Mesen2/Core/Gameboy/APU/GbWaveChannel.cpp
Sour 929d4dcc20 GB: Fixed APU emulation issues
-Super Mario Land 2 - Pops in menu are fixed by immediately updating APU output after a write
-Perfect Dark - Low voice volume is fixed by having the correct output when the channels are disabled (but DAC is still enabled)
-Daiku no Gen - Low voice volume is fixed by keeping square channel output to digital 0 (= analog 1) until its first tick after being enabled (the game does not let the channel tick at all while the voice sample is playing)
2025-03-21 23:03:01 +09:00

253 lines
7.2 KiB
C++
Raw Permalink Blame History

#include "pch.h"
#include "Gameboy/APU/GbWaveChannel.h"
#include "Gameboy/APU/GbApu.h"
#include "Gameboy/Gameboy.h"
#include "Shared/Emulator.h"
#include "Shared/EmuSettings.h"
GbWaveChannel::GbWaveChannel(GbApu* apu, Gameboy* gameboy)
{
_gameboy = gameboy;
_apu = apu;
//"When the Game Boy is switched on (before the internal boot ROM executes),
//the values in the wave table depend on the model. On the DMG, they are somewhat
//random, though the particular pattern is generally the same for each individual Game Boy unit.
//The game R-Type doesn't initialize wave RAM and thus relies on these."
//Note: On CGB, the boot rom initalizes wave ram to 00, FF, 00, FF, etc. (so these values will be overwritten)
if(_gameboy->GetEmulator()->GetSettings()->GetGameboyConfig().RamPowerOnState == RamState::Random) {
//If random ram is turned on, randomize it completely instead
_gameboy->InitializeRam(_state.Ram, 0x10);
} else {
//Otherwise, use a preset to ensure the audio is still audible
constexpr uint8_t gbWaveRamDefault[0x10] = { 0x84, 0x40, 0x43, 0xAA, 0x2D, 0x78, 0x92, 0x3C, 0x60, 0x59, 0x59, 0xB0, 0x34, 0xB8, 0x2E, 0xDA };
memcpy(_state.Ram, gbWaveRamDefault, 0x10);
}
}
GbWaveState& GbWaveChannel::GetState()
{
return _state;
}
bool GbWaveChannel::Enabled()
{
return _state.Enabled;
}
void GbWaveChannel::Disable()
{
uint16_t len = _state.Length;
uint8_t ram[0x10];
memcpy(ram, _state.Ram, sizeof(ram));
_state = {};
_state.Length = len;
memcpy(_state.Ram, ram, sizeof(ram));
_state.Timer = 2048 * 2;
}
void GbWaveChannel::ResetLengthCounter()
{
_state.Length = 0;
}
void GbWaveChannel::ClockLengthCounter()
{
if(_state.LengthEnabled && _state.Length > 0) {
_state.Length--;
if(_state.Length == 0) {
//"Length becoming 0 should clear status"
_state.Enabled = false;
_state.Output = 0;
}
}
}
uint8_t GbWaveChannel::GetRawOutput()
{
//"Stopping channel 3 manually using the NR30 register affects PCM34 instantly" (SameSuite's channel_3_stop_delay test)
return _state.Enabled ? _state.Output : 0;
}
double GbWaveChannel::GetOutput()
{
//"If a DAC is enabled, the digital range $0 to $F is linearly translated to the analog range -1 to 1,
//in arbitrary units. Importantly, the slope is negative: <20>digital 0<> maps to <20>analog 1<>, not <20>analog -1<>."
//Return -7 to 7 "analog" range (higher digital value = lower analog value)
return (7 - (int8_t)_state.Output) * (double)_dac.GetDacVolume() / 100;
}
void GbWaveChannel::UpdateOutput()
{
if(!_state.Enabled) {
return;
}
if(_state.Volume) {
_state.Output = _state.SampleBuffer >> (_state.Volume - 1);
} else {
_state.Output = 0;
}
}
void GbWaveChannel::Exec(uint32_t clocksToRun)
{
_dac.Exec(clocksToRun, _state.DacEnabled);
if(!_state.Enabled) {
return;
}
_state.Timer -= clocksToRun;
_allowRamAccess = false;
if(_state.Timer == 0) {
//The wave channel's frequency timer period is set to (2048-frequency)*2.
_state.Timer = (2048 - _state.Frequency) * 2;
//When the timer generates a clock, the position counter is advanced one sample in the wave table,
//looping back to the beginning when it goes past the end,
_state.Position = (_state.Position + 1) & 0x1F;
//then a sample is read into the sample buffer from this NEW position.
if(_state.Position & 0x01) {
_state.SampleBuffer = _state.Ram[_state.Position >> 1] & 0x0F;
} else {
_state.SampleBuffer = _state.Ram[_state.Position >> 1] >> 4;
}
//The DAC receives the current value from the upper/lower nibble of the sample buffer, shifted right by the volume control.
