->state.active) { return RET_ERROR(SCE_GXM_ERROR_WITHIN_COMMAND_LIST); } if ((size != 0) && (size < SCE_GXM_DEFERRED_CONTEXT_MINIMUM_BUFFER_SIZE)) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if (mem && !size) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } // Use the one specified deferredContext->state.fragment_ring_buffer = mem; deferredContext->state.fragment_ring_buffer_size = size; return 0; } EXPORT(int, sceGxmSetDeferredContextVdmBuffer, SceGxmContext *deferredContext, Ptr mem, uint32_t size) { if (!deferredContext) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (deferredContext->state.type != SCE_GXM_CONTEXT_TYPE_DEFERRED) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if (deferredContext->state.active) { return RET_ERROR(SCE_GXM_ERROR_WITHIN_COMMAND_LIST); } // Use the one specified deferredContext->state.vdm_buffer = mem; deferredContext->state.vdm_buffer_size = size; return 0; } EXPORT(int, sceGxmSetDeferredContextVertexBuffer, SceGxmContext *deferredContext, Ptr mem, uint32_t size) { if (!deferredContext) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (deferredContext->state.type != SCE_GXM_CONTEXT_TYPE_DEFERRED) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if (deferredContext->state.active) { return RET_ERROR(SCE_GXM_ERROR_WITHIN_COMMAND_LIST); } if ((size != 0) && (size < SCE_GXM_DEFERRED_CONTEXT_MINIMUM_BUFFER_SIZE)) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if (mem && !size) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } // Use the one specified deferredContext->state.vertex_ring_buffer = mem; deferredContext->state.vertex_ring_buffer_size = size; return 0; } EXPORT(int, sceGxmSetFragmentDefaultUniformBuffer, SceGxmContext *context, Ptr bufferData) { if (!context || !bufferData) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } context->state.fragment_uniform_buffers[SCE_GXM_DEFAULT_UNIFORM_BUFFER_CONTAINER_INDEX] = bufferData; return 0; } EXPORT(void, sceGxmSetFragmentProgram, SceGxmContext *context, Ptr fragmentProgram) { if (!context || !fragmentProgram) return; context->state.fragment_program = fragmentProgram; renderer::set_program(*host.renderer, context->renderer.get(), fragmentProgram, true); } EXPORT(int, sceGxmSetFragmentTexture, SceGxmContext *context, uint32_t textureIndex, const SceGxmTexture *texture) { if (!context || !texture) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); if (textureIndex > (SCE_GXM_MAX_TEXTURE_UNITS - 1)) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } context->state.textures[textureIndex] = *texture; if (context->alloc_space) renderer::set_texture(*host.renderer, context->renderer.get(), textureIndex, *texture); return 0; } EXPORT(int, sceGxmSetFragmentUniformBuffer, SceGxmContext *context, uint32_t bufferIndex, Ptr bufferData) { if (!context || !bufferData) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (bufferIndex > (SCE_GXM_MAX_UNIFORM_BUFFERS - 1)) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } context->state.fragment_uniform_buffers[bufferIndex] = bufferData; return 0; } EXPORT(void, sceGxmSetFrontDepthBias, SceGxmContext *context, int32_t factor, int32_t units) { if ((context->state.front_depth_bias_factor != factor) || (context->state.front_depth_bias_units != units)) { context->state.front_depth_bias_factor = factor; context->state.front_depth_bias_units = units; if (context->alloc_space) renderer::set_depth_bias(*host.renderer, context->renderer.get(), true, factor, units); } } EXPORT(void, sceGxmSetFrontDepthFunc, SceGxmContext *context, SceGxmDepthFunc depthFunc) { if (context->state.front_depth_func != depthFunc) { context->state.front_depth_func = depthFunc; if (context->alloc_space) { renderer::set_depth_func(*host.renderer, context->renderer.get(), true, depthFunc); } } } EXPORT(void, sceGxmSetFrontDepthWriteEnable, SceGxmContext *context, SceGxmDepthWriteMode enable) { if (context->state.front_depth_write_enable != enable) { context->state.front_depth_write_enable = enable; if (context->alloc_space) { renderer::set_depth_write_enable_mode(*host.renderer, context->renderer.get(), true, enable); } } } EXPORT(void, sceGxmSetFrontFragmentProgramEnable, SceGxmContext *context, SceGxmFragmentProgramMode enable) { renderer::set_side_fragment_program_enable(*host.renderer, context->renderer.get(), true, enable); } EXPORT(void, sceGxmSetFrontLineFillLastPixelEnable, SceGxmContext *context, SceGxmLineFillLastPixelMode enable) { UNIMPLEMENTED(); } EXPORT(void, sceGxmSetFrontPointLineWidth, SceGxmContext *context, uint32_t width) { if (context->state.front_point_line_width != width) { context->state.front_point_line_width = width; if (context->alloc_space) { renderer::set_point_line_width(*host.renderer, context->renderer.get(), true, width); } } } EXPORT(void, sceGxmSetFrontPolygonMode, SceGxmContext *context, SceGxmPolygonMode mode) { if (context->state.front_polygon_mode != mode) { context->state.front_polygon_mode = mode; if (context->alloc_space) { renderer::set_polygon_mode(*host.renderer, context->renderer.get(), true, mode); } } } EXPORT(void, sceGxmSetFrontStencilFunc, SceGxmContext *context, SceGxmStencilFunc func, SceGxmStencilOp stencilFail, SceGxmStencilOp depthFail, SceGxmStencilOp depthPass, uint8_t compareMask, uint8_t writeMask) { if ((context->state.front_stencil.func != func) || (context->state.front_stencil.stencil_fail != stencilFail) || (context->state.front_stencil.depth_fail != depthFail) || (context->state.front_stencil.depth_pass != depthPass) || (context->state.front_stencil.compare_mask != compareMask) || (context->state.front_stencil.write_mask != writeMask)) { context->state.front_stencil.func = func; context->state.front_stencil.depth_fail = depthFail; context->state.front_stencil.depth_pass = depthPass; context->state.front_stencil.stencil_fail = stencilFail; context->state.front_stencil.compare_mask = compareMask; context->state.front_stencil.write_mask = writeMask; if (context->alloc_space) renderer::set_stencil_func(*host.renderer, context->renderer.get(), true, func, stencilFail, depthFail, depthPass, compareMask, writeMask); } } EXPORT(void, sceGxmSetFrontStencilRef, SceGxmContext *context, uint8_t sref) { if (context->state.front_stencil.ref != sref) { context->state.front_stencil.ref = sref; if (context->alloc_space) { renderer::set_stencil_ref(*host.renderer, context->renderer.get(), true, sref); } } } EXPORT(void, sceGxmSetFrontVisibilityTestEnable, SceGxmContext *context, SceGxmVisibilityTestMode enable) { UNIMPLEMENTED(); } EXPORT(void, sceGxmSetFrontVisibilityTestIndex, SceGxmContext *context, uint32_t index) { UNIMPLEMENTED(); } EXPORT(void, sceGxmSetFrontVisibilityTestOp, SceGxmContext *context, SceGxmVisibilityTestOp op) { UNIMPLEMENTED(); } EXPORT(void, sceGxmSetPrecomputedFragmentState, SceGxmContext *context, Ptr state) { if (!state) { context->state.precomputed_fragment_state.reset(); return; } context->state.precomputed_fragment_state = state; } EXPORT(void, sceGxmSetPrecomputedVertexState, SceGxmContext *context, Ptr state) { if (!state) { context->state.precomputed_vertex_state.reset(); return; } context->state.precomputed_vertex_state = state; } EXPORT(void, sceGxmSetRegionClip, SceGxmContext *context, SceGxmRegionClipMode mode, uint32_t xMin, uint32_t yMin, uint32_t xMax, uint32_t yMax) { bool change_detected = false; if (context->state.region_clip_mode != mode) { context->state.region_clip_mode = mode; change_detected = true; } // Set it right here now if ((context->state.region_clip_min.x != xMin) || (context->state.region_clip_min.y != yMin) || (context->state.region_clip_max.x != xMax) || (context->state.region_clip_max.y != yMax)) { context->state.region_clip_min.x = xMin; context->state.region_clip_min.y = yMin; context->state.region_clip_max.x = xMax; context->state.region_clip_max.y = yMax; change_detected = true; } if (change_detected && context->alloc_space) renderer::set_region_clip(*host.renderer, context->renderer.get(), mode, xMin, xMax, yMin, yMax); } EXPORT(void, sceGxmSetTwoSidedEnable, SceGxmContext *context, SceGxmTwoSidedMode mode) { if (context->state.two_sided != mode) { context->state.two_sided = mode; if (context->alloc_space) { renderer::set_two_sided_enable(*host.renderer, context->renderer.get(), mode); } } } template static void convert_uniform_data(std::vector &converted_data, const float *sourceData, uint32_t componentCount) { converted_data.resize(componentCount * sizeof(T)); for (std::uint32_t i = 0; i < componentCount; ++i) { T converted = static_cast(sourceData[i]); std::memcpy(&converted_data[i * sizeof(T)], &converted, sizeof(T)); } } EXPORT(int, sceGxmSetUniformDataF, void *uniformBuffer, const SceGxmProgramParameter *parameter, uint32_t componentOffset, uint32_t componentCount, const float *sourceData) { assert(parameter); if (!uniformBuffer || !parameter || !sourceData) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); if (parameter->category != SceGxmParameterCategory::SCE_GXM_PARAMETER_CATEGORY_UNIFORM) return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); size_t size = 0; size_t offset = 0; bool is_float = false; const std::uint16_t param_type = parameter->type; // Component size is in bytes int comp_size = gxp::get_parameter_type_size(static_cast(param_type)); const std::uint8_t *source = reinterpret_cast(sourceData); std::vector converted_data; switch (parameter->type) { case SCE_GXM_PARAMETER_TYPE_S8: { convert_uniform_data(converted_data, sourceData, componentCount); source = converted_data.data(); break; } case SCE_GXM_PARAMETER_TYPE_U8: { convert_uniform_data(converted_data, sourceData, componentCount); source = converted_data.data(); break; } case SCE_GXM_PARAMETER_TYPE_U16: { convert_uniform_data(converted_data, sourceData, componentCount); source = converted_data.data(); break; } case SCE_GXM_PARAMETER_TYPE_S16: { convert_uniform_data(converted_data, sourceData, componentCount); source = converted_data.data(); break; } case SCE_GXM_PARAMETER_TYPE_U32: { convert_uniform_data(converted_data, sourceData, componentCount); source = converted_data.data(); break; } case SCE_GXM_PARAMETER_TYPE_S32: { convert_uniform_data(converted_data, sourceData, componentCount); source = converted_data.data(); break; } case SCE_GXM_PARAMETER_TYPE_F16: { converted_data.resize(((componentCount + 7) / 8) * 8 * 2); float_to_half(sourceData, reinterpret_cast(converted_data.data()), componentCount); source = converted_data.data(); is_float = true; break; } case SCE_GXM_PARAMETER_TYPE_F32: { is_float = true; break; } default: assert(false); } if (parameter->array_size == 1 || parameter->component_count == 1) { // Case 1: No array. Only a single vector. Don't apply any alignment // Case 2: Array but component count equals to 1. This case, a scalar array, align it to 32-bit bound if (parameter->component_count == 1) { // Apply 32 bit alignment, by making each component has 4 bytes comp_size = 4; } size = componentCount * comp_size; offset = parameter->resource_index * sizeof(float) + componentOffset * comp_size; memcpy(static_cast(uniformBuffer) + offset, source, size); } else { // This is the size of each element. size = parameter->component_count * comp_size; int align_bytes = 0; if (is_float) { // Align it to 64-bit boundary (8 bytes) if ((size & 7) != 0) { align_bytes = 8 - (size & 7); } } else { // Align it to 32-bit boundary (4 bytes) if ((size & 3) != 0) { align_bytes = 4 - (size & 3); } } // wtf // wtf const int vec_to_start_write = componentOffset / parameter->component_count; int component_cursor_inside_vector = (componentOffset % parameter->component_count); std::uint8_t *dest = reinterpret_cast(uniformBuffer) + parameter->resource_index * sizeof(float) + vec_to_start_write * (size + align_bytes) + component_cursor_inside_vector * comp_size; int component_to_copy_remain_per_elem = parameter->component_count - component_cursor_inside_vector; int component_left_to_copy = componentCount; while (component_left_to_copy > 0) { memcpy(dest, source, component_to_copy_remain_per_elem * comp_size); // Add and align destination dest += comp_size * component_to_copy_remain_per_elem + align_bytes; source += component_to_copy_remain_per_elem * comp_size; component_left_to_copy -= component_to_copy_remain_per_elem; component_to_copy_remain_per_elem = std::min(4, component_to_copy_remain_per_elem); } } return 0; } EXPORT(int, sceGxmSetUserMarker) { return UNIMPLEMENTED(); } EXPORT(int, sceGxmSetValidationEnable) { return UNIMPLEMENTED(); } EXPORT(int, sceGxmSetVertexDefaultUniformBuffer, SceGxmContext *context, Ptr bufferData) { if (!context || !bufferData) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } context->state.vertex_uniform_buffers[SCE_GXM_DEFAULT_UNIFORM_BUFFER_CONTAINER_INDEX] = bufferData; return 0; } EXPORT(void, sceGxmSetVertexProgram, SceGxmContext *context, Ptr vertexProgram) { if (!context || !vertexProgram) return; context->state.vertex_program = vertexProgram; renderer::set_program(*host.renderer, context->renderer.get(), vertexProgram, false); } EXPORT(int, sceGxmSetVertexStream, SceGxmContext *context, uint32_t streamIndex, Ptr streamData) { if (!context || !streamData) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); if (streamIndex > (SCE_GXM_MAX_VERTEX_STREAMS - 1)) return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); context->state.stream_data[streamIndex] = streamData; return 0; } EXPORT(int, sceGxmSetVertexTexture, SceGxmContext *context, uint32_t textureIndex, const SceGxmTexture *texture) { if (!context || !texture) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); if (textureIndex > (SCE_GXM_MAX_TEXTURE_UNITS - 1)) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } // Vertex texture arrays start at MAX UNITS value, so is shader binding. textureIndex += SCE_GXM_MAX_TEXTURE_UNITS; context->state.textures[textureIndex] = *texture; if (context->alloc_space) renderer::set_texture(*host.renderer, context->renderer.get(), textureIndex, *texture); return 0; } EXPORT(int, _sceGxmSetVertexTexture, SceGxmContext *context, uint32_t textureIndex, const SceGxmTexture *texture) { return CALL_EXPORT(sceGxmSetVertexTexture, context, textureIndex, texture); } EXPORT(int, sceGxmSetVertexUniformBuffer, SceGxmContext *context, uint32_t bufferIndex, Ptr bufferData) { if (!context || !bufferData) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); if (bufferIndex > (SCE_GXM_MAX_UNIFORM_BUFFERS - 1)) return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); context->state.vertex_uniform_buffers[bufferIndex] = bufferData; return 0; } EXPORT(void, sceGxmSetViewport, SceGxmContext *context, float xOffset, float xScale, float yOffset, float yScale, float zOffset, float zScale) { // Set viewport to enable, enable more offset and scale to set if (context->state.viewport.offset.x != xOffset || (context->state.viewport.offset.y != yOffset) || (context->state.viewport.offset.z != zOffset) || (context->state.viewport.scale.x != xScale) || (context->state.viewport.scale.y != yScale) || (context->state.viewport.scale.z != zScale)) { context->state.viewport.offset.x = xOffset; context->state.viewport.offset.y = yOffset; context->state.viewport.offset.z = zOffset; context->state.viewport.scale.x = xScale; context->state.viewport.scale.y = yScale; context->state.viewport.scale.z = zScale; if (context->alloc_space) { if (context->state.viewport.enable == SCE_GXM_VIEWPORT_ENABLED) { renderer::set_viewport_real(*host.renderer, context->renderer.get(), context->state.viewport.offset.x, context->state.viewport.offset.y, context->state.viewport.offset.z, context->state.viewport.scale.x, context->state.viewport.scale.y, context->state.viewport.scale.z); } else { renderer::set_viewport_flat(*host.renderer, context->renderer.get()); } } } } EXPORT(void, sceGxmSetViewportEnable, SceGxmContext *context, SceGxmViewportMode enable) { // Set viewport to enable/disable, no additional offset and scale to set. if (context->state.viewport.enable != enable) { context->state.viewport.enable = enable; if (context->alloc_space) { if (context->state.viewport.enable == SCE_GXM_VIEWPORT_DISABLED) { renderer::set_viewport_flat(*host.renderer, context->renderer.get()); } else { renderer::set_viewport_real(*host.renderer, context->renderer.get(), context->state.viewport.offset.x, context->state.viewport.offset.y, context->state.viewport.offset.z, context->state.viewport.scale.x, context->state.viewport.scale.y, context->state.viewport.scale.z); } } } } EXPORT(int, sceGxmSetVisibilityBuffer, SceGxmContext *immediateContext, Ptr bufferBase, uint32_t stridePerCore) { if (!immediateContext) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if (immediateContext->state.type != SCE_GXM_CONTEXT_TYPE_IMMEDIATE) return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); if (bufferBase.address() & (SCE_GXM_VISIBILITY_ALIGNMENT - 1)) return RET_ERROR(SCE_GXM_ERROR_INVALID_ALIGNMENT); STUBBED("Set all visible"); memset(bufferBase.get(host.mem), 0xFF, SCE_GXM_GPU_CORE_COUNT * stridePerCore); return 0; } EXPORT(void, sceGxmSetWBufferEnable) { UNIMPLEMENTED(); } EXPORT(void, sceGxmSetWClampEnable) { UNIMPLEMENTED(); } EXPORT(void, sceGxmSetWClampValue, SceGxmContext *context, float clampValue) { UNIMPLEMENTED(); } EXPORT(int, sceGxmSetWarningEnabled) { return UNIMPLEMENTED(); } EXPORT(int, sceGxmSetYuvProfile) { return UNIMPLEMENTED(); } Address alloc_callbacked(HostState &host, SceUID thread_id, const SceGxmShaderPatcherParams &shaderPatcherParams, uint size) { if (!shaderPatcherParams.hostAllocCallback) { LOG_ERROR("Empty hostAllocCallback"); } auto result = host.kernel.run_guest_function(thread_id, shaderPatcherParams.hostAllocCallback.address(), { shaderPatcherParams.userData.address(), size }); return result; } template Ptr alloc_callbacked(HostState &host, SceUID thread_id, const SceGxmShaderPatcherParams &shaderPatcherParams) { const Address address = alloc_callbacked(host, thread_id, shaderPatcherParams, sizeof(T)); const Ptr ptr(address); if (!ptr) { return ptr; } T *const memory = ptr.get(host.mem); new (memory) T; return ptr; } template Ptr alloc_callbacked(HostState &host, SceUID thread_id, SceGxmShaderPatcher *shaderPatcher) { return alloc_callbacked(host, thread_id, shaderPatcher->params); } void free_callbacked(HostState &host, SceUID thread_id, SceGxmShaderPatcher *shaderPatcher, Address data) { if (!shaderPatcher->params.hostFreeCallback) { LOG_ERROR("Empty hostFreeCallback"); } host.kernel.run_guest_function(thread_id, shaderPatcher->params.hostFreeCallback.address(), { shaderPatcher->params.userData.address(), data }); } template void free_callbacked(HostState &host, SceUID thread_id, SceGxmShaderPatcher *shaderPatcher, Ptr data) { free_callbacked(host, thread_id, shaderPatcher, data.address()); } EXPORT(int, sceGxmShaderPatcherAddRefFragmentProgram, SceGxmShaderPatcher *shaderPatcher, SceGxmFragmentProgram *fragmentProgram) { if (!shaderPatcher || !fragmentProgram) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); ++fragmentProgram->reference_count; return 0; } EXPORT(int, sceGxmShaderPatcherAddRefVertexProgram, SceGxmShaderPatcher *shaderPatcher, SceGxmVertexProgram *vertexProgram) { if (!shaderPatcher || !vertexProgram) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); ++vertexProgram->reference_count; return 0; } EXPORT(int, sceGxmShaderPatcherCreate, const SceGxmShaderPatcherParams *params, Ptr *shaderPatcher) { if (!params || !shaderPatcher) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); *shaderPatcher = alloc_callbacked(host, thread_id, *params); assert(*shaderPatcher); if (!*shaderPatcher) { return RET_ERROR(SCE_GXM_ERROR_OUT_OF_MEMORY); } shaderPatcher->get(host.mem)->params = *params; return 0; } EXPORT(int, sceGxmShaderPatcherCreateFragmentProgram, SceGxmShaderPatcher *shaderPatcher, const SceGxmRegisteredProgram *programId, SceGxmOutputRegisterFormat outputFormat, SceGxmMultisampleMode multisampleMode, const SceGxmBlendInfo *blendInfo, Ptr vertexProgram, Ptr *fragmentProgram) { MemState &mem = host.mem; if (!shaderPatcher || !programId || !fragmentProgram) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); static const SceGxmBlendInfo default_blend_info = { SCE_GXM_COLOR_MASK_ALL, SCE_GXM_BLEND_FUNC_NONE, SCE_GXM_BLEND_FUNC_NONE, SCE_GXM_BLEND_FACTOR_ONE, SCE_GXM_BLEND_FACTOR_ZERO, SCE_GXM_BLEND_FACTOR_ONE, SCE_GXM_BLEND_FACTOR_ZERO }; const FragmentProgramCacheKey key = { *programId, (blendInfo != nullptr) ? *blendInfo : default_blend_info }; FragmentProgramCache::const_iterator cached = shaderPatcher->fragment_program_cache.find(key); if (cached != shaderPatcher->fragment_program_cache.end()) { ++cached->second.get(mem)->reference_count; *fragmentProgram = cached->second; return 0; } *fragmentProgram = alloc_callbacked(host, thread_id, shaderPatcher); assert(*fragmentProgram); if (!*fragmentProgram) { return RET_ERROR(SCE_GXM_ERROR_OUT_OF_MEMORY); } SceGxmFragmentProgram *const fp = fragmentProgram->get(mem); fp->is_maskupdate = false; fp->program = programId->program; if (!renderer::create(fp->renderer_data, *host.renderer, *programId->program.get(mem), blendInfo, host.renderer->gxp_ptr_map, host.base_path.c_str(), host.io.title_id.c_str())) { return RET_ERROR(SCE_GXM_ERROR_DRIVER); } shaderPatcher->fragment_program_cache.emplace(key, *fragmentProgram); return 0; } EXPORT(int, sceGxmShaderPatcherCreateMaskUpdateFragmentProgram, SceGxmShaderPatcher *shaderPatcher, Ptr *fragmentProgram) { MemState &mem = host.mem; if (!shaderPatcher || !fragmentProgram) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); *fragmentProgram = alloc_callbacked(host, thread_id, shaderPatcher); assert(*fragmentProgram); if (!*fragmentProgram) { return RET_ERROR(SCE_GXM_ERROR_OUT_OF_MEMORY); } SceGxmFragmentProgram *const fp = fragmentProgram->get(mem); fp->is_maskupdate = true; fp->program = Ptr(alloc_callbacked(host, thread_id, shaderPatcher->params, size_mask_gxp)); memcpy(const_cast(fp->program.get(mem)), mask_gxp, size_mask_gxp); if (!renderer::create(fp->renderer_data, *host.renderer, *fp->program.get(mem), nullptr, host.renderer->gxp_ptr_map, host.base_path.c_str(), host.io.title_id.c_str())) { return RET_ERROR(SCE_GXM_ERROR_DRIVER); } return 0; } EXPORT(int, sceGxmShaderPatcherCreateVertexProgram, SceGxmShaderPatcher *shaderPatcher, const SceGxmRegisteredProgram *programId, const SceGxmVertexAttribute *attributes, uint32_t attributeCount, const SceGxmVertexStream *streams, uint32_t streamCount, Ptr *vertexProgram) { MemState &mem = host.mem; if (!shaderPatcher || !programId || !vertexProgram) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); VertexProgramCacheKey key = { *programId, 0 }; if (attributes) { key.hash = hash_data(attributes, sizeof(SceGxmVertexAttribute) * attributeCount); } if (streams) { key.hash ^= hash_data(streams, sizeof(SceGxmVertexStream) * streamCount); } VertexProgramCache::const_iterator cached = shaderPatcher->vertex_program_cache.find(key); if (cached != shaderPatcher->vertex_program_cache.end()) { ++cached->second.get(mem)->reference_count; *vertexProgram = cached->second; return 0; } *vertexProgram = alloc_callbacked(host, thread_id, shaderPatcher); assert(*vertexProgram); if (!