Mesen-S/Core/GbWaveChannel.cpp

154 lines
3.5 KiB
C++

#include "stdafx.h"
#include "GbWaveChannel.h"
#include "GbApu.h"
GbWaveChannel::GbWaveChannel(GbApu* apu)
{
_apu = apu;
}
GbWaveState GbWaveChannel::GetState()
{
return _state;
}
bool GbWaveChannel::Enabled()
{
return _state.Enabled;
}
void GbWaveChannel::Disable()
{
uint16_t len = _state.Length;
uint8_t ram[0x10];
memcpy(ram, _state.Ram, sizeof(ram));
_state = {};
_state.Length = len;
memcpy(_state.Ram, ram, sizeof(ram));
}
void GbWaveChannel::ClockLengthCounter()
{
if(_state.LengthEnabled && _state.Length > 0) {
_state.Length--;
if(_state.Length == 0) {
//"Length becoming 0 should clear status"
_state.Enabled = false;
}
}
}
uint8_t GbWaveChannel::GetOutput()
{
return _state.Output;
}
void GbWaveChannel::Exec(uint32_t clocksToRun)
{
_state.Timer -= clocksToRun;
//The DAC receives the current value from the upper/lower nibble of the sample buffer, shifted right by the volume control.
if(_state.Volume && _state.Enabled) {
_state.Output = _state.SampleBuffer >> (_state.Volume - 1);
} else {
_state.Output = 0;
}
if(_state.Timer == 0) {
//The wave channel's frequency timer period is set to (2048-frequency)*2.
_state.Timer = (2048 - _state.Frequency) * 2;
//When the timer generates a clock, the position counter is advanced one sample in the wave table,
//looping back to the beginning when it goes past the end,
_state.Position = (_state.Position + 1) & 0x1F;
//then a sample is read into the sample buffer from this NEW position.
if(_state.Position & 0x01) {
_state.SampleBuffer = _state.Ram[_state.Position >> 1] & 0x0F;
} else {
_state.SampleBuffer = _state.Ram[_state.Position >> 1] >> 4;
}
}
}
uint8_t GbWaveChannel::Read(uint16_t addr)
{
constexpr uint8_t openBusBits[5] = { 0x7F, 0xFF, 0x9F, 0xFF, 0xBF };
uint8_t value = 0;
switch(addr) {
case 0: value = _state.DacEnabled ? 0x80 : 0; break;
case 2: value = _state.Volume << 5; break;
case 4: value = _state.LengthEnabled ? 0x40 : 0; break;
}
return value | openBusBits[addr];
}
void GbWaveChannel::Write(uint16_t addr, uint8_t value)
{
switch(addr) {
case 0:
_state.DacEnabled = (value & 0x80) != 0;
_state.Enabled &= _state.DacEnabled;
break;
case 1:
_state.Length = 256 - value;
break;
case 2:
_state.Volume = (value & 0x60) >> 5;
break;
case 3:
_state.Frequency = (_state.Frequency & 0x700) | value;
break;
case 4: {
_state.Frequency = (_state.Frequency & 0xFF) | ((value & 0x07) << 8);
if(value & 0x80) {
//Start playback
//Channel is enabled, if DAC is enabled
_state.Enabled = _state.DacEnabled;
//Frequency timer is reloaded with period.
_state.Timer = (2048 - _state.Frequency) * 2;
//If length counter is zero, it is set to 64 (256 for wave channel).
if(_state.Length == 0) {
_state.Length = 256;
_state.LengthEnabled = false;
}
//Wave channel's position is set to 0 but sample buffer is NOT refilled.
_state.Position = 0;
}
_apu->ProcessLengthEnableFlag(value, _state.Length, _state.LengthEnabled, _state.Enabled);
break;
}
}
}
void GbWaveChannel::WriteRam(uint16_t addr, uint8_t value)
{
_state.Ram[addr & 0x0F] = value;
}
uint8_t GbWaveChannel::ReadRam(uint16_t addr)
{
return _state.Ram[addr & 0x0F];
}
void GbWaveChannel::Serialize(Serializer& s)
{
s.Stream(
_state.DacEnabled, _state.SampleBuffer, _state.Position, _state.Volume, _state.Frequency,
_state.Length, _state.LengthEnabled, _state.Enabled, _state.Timer, _state.Output
);
s.StreamArray(_state.Ram, 0x10);
}