UpdateOutput();
_allowRamAccess = true;
}
}
uint8_t GbWaveChannel::Read(uint16_t addr)
{
constexpr uint8_t openBusBits[5] = { 0x7F, 0xFF, 0x9F, 0xFF, 0xBF };
uint8_t value = 0;
switch(addr) {
case 0: value = _state.DacEnabled ? 0x80 : 0; break;
case 2: value = _state.Volume << 5; break;
case 4: value = _state.LengthEnabled ? 0x40 : 0; break;
}
return value | openBusBits[addr];
}
void GbWaveChannel::Write(uint16_t addr, uint8_t value)
{
switch(addr) {
case 0:
_state.DacEnabled = (value & 0x80) != 0;
_state.Enabled &= _state.DacEnabled;
break;
case 1:
_state.Length = 256 - value;
break;
case 2:
_state.Volume = (value & 0x60) >> 5;
//"Modifying the channel 3 shift while the channel is playing affects PCM34 instantly" (SameSuite's channel_3_shift_delay test)
UpdateOutput();
break;
case 3:
_state.Frequency = (_state.Frequency & 0x700) | value;
break;
case 4: {
bool prevEnabled = _state.Enabled;
_state.Frequency = (_state.Frequency & 0xFF) | ((value & 0x07) << 8);
if(value & 0x80) {
//Start playback
if(_state.Enabled && _state.Timer <= 2) {
//Triggering the wave channel on DMG while the channel is reading a sample will corrupt the wave ram
TriggerWaveRamCorruption();
}
//Channel is enabled, if DAC is enabled
_state.Enabled = _state.DacEnabled;
if(_state.Enabled) {
UpdateOutput();
}
//Frequency timer is reloaded with period.
_state.Timer = (2048 - _state.Frequency) * 2 + 6;
//If length counter is zero, it is set to 64 (256 for wave channel).
if(_state.Length == 0) {
_state.Length = 256;
_state.LengthEnabled = false;
}
//Wave channel's position is set to 0 but sample buffer is NOT refilled.
_state.Position = 0;
}
_apu->ProcessLengthEnableFlag(value, _state.Length, _state.LengthEnabled, _state.Enabled);
if(!_state.Enabled && prevEnabled) {
_state.Output = 0;
UpdateOutput();
}
break;
}
}
}
void GbWaveChannel::WriteRam(uint16_t addr, uint8_t value)
{
if(!_state.Enabled) {
_state.Ram[addr & 0x0F] = value;
} else if(_allowRamAccess || _gameboy->IsCgb()) {
//"On monochrome consoles, wave RAM can only be accessed on the same cycle that CH3 does. Otherwise, reads return $FF, and writes are ignored."
//On CGB, the wave RAM can be accessed at any time, but will read/write the value the channel is currently accessing
_state.Ram[_state.Position >> 1] = value;
}
}
uint8_t GbWaveChannel::ReadRam(uint16_t addr)
{
if(!_state.Enabled) {
return _state.Ram[addr & 0x0F];
} else if(_allowRamAccess || _gameboy->IsCgb()) {
//"On monochrome consoles, wave RAM can only be accessed on the same cycle that CH3 does. Otherwise, reads return $FF, and writes are ignored."
//On CGB, the wave RAM can be accessed at any time, but will read/write the value the channel is currently accessing
return _state.Ram[_state.Position >> 1];
} else {
return 0xFF;
}
}
void GbWaveChannel::TriggerWaveRamCorruption()
{
if(_gameboy->IsCgb()) {
return;
}
uint8_t pos = ((_state.Position + 1) & 0x1F) >> 1;
if(pos < 4) {
//"If the channel was reading one of the first four bytes, the only first byte will be rewritten with the byte being read."
_state.Ram[0] = _state.Ram[pos];
} else {
//Otherwise, "the first FOUR bytes of wave RAM will be rewritten with the four aligned bytes that the read was from"
memcpy(_state.Ram, _state.Ram + (pos & 0x0C), 4);
}
}
void GbWaveChannel::Serialize(Serializer& s)
{
SV(_state.DacEnabled); SV(_state.SampleBuffer); SV(_state.Position); SV(_state.Volume); SV(_state.Frequency);
SV(_state.Length); SV(_state.LengthEnabled); SV(_state.Enabled); SV(_state.Timer); SV(_state.Output);
SVArray(_state.Ram, 0x10); SV(_allowRamAccess);
SV(_dac);
}