*vertexProgram) { return RET_ERROR(SCE_GXM_ERROR_OUT_OF_MEMORY); } SceGxmVertexProgram *const vp = vertexProgram->get(mem); vp->program = programId->program; if (streams && streamCount > 0) { vp->streams.insert(vp->streams.end(), &streams[0], &streams[streamCount]); } if (attributes && attributeCount > 0) { vp->attributes.insert(vp->attributes.end(), &attributes[0], &attributes[attributeCount]); } if (!renderer::create(vp->renderer_data, *host.renderer, *programId->program.get(mem), host.renderer->gxp_ptr_map, host.base_path.c_str(), host.io.title_id.c_str())) { return RET_ERROR(SCE_GXM_ERROR_DRIVER); } shaderPatcher->vertex_program_cache.emplace(key, *vertexProgram); return 0; } EXPORT(int, sceGxmShaderPatcherDestroy, Ptr shaderPatcher) { if (!shaderPatcher) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); free_callbacked(host, thread_id, shaderPatcher.get(host.mem), shaderPatcher); return 0; } EXPORT(int, sceGxmShaderPatcherForceUnregisterProgram, SceGxmShaderPatcher *shaderPatcher, SceGxmShaderPatcherId programId) { if (!shaderPatcher || !programId) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } return UNIMPLEMENTED(); } EXPORT(uint32_t, sceGxmShaderPatcherGetBufferMemAllocated, const SceGxmShaderPatcher *shaderPatcher) { return UNIMPLEMENTED(); } EXPORT(int, sceGxmShaderPatcherGetFragmentProgramRefCount, const SceGxmShaderPatcher *shaderPatcher, const SceGxmFragmentProgram *fragmentProgram, uint32_t *refCount) { if (!shaderPatcher || !fragmentProgram || !refCount) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } *refCount = fragmentProgram->reference_count; return 0; } EXPORT(uint32_t, sceGxmShaderPatcherGetFragmentUsseMemAllocated, const SceGxmShaderPatcher *shaderPatcher) { return UNIMPLEMENTED(); } EXPORT(uint32_t, sceGxmShaderPatcherGetHostMemAllocated, const SceGxmShaderPatcher *shaderPatcher) { return UNIMPLEMENTED(); } EXPORT(Ptr, sceGxmShaderPatcherGetProgramFromId, SceGxmShaderPatcherId programId) { if (!programId) { return Ptr(); } return programId.get(host.mem)->program; } EXPORT(int, sceGxmShaderPatcherGetUserData) { return UNIMPLEMENTED(); } EXPORT(int, sceGxmShaderPatcherGetVertexProgramRefCount, const SceGxmShaderPatcher *shaderPatcher, const SceGxmVertexProgram *vertexProgram, uint32_t *refCount) { if (!shaderPatcher || !vertexProgram || !refCount) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } *refCount = vertexProgram->reference_count; return 0; } EXPORT(uint32_t, sceGxmShaderPatcherGetVertexUsseMemAllocated, const SceGxmShaderPatcher *shaderPatcher) { return UNIMPLEMENTED(); } EXPORT(int, sceGxmShaderPatcherRegisterProgram, SceGxmShaderPatcher *shaderPatcher, Ptr programHeader, SceGxmShaderPatcherId *programId) { if (!shaderPatcher || !programHeader || !programId) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); *programId = alloc_callbacked(host, thread_id, shaderPatcher); assert(*programId); if (!*programId) { return RET_ERROR(SCE_GXM_ERROR_OUT_OF_MEMORY); } SceGxmRegisteredProgram *const rp = programId->get(host.mem); rp->program = programHeader; return 0; } EXPORT(int, sceGxmShaderPatcherReleaseFragmentProgram, SceGxmShaderPatcher *shaderPatcher, Ptr fragmentProgram) { if (!shaderPatcher || !fragmentProgram) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); SceGxmFragmentProgram *const fp = fragmentProgram.get(host.mem); --fp->reference_count; if (fp->reference_count == 0) { for (FragmentProgramCache::const_iterator it = shaderPatcher->fragment_program_cache.begin(); it != shaderPatcher->fragment_program_cache.end(); ++it) { if (it->second == fragmentProgram) { shaderPatcher->fragment_program_cache.erase(it); break; } } free_callbacked(host, thread_id, shaderPatcher, fragmentProgram); } return 0; } EXPORT(int, sceGxmShaderPatcherReleaseVertexProgram, SceGxmShaderPatcher *shaderPatcher, Ptr vertexProgram) { if (!shaderPatcher || !vertexProgram) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); SceGxmVertexProgram *const vp = vertexProgram.get(host.mem); --vp->reference_count; if (vp->reference_count == 0) { for (VertexProgramCache::const_iterator it = shaderPatcher->vertex_program_cache.begin(); it != shaderPatcher->vertex_program_cache.end(); ++it) { if (it->second == vertexProgram) { shaderPatcher->vertex_program_cache.erase(it); break; } } free_callbacked(host, thread_id, shaderPatcher, vertexProgram); } return 0; } EXPORT(int, sceGxmShaderPatcherSetAuxiliarySurface) { return UNIMPLEMENTED(); } EXPORT(int, sceGxmShaderPatcherSetUserData, SceGxmShaderPatcher *shaderPatcher, Ptr userData) { if (!shaderPatcher) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } shaderPatcher->params.userData = userData; return 0; } EXPORT(int, sceGxmShaderPatcherUnregisterProgram, SceGxmShaderPatcher *shaderPatcher, SceGxmShaderPatcherId programId) { if (!shaderPatcher || !programId) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); SceGxmRegisteredProgram *const rp = programId.get(host.mem); rp->program.reset(); free_callbacked(host, thread_id, shaderPatcher, programId); return 0; } EXPORT(int, sceGxmSyncObjectCreate, Ptr *syncObject) { if (!syncObject) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); *syncObject = alloc(host.mem, __FUNCTION__); if (!*syncObject) { return RET_ERROR(SCE_GXM_ERROR_OUT_OF_MEMORY); } // Set all subjects to be done. syncObject->get(host.mem)->done = 0xFFFFFFFF; return 0; } EXPORT(int, sceGxmSyncObjectDestroy, Ptr syncObject) { if (!syncObject) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); free(host.mem, syncObject); return 0; } EXPORT(int, sceGxmTerminate) { const ThreadStatePtr thread = lock_and_find(host.gxm.display_queue_thread, host.kernel.threads, host.kernel.mutex); host.kernel.exit_delete_thread(thread); return 0; } EXPORT(Ptr, sceGxmTextureGetData, const SceGxmTexture *texture) { assert(texture); return Ptr(texture->data_addr << 2); } EXPORT(SceGxmTextureFormat, sceGxmTextureGetFormat, const SceGxmTexture *texture) { assert(texture); return gxm::get_format(texture); } EXPORT(int, sceGxmTextureGetGammaMode, const SceGxmTexture *texture) { assert(texture); return (texture->gamma_mode << 27); } EXPORT(uint32_t, sceGxmTextureGetHeight, const SceGxmTexture *texture) { assert(texture); return static_cast(gxm::get_height(texture)); } EXPORT(uint32_t, sceGxmTextureGetLodBias, const SceGxmTexture *texture) { if (!texture) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); if ((texture->type << 29) == SCE_GXM_TEXTURE_LINEAR_STRIDED) { return 0; } return texture->lod_bias; } EXPORT(uint32_t, sceGxmTextureGetLodMin, const SceGxmTexture *texture) { if (!texture) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); if ((texture->type << 29) == SCE_GXM_TEXTURE_LINEAR_STRIDED) { return 0; } return texture->lod_min0 | (texture->lod_min1 << 2); } EXPORT(int, sceGxmTextureGetMagFilter, const SceGxmTexture *texture) { assert(texture); return texture->mag_filter; } EXPORT(int, sceGxmTextureGetMinFilter, const SceGxmTexture *texture) { assert(texture); if ((texture->type << 29) == SCE_GXM_TEXTURE_LINEAR_STRIDED) { return texture->mag_filter; } return texture->min_filter; } EXPORT(SceGxmTextureMipFilter, sceGxmTextureGetMipFilter, const SceGxmTexture *texture) { assert(texture); if ((texture->type << 29) == SCE_GXM_TEXTURE_LINEAR_STRIDED) { return SCE_GXM_TEXTURE_MIP_FILTER_DISABLED; } return texture->mip_filter ? SCE_GXM_TEXTURE_MIP_FILTER_ENABLED : SCE_GXM_TEXTURE_MIP_FILTER_DISABLED; } EXPORT(uint32_t, sceGxmTextureGetMipmapCount, const SceGxmTexture *texture) { assert(texture); if ((texture->type << 29) == SCE_GXM_TEXTURE_LINEAR_STRIDED) { return 0; } return (texture->mip_count + 1) & 0xf; } EXPORT(uint32_t, sceGxmTextureGetMipmapCountUnsafe, const SceGxmTexture *texture) { assert(texture); return (texture->mip_count + 1) & 0xf; } EXPORT(int, sceGxmTextureGetNormalizeMode, const SceGxmTexture *texture) { assert(texture); return texture->normalize_mode << 31; } EXPORT(Ptr, sceGxmTextureGetPalette, const SceGxmTexture *texture) { const auto base_format = gxm::get_base_format(gxm::get_format(texture)); return gxm::is_paletted_format(base_format) ? Ptr(texture->palette_addr << 6) : Ptr(); } EXPORT(uint32_t, sceGxmTextureGetStride, const SceGxmTexture *texture) { assert(texture); if (texture->texture_type() != SCE_GXM_TEXTURE_LINEAR_STRIDED) return 0; return uint32_t(gxm::get_stride_in_bytes(texture)); } EXPORT(int, sceGxmTextureGetType, const SceGxmTexture *texture) { assert(texture); return (texture->type << 29); } EXPORT(int, sceGxmTextureGetUAddrMode, const SceGxmTexture *texture) { assert(texture); return texture->uaddr_mode; } EXPORT(int, sceGxmTextureGetUAddrModeSafe, const SceGxmTexture *texture) { assert(texture); if ((texture->type << 29) == SCE_GXM_TEXTURE_LINEAR_STRIDED) { return SCE_GXM_TEXTURE_ADDR_CLAMP; } return texture->uaddr_mode; } EXPORT(int, sceGxmTextureGetVAddrMode, const SceGxmTexture *texture) { assert(texture); return texture->vaddr_mode; } EXPORT(int, sceGxmTextureGetVAddrModeSafe, const SceGxmTexture *texture) { assert(texture); if ((texture->type << 29) == SCE_GXM_TEXTURE_LINEAR_STRIDED) { return SCE_GXM_TEXTURE_ADDR_CLAMP; } return texture->vaddr_mode; } EXPORT(uint32_t, sceGxmTextureGetWidth, const SceGxmTexture *texture) { assert(texture); return static_cast(gxm::get_width(texture)); } EXPORT(int, sceGxmTextureInitCube, SceGxmTexture *texture, Ptr data, SceGxmTextureFormat texFormat, uint32_t width, uint32_t height, uint32_t mipCount) { if (!texture) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } const int result = init_texture_base(export_name, texture, data, texFormat, width, height, mipCount, SCE_GXM_TEXTURE_CUBE); return result; } EXPORT(int, sceGxmTextureInitCubeArbitrary, SceGxmTexture *texture, Ptr data, SceGxmTextureFormat texFormat, uint32_t width, uint32_t height, uint32_t mipCount) { if (!texture) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } const int result = init_texture_base(export_name, texture, data, texFormat, width, height, mipCount, SCE_GXM_TEXTURE_CUBE_ARBITRARY); return result; } EXPORT(int, sceGxmTextureInitLinear, SceGxmTexture *texture, Ptr data, SceGxmTextureFormat texFormat, uint32_t width, uint32_t height, uint32_t mipCount) { if (!texture) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } const int result = init_texture_base(export_name, texture, data, texFormat, width, height, mipCount, SCE_GXM_TEXTURE_LINEAR); return result; } EXPORT(int, sceGxmTextureInitLinearStrided, SceGxmTexture *texture, Ptr data, SceGxmTextureFormat texFormat, uint32_t width, uint32_t height, uint32_t byteStride) { if (!texture) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if ((width > 4096) || (height > 4096)) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if (byteStride & 3) { return RET_ERROR(SCE_GXM_ERROR_INVALID_ALIGNMENT); } if ((byteStride < 4) || (byteStride > 131072)) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } const uint32_t stride_compressed = (byteStride >> 2) - 1; texture->mip_filter = stride_compressed & 1; texture->min_filter = (stride_compressed & 0b0000110) >> 1; texture->mip_count = (stride_compressed & 0b1111000) >> 3; texture->lod_bias = (stride_compressed & 0b1111110000000) >> 7; texture->base_format = (texFormat & 0x1F000000) >> 24; texture->type = SCE_GXM_TEXTURE_LINEAR_STRIDED >> 29; texture->data_addr = data.address() >> 2; texture->swizzle_format = (texFormat & 0x7000) >> 12; texture->normalize_mode = 1; texture->format0 = (texFormat & 0x80000000) >> 31; texture->uaddr_mode = texture->vaddr_mode = SCE_GXM_TEXTURE_ADDR_CLAMP; texture->height = height - 1; texture->width = width - 1; return 0; } EXPORT(int, sceGxmTextureInitSwizzled, SceGxmTexture *texture, Ptr data, SceGxmTextureFormat texFormat, uint32_t width, uint32_t height, uint32_t mipCount) { if (!texture) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } const int result = init_texture_base(export_name, texture, data, texFormat, width, height, mipCount, SCE_GXM_TEXTURE_SWIZZLED); return result; } EXPORT(int, sceGxmTextureInitSwizzledArbitrary, SceGxmTexture *texture, Ptr data, SceGxmTextureFormat texFormat, uint32_t width, uint32_t height, uint32_t mipCount) { if (!texture) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } const auto result = init_texture_base(export_name, texture, data, texFormat, width, height, mipCount, SCE_GXM_TEXTURE_SWIZZLED_ARBITRARY); return result; } EXPORT(int, sceGxmTextureInitTiled, SceGxmTexture *texture, Ptr data, SceGxmTextureFormat texFormat, uint32_t width, uint32_t height, uint32_t mipCount) { if (!texture) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } const int result = init_texture_base(export_name, texture, data, texFormat, width, height, mipCount, SCE_GXM_TEXTURE_TILED); return result; } EXPORT(int, sceGxmTextureSetData, SceGxmTexture *texture, Ptr data) { if (!texture) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } texture->data_addr = data.address() >> 2; return 0; } EXPORT(int, sceGxmTextureSetFormat, SceGxmTexture *texture, SceGxmTextureFormat texFormat) { if (!texture) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } texture->base_format = (texFormat & 0x1F000000) >> 24; texture->swizzle_format = (texFormat & 0x7000) >> 12; texture->format0 = (texFormat & 0x80000000) >> 31; return SCE_KERNEL_OK; } EXPORT(int, sceGxmTextureSetGammaMode, SceGxmTexture *texture, SceGxmTextureGammaMode gammaMode) { if (!texture) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } texture->gamma_mode = (static_cast(gammaMode) >> 27); return 0; } EXPORT(int, sceGxmTextureSetHeight, SceGxmTexture *texture, uint32_t height) { if (!texture) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); if (height > 4096) return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); if ((texture->type << 29) == SCE_GXM_TEXTURE_TILED) { if (texture->mip_count > 1) { if (height >> (texture->mip_count - 1) >> 0x1F) { goto LINEAR; } } return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if (((texture->type << 29) != SCE_GXM_TEXTURE_SWIZZLED) && ((texture->type << 29) != SCE_GXM_TEXTURE_TILED)) { LINEAR: texture->height = height - 1; return 0; } // TODO: Add support for swizzled textures LOG_WARN("Unimplemented texture format detected in sceGxmTextureSetHeight call."); return 0; } EXPORT(int, _sceGxmTextureSetHeight, SceGxmTexture *texture, uint32_t height) { return CALL_EXPORT(sceGxmTextureSetHeight, texture, height); } EXPORT(int, sceGxmTextureSetLodBias, SceGxmTexture *texture, uint32_t bias) { if (!texture) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if ((texture->type << 29) == SCE_GXM_TEXTURE_LINEAR_STRIDED) { return RET_ERROR(SCE_GXM_ERROR_UNSUPPORTED); } if (bias > 63) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } texture->lod_bias = bias; return 0; } EXPORT(int, sceGxmTextureSetLodMin, SceGxmTexture *texture, uint32_t lodMin) { if (!texture) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if ((texture->type << 29) == SCE_GXM_TEXTURE_LINEAR_STRIDED) { return RET_ERROR(SCE_GXM_ERROR_UNSUPPORTED); } texture->lod_min0 = lodMin & 3; texture->lod_min1 = lodMin >> 2; return 0; } EXPORT(int, sceGxmTextureSetMagFilter, SceGxmTexture *texture, SceGxmTextureFilter magFilter) { if (!texture) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } texture->mag_filter = (uint32_t)magFilter; return 0; } EXPORT(int, sceGxmTextureSetMinFilter, SceGxmTexture *texture, SceGxmTextureFilter minFilter) { if (!texture) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if ((texture->type << 29) == SCE_GXM_TEXTURE_LINEAR_STRIDED) { return RET_ERROR(SCE_GXM_ERROR_UNSUPPORTED); } texture->min_filter = (uint32_t)minFilter; return 0; } EXPORT(int, sceGxmTextureSetMipFilter, SceGxmTexture *texture, SceGxmTextureMipFilter mipFilter) { if (!texture) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if ((texture->type << 29) == SCE_GXM_TEXTURE_LINEAR_STRIDED) { return RET_ERROR(SCE_GXM_ERROR_UNSUPPORTED); } texture->mip_filter = (uint32_t)mipFilter; return 0; } EXPORT(int, sceGxmTextureSetMipmapCount, SceGxmTexture *texture, uint32_t mipCount) { if (!texture) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } if ((texture->type << 29) == SCE_GXM_TEXTURE_LINEAR_STRIDED) { return RET_ERROR(SCE_GXM_ERROR_UNSUPPORTED); } if (mipCount > 13) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } texture->mip_count = (uint32_t)mipCount; return 0; } EXPORT(int, sceGxmTextureSetNormalizeMode, SceGxmTexture *texture, SceGxmTextureNormalizeMode normalizeMode) { if (!texture) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } texture->normalize_mode = (static_cast(normalizeMode) >> 31); return 0; } EXPORT(int, sceGxmTextureSetPalette, SceGxmTexture *texture, Ptr paletteData) { if (!texture) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); if (paletteData.address() & 0x3F) return RET_ERROR(SCE_GXM_ERROR_INVALID_ALIGNMENT); texture->palette_addr = (paletteData.address() >> 6); return 0; } EXPORT(int, sceGxmTextureSetStride, SceGxmTexture *texture, uint32_t byteStride) { if (!texture) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); if ((texture->type << 29) != SCE_GXM_TEXTURE_LINEAR_STRIDED) return RET_ERROR(SCE_GXM_ERROR_UNSUPPORTED); if (byteStride & 3) return RET_ERROR(SCE_GXM_ERROR_INVALID_ALIGNMENT); if ((byteStride < 4) || (byteStride > 131072)) return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); return UNIMPLEMENTED(); } static bool verify_texture_mode(SceGxmTexture *texture, SceGxmTextureAddrMode mode) { if ((texture->type << 29) == SCE_GXM_TEXTURE_CUBE || (texture->type << 29) == SCE_GXM_TEXTURE_CUBE_ARBITRARY) { if (mode != SCE_GXM_TEXTURE_ADDR_CLAMP) { return false; } } else { if (mode <= SCE_GXM_TEXTURE_ADDR_CLAMP_HALF_BORDER && mode >= SCE_GXM_TEXTURE_ADDR_REPEAT_IGNORE_BORDER) { if ((texture->type << 29) != SCE_GXM_TEXTURE_SWIZZLED) { return false; } } if (mode == SCE_GXM_TEXTURE_ADDR_MIRROR && ((texture->type << 29) != SCE_GXM_TEXTURE_SWIZZLED)) { return false; } } return true; } EXPORT(int, sceGxmTextureSetUAddrMode, SceGxmTexture *texture, SceGxmTextureAddrMode mode) { if (!texture) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); if (!verify_texture_mode(texture, mode)) return RET_ERROR(SCE_GXM_ERROR_UNSUPPORTED); texture->uaddr_mode = mode; return 0; } EXPORT(int, sceGxmTextureSetUAddrModeSafe, SceGxmTexture *texture, SceGxmTextureAddrMode mode) { if (!texture) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); if (!verify_texture_mode(texture, mode)) return RET_ERROR(SCE_GXM_ERROR_UNSUPPORTED); texture->uaddr_mode = mode; return 0; } EXPORT(int, sceGxmTextureSetVAddrMode, SceGxmTexture *texture, SceGxmTextureAddrMode mode) { if (!texture) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); if (!verify_texture_mode(texture, mode)) return RET_ERROR(SCE_GXM_ERROR_UNSUPPORTED); texture->vaddr_mode = mode; return 0; } EXPORT(int, sceGxmTextureSetVAddrModeSafe, SceGxmTexture *texture, SceGxmTextureAddrMode mode) { if (!texture) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); if (!verify_texture_mode(texture, mode)) return RET_ERROR(SCE_GXM_ERROR_UNSUPPORTED); texture->vaddr_mode = mode; return 0; } EXPORT(int, sceGxmTextureSetWidth, SceGxmTexture *texture, uint32_t width) { if (!texture) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } else if (width > 4096) { return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if ((texture->type << 29) == SCE_GXM_TEXTURE_TILED) { if (texture->mip_count > 1) { if (width >> (texture->mip_count - 1) >> 0x1F) { goto LINEAR; } } return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); } if (((texture->type << 29) != SCE_GXM_TEXTURE_SWIZZLED) && ((texture->type << 29) != SCE_GXM_TEXTURE_TILED)) { LINEAR: texture->width = width - 1; return 0; } // TODO: Add support for swizzled textures LOG_WARN("Unimplemented texture format detected in sceGxmTextureSetWidth call."); return 0; } EXPORT(int, _sceGxmTextureSetWidth, SceGxmTexture *texture, uint32_t width) { return CALL_EXPORT(sceGxmTextureSetWidth, texture, width); } EXPORT(int, sceGxmTextureValidate, const SceGxmTexture *texture) { if (!texture) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } return UNIMPLEMENTED(); } EXPORT(int, sceGxmTransferCopy, uint32_t width, uint32_t height, uint32_t colorKeyValue, uint32_t colorKeyMask, SceGxmTransferColorKeyMode colorKeyMode, SceGxmTransferFormat srcFormat, SceGxmTransferType srcType, const void *srcAddress, uint32_t srcX, uint32_t srcY, int32_t srcStride, SceGxmTransferFormat destFormat, SceGxmTransferType destType, void *destAddress, uint32_t destX, uint32_t destY, int32_t destStride, Ptr syncObject, SceGxmTransferFlags syncFlags, const Ptr notification) { if (!srcAddress || !destAddress) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); const auto src_type_is_linear = srcType == SCE_GXM_TRANSFER_LINEAR; const auto src_type_is_tiled = srcType == SCE_GXM_TRANSFER_TILED; const auto src_type_is_swizzled = srcType == SCE_GXM_TRANSFER_SWIZZLED; const auto dest_type_is_linear = destType == SCE_GXM_TRANSFER_LINEAR; const auto dest_type_is_tiled = destType == SCE_GXM_TRANSFER_TILED; const auto dest_type_is_swizzled = destType == SCE_GXM_TRANSFER_SWIZZLED; const auto is_invalide_value = (src_type_is_tiled && dest_type_is_swizzled) || (src_type_is_swizzled && dest_type_is_tiled) || (src_type_is_swizzled && dest_type_is_swizzled); if (is_invalide_value) return RET_ERROR(SCE_GXM_ERROR_INVALID_VALUE); if (!syncFlags && src_type_is_linear && dest_type_is_linear) { const auto src_bpp = gxm::get_bits_per_pixel(srcFormat); const auto dest_bpp = gxm::get_bits_per_pixel(destFormat); const uint32_t src_bytes_per_pixel = (src_bpp + 7) >> 3; const uint32_t dest_bytes_per_pixel = (dest_bpp + 7) >> 3; for (uint32_t y = 0; y < height; y++) { for (uint32_t x = 0; x < width; x++) { // Set offset of source and destination const auto src_offset = ((x + srcX) * src_bytes_per_pixel) + ((y + srcY) * srcStride); const auto dest_offset = ((x + destX) * dest_bytes_per_pixel) + ((y + destY) * destStride); // Set pointer of source and destination const auto src_ptr = (uint8_t *)srcAddress + src_offset; auto dest_ptr = (uint8_t *)destAddress + dest_offset; // Set color of source const auto src_color = *(uint32_t *)src_ptr; // Copy result in destination depending color Key switch (colorKeyMode) { case SCE_GXM_TRANSFER_COLORKEY_NONE: memcpy(dest_ptr, src_ptr, dest_bytes_per_pixel); break; case SCE_GXM_TRANSFER_COLORKEY_PASS: if ((src_color & colorKeyMask) == colorKeyValue) memcpy(dest_ptr, src_ptr, dest_bytes_per_pixel); break; case SCE_GXM_TRANSFER_COLORKEY_REJECT: if ((src_color & colorKeyMask) != colorKeyValue) memcpy(dest_ptr, src_ptr, dest_bytes_per_pixel); break; default: break; } } } } else STUBBED("No support syncFlags & convertion of SceGxmTransferType yet"); if (syncObject) { SceGxmSyncObject *sync = syncObject.get(host.mem); renderer::wishlist(sync, (renderer::SyncObjectSubject)(renderer::SyncObjectSubject::DisplayQueue | renderer::SyncObjectSubject::Fragment)); } if (notification) { volatile uint32_t *val = notification.get(host.mem)->address.get(host.mem); *val = notification.get(host.mem)->value; } return 0; } EXPORT(int, sceGxmTransferDownscale, SceGxmTransferFormat srcFormat, const void *srcAddress, uint32_t srcX, uint32_t srcY, uint32_t srcWidth, uint32_t srcHeight, int32_t srcStride, SceGxmTransferFormat destFormat, void *destAddress, uint32_t destX, uint32_t destY, int32_t destStride, Ptr syncObject, SceGxmTransferFlags syncFlags, const Ptr notification) { if (!srcAddress || !destAddress) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); if (!syncFlags) { const auto src_bpp = gxm::get_bits_per_pixel(srcFormat); const auto dest_bpp = gxm::get_bits_per_pixel(destFormat); const uint32_t src_bytes_per_pixel = (src_bpp + 7) >> 3; const uint32_t dest_bytes_per_pixel = (dest_bpp + 7) >> 3; for (uint32_t y = 0; y < srcHeight; y += 2) { for (uint32_t x = 0; x < srcWidth; x += 2) { // Set offset of source and destination const auto src_offset = ((x + srcX) * src_bytes_per_pixel) + ((y + srcY) * srcStride); const auto dest_offset = (y / 2 + destY) * destStride + (x / 2 + destX) * dest_bytes_per_pixel; // Set pointer of source and destination const auto src_ptr = (uint8_t *)srcAddress + src_offset; auto dest_ptr = (uint8_t *)destAddress + dest_offset; // Copy result in destination memcpy(dest_ptr, src_ptr, dest_bytes_per_pixel); } } } else STUBBED("No support syncFlags yet"); if (syncObject) { SceGxmSyncObject *sync = syncObject.get(host.mem); renderer::wishlist(sync, (renderer::SyncObjectSubject)(renderer::SyncObjectSubject::DisplayQueue || renderer::SyncObjectSubject::Fragment)); } if (notification) { volatile uint32_t *val = notification.get(host.mem)->address.get(host.mem); *val = notification.get(host.mem)->value; } return 0; } EXPORT(int, sceGxmTransferFill, uint32_t fillColor, SceGxmTransferFormat destFormat, void *destAddress, uint32_t destX, uint32_t destY, uint32_t destWidth, uint32_t destHeight, int32_t destStride, Ptr syncObject, SceGxmTransferFlags syncFlags, const Ptr notification) { if (!destAddress) return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); const auto bpp = gxm::get_bits_per_pixel(destFormat); if (!syncFlags) { const uint32_t bytes_per_pixel = (bpp + 7) >> 3; for (uint32_t y = 0; y < destHeight; y++) { for (uint32_t x = 0; x < destWidth; x++) { // Set offset of destination const auto dest_offset = ((x + destX) * bytes_per_pixel) + ((y + destY) * destStride); // Set pointer of destination auto dest_ptr = (uint8_t *)destAddress + dest_offset; // Fill color in destination memcpy(dest_ptr, &fillColor, bytes_per_pixel); } } } else STUBBED("No support syncFlags yet"); if (syncObject) { SceGxmSyncObject *sync = syncObject.get(host.mem); renderer::wishlist(sync, (renderer::SyncObjectSubject)(renderer::SyncObjectSubject::DisplayQueue | renderer::SyncObjectSubject::Fragment)); } if (notification) { volatile uint32_t *val = notification.get(host.mem)->address.get(host.mem); *val = notification.get(host.mem)->value; } return 0; } EXPORT(int, sceGxmTransferFinish) { return UNIMPLEMENTED(); } EXPORT(int, sceGxmUnmapFragmentUsseMemory, void *base) { if (!base) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } return 0; } EXPORT(int, sceGxmUnmapMemory, Ptr base) { if (!base) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } auto ite = host.gxm.memory_mapped_regions.find(base.address()); if (ite == host.gxm.memory_mapped_regions.end()) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } host.gxm.memory_mapped_regions.erase(ite); return 0; } EXPORT(int, sceGxmUnmapVertexUsseMemory, void *base) { if (!base) { return RET_ERROR(SCE_GXM_ERROR_INVALID_POINTER); } return 0; } EXPORT(int, sceGxmVertexFence) { return UNIMPLEMENTED(); } EXPORT(Ptr, sceGxmVertexProgramGetProgram, const SceGxmVertexProgram *vertexProgram) { return vertexProgram->program; } EXPORT(int, sceGxmWaitEvent) { return UNIMPLEMENTED(); } BRIDGE_IMPL(_sceGxmBeginScene) BRIDGE_IMPL(_sceGxmProgramFindParameterBySemantic) BRIDGE_IMPL(_sceGxmProgramParameterGetSemantic) BRIDGE_IMPL(_sceGxmSetVertexTexture) BRIDGE_IMPL(_sceGxmTextureSetHeight) BRIDGE_IMPL(_sceGxmTextureSetWidth) BRIDGE_IMPL(sceGxmAddRazorGpuCaptureBuffer) BRIDGE_IMPL(sceGxmBeginCommandList) BRIDGE_IMPL(sceGxmBeginScene) BRIDGE_IMPL(sceGxmBeginSceneEx) BRIDGE_IMPL(sceGxmColorSurfaceGetClip) BRIDGE_IMPL(sceGxmColorSurfaceGetData) BRIDGE_IMPL(sceGxmColorSurfaceGetDitherMode) BRIDGE_IMPL(sceGxmColorSurfaceGetFormat) BRIDGE_IMPL(sceGxmColorSurfaceGetGammaMode) BRIDGE_IMPL(sceGxmColorSurfaceGetScaleMode) BRIDGE_IMPL(sceGxmColorSurfaceGetStrideInPixels) BRIDGE_IMPL(sceGxmColorSurfaceGetType) BRIDGE_IMPL(sceGxmColorSurfaceInit) BRIDGE_IMPL(sceGxmColorSurfaceInitDisabled) BRIDGE_IMPL(sceGxmColorSurfaceIsEnabled) BRIDGE_IMPL(sceGxmColorSurfaceSetClip) BRIDGE_IMPL(sceGxmColorSurfaceSetData) BRIDGE_IMPL(sceGxmColorSurfaceSetDitherMode) BRIDGE_IMPL(sceGxmColorSurfaceSetFormat) BRIDGE_IMPL(sceGxmColorSurfaceSetGammaMode) BRIDGE_IMPL(sceGxmColorSurfaceSetScaleMode) BRIDGE_IMPL(sceGxmCreateContext) BRIDGE_IMPL(sceGxmCreateDeferredContext) BRIDGE_IMPL(sceGxmCreateRenderTarget) BRIDGE_IMPL(sceGxmDepthStencilSurfaceGetBackgroundDepth) BRIDGE_IMPL(sceGxmDepthStencilSurfaceGetBackgroundMask) BRIDGE_IMPL(sceGxmDepthStencilSurfaceGetBackgroundStencil) BRIDGE_IMPL(sceGxmDepthStencilSurfaceGetForceLoadMode) BRIDGE_IMPL(sceGxmDepthStencilSurfaceGetForceStoreMode) BRIDGE_IMPL(sceGxmDepthStencilSurfaceGetFormat) BRIDGE_IMPL(sceGxmDepthStencilSurfaceGetStrideInSamples) BRIDGE_IMPL(sceGxmDepthStencilSurfaceInit) BRIDGE_IMPL(sceGxmDepthStencilSurfaceInitDisabled) BRIDGE_IMPL(sceGxmDepthStencilSurfaceIsEnabled) BRIDGE_IMPL(sceGxmDepthStencilSurfaceSetBackgroundDepth) BRIDGE_IMPL(sceGxmDepthStencilSurfaceSetBackgroundMask) BRIDGE_IMPL(sceGxmDepthStencilSurfaceSetBackgroundStencil) BRIDGE_IMPL(sceGxmDepthStencilSurfaceSetForceLoadMode) BRIDGE_IMPL(sceGxmDepthStencilSurfaceSetForceStoreMode) BRIDGE_IMPL(sceGxmDestroyContext) BRIDGE_IMPL(sceGxmDestroyDeferredContext) BRIDGE_IMPL(sceGxmDestroyRenderTarget) BRIDGE_IMPL(sceGxmDisplayQueueAddEntry) BRIDGE_IMPL(sceGxmDisplayQueueFinish) BRIDGE_IMPL(sceGxmDraw) BRIDGE_IMPL(sceGxmDrawInstanced) BRIDGE_IMPL(sceGxmDrawPrecomputed) BRIDGE_IMPL(sceGxmEndCommandList) BRIDGE_IMPL(sceGxmEndScene) BRIDGE_IMPL(sceGxmExecuteCommandList) BRIDGE_IMPL(sceGxmFinish) BRIDGE_IMPL(sceGxmFragmentProgramGetPassType) BRIDGE_IMPL(sceGxmFragmentProgramGetProgram) BRIDGE_IMPL(sceGxmFragmentProgramIsEnabled) BRIDGE_IMPL(sceGxmGetContextType) BRIDGE_IMPL(sceGxmGetDeferredContextFragmentBuffer) BRIDGE_IMPL(sceGxmGetDeferredContextVdmBuffer) BRIDGE_IMPL(sceGxmGetDeferredContextVertexBuffer) BRIDGE_IMPL(sceGxmGetNotificationRegion) BRIDGE_IMPL(sceGxmGetParameterBufferThreshold) BRIDGE_IMPL(sceGxmGetPrecomputedDrawSize) BRIDGE_IMPL(sceGxmGetPrecomputedFragmentStateSize) BRIDGE_IMPL(sceGxmGetPrecomputedVertexStateSize) BRIDGE_IMPL(sceGxmGetRenderTargetMemSize) BRIDGE_IMPL(sceGxmInitialize) BRIDGE_IMPL(sceGxmIsDebugVersion) BRIDGE_IMPL(sceGxmMapFragmentUsseMemory) BRIDGE_IMPL(sceGxmMapMemory) BRIDGE_IMPL(sceGxmMapVertexUsseMemory) BRIDGE_IMPL(sceGxmMidSceneFlush) BRIDGE_IMPL(_sceGxmMidSceneFlush) BRIDGE_IMPL(sceGxmNotificationWait) BRIDGE_IMPL(sceGxmPadHeartbeat) BRIDGE_IMPL(sceGxmPadTriggerGpuPaTrace) BRIDGE_IMPL(sceGxmPopUserMarker) BRIDGE_IMPL(sceGxmPrecomputedDrawInit) BRIDGE_IMPL(sceGxmPrecomputedDrawSetAllVertexStreams) BRIDGE_IMPL(sceGxmPrecomputedDrawSetParams) BRIDGE_IMPL(sceGxmPrecomputedDrawSetParamsInstanced) BRIDGE_IMPL(sceGxmPrecomputedDrawSetVertexStream) BRIDGE_IMPL(sceGxmPrecomputedFragmentStateGetDefaultUniformBuffer) BRIDGE_IMPL(sceGxmPrecomputedFragmentStateInit) BRIDGE_IMPL(sceGxmPrecomputedFragmentStateSetAllAuxiliarySurfaces) BRIDGE_IMPL(sceGxmPrecomputedFragmentStateSetAllTextures) BRIDGE_IMPL(sceGxmPrecomputedFragmentStateSetAllUniformBuffers) BRIDGE_IMPL(sceGxmPrecomputedFragmentStateSetDefaultUniformBuffer) BRIDGE_IMPL(sceGxmPrecomputedFragmentStateSetTexture) BRIDGE_IMPL(sceGxmPrecomputedFragmentStateSetUniformBuffer) BRIDGE_IMPL(sceGxmPrecomputedVertexStateGetDefaultUniformBuffer) BRIDGE_IMPL(sceGxmPrecomputedVertexStateInit) BRIDGE_IMPL(sceGxmPrecomputedVertexStateSetAllTextures) BRIDGE_IMPL(sceGxmPrecomputedVertexStateSetAllUniformBuffers) BRIDGE_IMPL(sceGxmPrecomputedVertexStateSetDefaultUniformBuffer) BRIDGE_IMPL(sceGxmPrecomputedVertexStateSetTexture) BRIDGE_IMPL(sceGxmPrecomputedVertexStateSetUniformBuffer) BRIDGE_IMPL(sceGxmProgramCheck) BRIDGE_IMPL(sceGxmProgramFindParameterByName) BRIDGE_IMPL(sceGxmProgramFindParameterBySemantic) BRIDGE_IMPL(sceGxmProgramGetDefaultUniformBufferSize) BRIDGE_IMPL(sceGxmProgramGetFragmentProgramInputs) BRIDGE_IMPL(sceGxmProgramGetOutputRegisterFormat) BRIDGE_IMPL(sceGxmProgramGetParameter) BRIDGE_IMPL(sceGxmProgramGetParameterCount) BRIDGE_IMPL(sceGxmProgramGetSize) BRIDGE_IMPL(sceGxmProgramGetType) BRIDGE_IMPL(sceGxmProgramGetVertexProgramOutputs) BRIDGE_IMPL(sceGxmProgramIsDepthReplaceUsed) BRIDGE_IMPL(sceGxmProgramIsDiscardUsed) BRIDGE_IMPL(sceGxmProgramIsEquivalent) BRIDGE_IMPL(sceGxmProgramIsFragColorUsed) BRIDGE_IMPL(sceGxmProgramIsNativeColorUsed) BRIDGE_IMPL(sceGxmProgramIsSpriteCoordUsed) BRIDGE_IMPL(sceGxmProgramParameterGetArraySize) BRIDGE_IMPL(sceGxmProgramParameterGetCategory) BRIDGE_IMPL(sceGxmProgramParameterGetComponentCount) BRIDGE_IMPL(sceGxmProgramParameterGetContainerIndex) BRIDGE_IMPL(sceGxmProgramParameterGetIndex) BRIDGE_IMPL(sceGxmProgramParameterGetName) BRIDGE_IMPL(sceGxmProgramParameterGetResourceIndex) BRIDGE_IMPL(sceGxmProgramParameterGetSemantic) BRIDGE_IMPL(sceGxmProgramParameterGetSemanticIndex) BRIDGE_IMPL(sceGxmProgramParameterGetType) BRIDGE_IMPL(sceGxmProgramParameterIsRegFormat) BRIDGE_IMPL(sceGxmProgramParameterIsSamplerCube) BRIDGE_IMPL(sceGxmPushUserMarker) BRIDGE_IMPL(sceGxmRemoveRazorGpuCaptureBuffer) BRIDGE_IMPL(sceGxmRenderTargetGetDriverMemBlock) BRIDGE_IMPL(sceGxmRenderTargetGetHostMem) BRIDGE_IMPL(sceGxmReserveFragmentDefaultUniformBuffer) BRIDGE_IMPL(sceGxmReserveVertexDefaultUniformBuffer) BRIDGE_IMPL(sceGxmSetAuxiliarySurface) BRIDGE_IMPL(sceGxmSetBackDepthBias) BRIDGE_IMPL(sceGxmSetBackDepthFunc) BRIDGE_IMPL(sceGxmSetBackDepthWriteEnable) BRIDGE_IMPL(sceGxmSetBackFragmentProgramEnable) BRIDGE_IMPL(sceGxmSetBackLineFillLastPixelEnable) BRIDGE_IMPL(sceGxmSetBackPointLineWidth) BRIDGE_IMPL(sceGxmSetBackPolygonMode) BRIDGE_IMPL(sceGxmSetBackStencilFunc) BRIDGE_IMPL(sceGxmSetBackStencilRef) BRIDGE_IMPL(sceGxmSetBackVisibilityTestEnable) BRIDGE_IMPL(sceGxmSetBackVisibilityTestIndex) BRIDGE_IMPL(sceGxmSetBackVisibilityTestOp) BRIDGE_IMPL(sceGxmSetCullMode) BRIDGE_IMPL(sceGxmSetDefaultRegionClipAndViewport) BRIDGE_IMPL(sceGxmSetDeferredContextFragmentBuffer) BRIDGE_IMPL(sceGxmSetDeferredContextVdmBuffer) BRIDGE_IMPL(sceGxmSetDeferredContextVertexBuffer) BRIDGE_IMPL(sceGxmSetFragmentDefaultUniformBuffer) BRIDGE_IMPL(sceGxmSetFragmentProgram) BRIDGE_IMPL(sceGxmSetFragmentTexture) BRIDGE_IMPL(sceGxmSetFragmentUniformBuffer) BRIDGE_IMPL(sceGxmSetFrontDepthBias) BRIDGE_IMPL(sceGxmSetFrontDepthFunc) BRIDGE_IMPL(sceGxmSetFrontDepthWriteEnable) BRIDGE_IMPL(sceGxmSetFrontFragmentProgramEnable) BRIDGE_IMPL(sceGxmSetFrontLineFillLastPixelEnable) BRIDGE_IMPL(sceGxmSetFrontPointLineWidth) BRIDGE_IMPL(sceGxmSetFrontPolygonMode) BRIDGE_IMPL(sceGxmSetFrontStencilFunc) BRIDGE_IMPL(sceGxmSetFrontStencilRef) BRIDGE_IMPL(sceGxmSetFrontVisibilityTestEnable) BRIDGE_IMPL(sceGxmSetFrontVisibilityTestIndex) BRIDGE_IMPL(sceGxmSetFrontVisibilityTestOp) BRIDGE_IMPL(sceGxmSetPrecomputedFragmentState) BRIDGE_IMPL(sceGxmSetPrecomputedVertexState) BRIDGE_IMPL(sceGxmSetRegionClip) BRIDGE_IMPL(sceGxmSetTwoSidedEnable) BRIDGE_IMPL(sceGxmSetUniformDataF) BRIDGE_IMPL(sceGxmSetUserMarker) BRIDGE_IMPL(sceGxmSetValidationEnable) BRIDGE_IMPL(sceGxmSetVertexDefaultUniformBuffer) BRIDGE_IMPL(sceGxmSetVertexProgram) BRIDGE_IMPL(sceGxmSetVertexStream) BRIDGE_IMPL(sceGxmSetVertexTexture) BRIDGE_IMPL(sceGxmSetVertexUniformBuffer) BRIDGE_IMPL(sceGxmSetViewport) BRIDGE_IMPL(sceGxmSetViewportEnable) BRIDGE_IMPL(sceGxmSetVisibilityBuffer) BRIDGE_IMPL(sceGxmSetWBufferEnable) BRIDGE_IMPL(sceGxmSetWClampEnable) BRIDGE_IMPL(sceGxmSetWClampValue) BRIDGE_IMPL(sceGxmSetWarningEnabled) BRIDGE_IMPL(sceGxmSetYuvProfile) BRIDGE_IMPL(sceGxmShaderPatcherAddRefFragmentProgram) BRIDGE_IMPL(sceGxmShaderPatcherAddRefVertexProgram) BRIDGE_IMPL(sceGxmShaderPatcherCreate) BRIDGE_IMPL(sceGxmShaderPatcherCreateFragmentProgram) BRIDGE_IMPL(sceGxmShaderPatcherCreateMaskUpdateFragmentProgram) BRIDGE_IMPL(sceGxmShaderPatcherCreateVertexProgram) BRIDGE_IMPL(sceGxmShaderPatcherDestroy) BRIDGE_IMPL(sceGxmShaderPatcherForceUnregisterProgram) BRIDGE_IMPL(sceGxmShaderPatcherGetBufferMemAllocated) BRIDGE_IMPL(sceGxmShaderPatcherGetFragmentProgramRefCount) BRIDGE_IMPL(sceGxmShaderPatcherGetFragmentUsseMemAllocated) BRIDGE_IMPL(sceGxmShaderPatcherGetHostMemAllocated) BRIDGE_IMPL(sceGxmShaderPatcherGetProgramFromId) BRIDGE_IMPL(sceGxmShaderPatcherGetUserData) BRIDGE_IMPL(sceGxmShaderPatcherGetVertexProgramRefCount) BRIDGE_IMPL(sceGxmShaderPatcherGetVertexUsseMemAllocated) BRIDGE_IMPL(sceGxmShaderPatcherRegisterProgram) BRIDGE_IMPL(sceGxmShaderPatcherReleaseFragmentProgram) BRIDGE_IMPL(sceGxmShaderPatcherReleaseVertexProgram) BRIDGE_IMPL(sceGxmShaderPatcherSetAuxiliarySurface) BRIDGE_IMPL(sceGxmShaderPatcherSetUserData) BRIDGE_IMPL(sceGxmShaderPatcherUnregisterProgram) BRIDGE_IMPL(sceGxmSyncObjectCreate) BRIDGE_IMPL(sceGxmSyncObjectDestroy) BRIDGE_IMPL(sceGxmTerminate) BRIDGE_IMPL(sceGxmTextureGetData) BRIDGE_IMPL(sceGxmTextureGetFormat) BRIDGE_IMPL(sceGxmTextureGetGammaMode) BRIDGE_IMPL(sceGxmTextureGetHeight) BRIDGE_IMPL(sceGxmTextureGetLodBias) BRIDGE_IMPL(sceGxmTextureGetLodMin) BRIDGE_IMPL(sceGxmTextureGetMagFilter) BRIDGE_IMPL(sceGxmTextureGetMinFilter) BRIDGE_IMPL(sceGxmTextureGetMipFilter) BRIDGE_IMPL(sceGxmTextureGetMipmapCount) BRIDGE_IMPL(sceGxmTextureGetMipmapCountUnsafe) BRIDGE_IMPL(sceGxmTextureGetNormalizeMode) BRIDGE_IMPL(sceGxmTextureGetPalette) BRIDGE_IMPL(sceGxmTextureGetStride) BRIDGE_IMPL(sceGxmTextureGetType) BRIDGE_IMPL(sceGxmTextureGetUAddrMode) BRIDGE_IMPL(sceGxmTextureGetUAddrModeSafe) BRIDGE_IMPL(sceGxmTextureGetVAddrMode) BRIDGE_IMPL(sceGxmTextureGetVAddrModeSafe) BRIDGE_IMPL(sceGxmTextureGetWidth) BRIDGE_IMPL(sceGxmTextureInitCube) BRIDGE_IMPL(sceGxmTextureInitCubeArbitrary) BRIDGE_IMPL(sceGxmTextureInitLinear) BRIDGE_IMPL(sceGxmTextureInitLinearStrided) BRIDGE_IMPL(sceGxmTextureInitSwizzled) BRIDGE_IMPL(sceGxmTextureInitSwizzledArbitrary) BRIDGE_IMPL(sceGxmTextureInitTiled) BRIDGE_IMPL(sceGxmTextureSetData) BRIDGE_IMPL(sceGxmTextureSetFormat) BRIDGE_IMPL(sceGxmTextureSetGammaMode) BRIDGE_IMPL(sceGxmTextureSetHeight) BRIDGE_IMPL(sceGxmTextureSetLodBias) BRIDGE_IMPL(sceGxmTextureSetLodMin) BRIDGE_IMPL(sceGxmTextureSetMagFilter) BRIDGE_IMPL(sceGxmTextureSetMinFilter) BRIDGE_IMPL(sceGxmTextureSetMipFilter) BRIDGE_IMPL(sceGxmTextureSetMipmapCount) BRIDGE_IMPL(sceGxmTextureSetNormalizeMode) BRIDGE_IMPL(sceGxmTextureSetPalette) BRIDGE_IMPL(sceGxmTextureSetStride) BRIDGE_IMPL(sceGxmTextureSetUAddrMode) BRIDGE_IMPL(sceGxmTextureSetUAddrModeSafe) BRIDGE_IMPL(sceGxmTextureSetVAddrMode) BRIDGE_IMPL(sceGxmTextureSetVAddrModeSafe) BRIDGE_IMPL(sceGxmTextureSetWidth) BRIDGE_IMPL(sceGxmTextureValidate) BRIDGE_IMPL(sceGxmTransferCopy) BRIDGE_IMPL(sceGxmTransferDownscale) BRIDGE_IMPL(sceGxmTransferFill) BRIDGE_IMPL(sceGxmTransferFinish) BRIDGE_IMPL(sceGxmUnmapFragmentUsseMemory) BRIDGE_IMPL(sceGxmUnmapMemory) BRIDGE_IMPL(sceGxmUnmapVertexUsseMemory) BRIDGE_IMPL(sceGxmVertexFence) BRIDGE_IMPL(sceGxmVertexProgramGetProgram) BRIDGE_IMPL(sceGxmWaitEvent)