Mesen-S/Core/DmaController.cpp
Sour 01dd319c9a HDMA: Added missing condition for indirect HDMA glitch
Fixes Touge Densetsu color corruption in bike configuration screen
2020-06-10 18:08:08 -04:00

607 lines
18 KiB
C++

#include "stdafx.h"
#include "DmaController.h"
#include "DmaControllerTypes.h"
#include "MemoryManager.h"
#include "MessageManager.h"
#include "../Utilities/Serializer.h"
static constexpr uint8_t _transferByteCount[8] = { 1, 2, 2, 4, 4, 4, 2, 4 };
static constexpr uint8_t _transferOffset[8][4] = {
{ 0, 0, 0, 0 }, { 0, 1, 0, 1 }, { 0, 0, 0, 0 }, { 0, 0, 1, 1 },
{ 0, 1, 2, 3 }, { 0, 1, 0, 1 }, { 0, 0, 0, 0 }, { 0, 0, 1, 1 }
};
DmaController::DmaController(MemoryManager *memoryManager)
{
_memoryManager = memoryManager;
Reset();
for(int j = 0; j < 8; j++) {
for(int i = 0; i <= 0x0A; i++) {
Write(0x4300 | i | (j << 4), 0xFF);
}
}
}
void DmaController::Reset()
{
_hdmaChannels = 0;
_hdmaPending = false;
_hdmaInitPending = false;
_dmaStartDelay = false;
_dmaPending = false;
_needToProcess = false;
for(int i = 0; i < 8; i++) {
_channel[i].DmaActive = false;
}
}
void DmaController::CopyDmaByte(uint32_t addressBusA, uint16_t addressBusB, bool fromBtoA)
{
if(fromBtoA) {
if(addressBusB != 0x2180 || !_memoryManager->IsWorkRam(addressBusA)) {
uint8_t valToWrite = _memoryManager->ReadDma(addressBusB, false);
_memoryManager->WriteDma(addressBusA, valToWrite, true);
} else {
//$2180->WRAM do cause a write to occur (but no read), but the value written is invalid
_memoryManager->IncMasterClock4();
_memoryManager->WriteDma(addressBusA, 0xFF, true);
}
} else {
if(addressBusB != 0x2180 || !_memoryManager->IsWorkRam(addressBusA)) {
uint8_t valToWrite = _memoryManager->ReadDma(addressBusA, true);
_memoryManager->WriteDma(addressBusB, valToWrite, false);
} else {
//WRAM->$2180 does not cause a write to occur
_memoryManager->IncMasterClock8();
}
}
}
void DmaController::RunDma(DmaChannelConfig &channel)
{
if(!channel.DmaActive) {
return;
}
//"Then perform the DMA: 8 master cycles overhead and 8 master cycles per byte per channel"
_memoryManager->IncMasterClock8();
ProcessPendingTransfers();
const uint8_t *transferOffsets = _transferOffset[channel.TransferMode];
uint8_t i = 0;
do {
//Manual DMA transfers run to the end of the transfer when started
CopyDmaByte(
(channel.SrcBank << 16) | channel.SrcAddress,
0x2100 | (channel.DestAddress + transferOffsets[i & 0x03]),
channel.InvertDirection
);
if(!channel.FixedTransfer) {
channel.SrcAddress += channel.Decrement ? -1 : 1;
}
channel.TransferSize--;
i++;
ProcessPendingTransfers();
} while(channel.TransferSize > 0 && channel.DmaActive);
channel.DmaActive = false;
}
bool DmaController::InitHdmaChannels()
{
_hdmaInitPending = false;
for(int i = 0; i < 8; i++) {
//Reset internal flags on every frame, whether or not the channels are enabled
_channel[i].HdmaFinished = false;
_channel[i].DoTransfer = false; //not resetting this causes graphical glitches in some games (Aladdin, Super Ghouls and Ghosts)
}
if(!_hdmaChannels) {
//No channels are enabled, no more processing needs to be done
UpdateNeedToProcessFlag();
return false;
}
bool needSync = !HasActiveDmaChannel();
if(needSync) {
SyncStartDma();
}
_memoryManager->IncMasterClock8();
for(int i = 0; i < 8; i++) {
DmaChannelConfig &ch = _channel[i];
//Set DoTransfer to true for all channels if any HDMA channel is enabled
ch.DoTransfer = true;
if(_hdmaChannels & (1 << i)) {
//"1. Copy AAddress into Address."
ch.HdmaTableAddress = ch.SrcAddress;
ch.DmaActive = false;
//"2. Load $43xA (Line Counter and Repeat) from the table. I believe $00 will terminate this channel immediately."
ch.HdmaLineCounterAndRepeat = _memoryManager->ReadDma((ch.SrcBank << 16) | ch.HdmaTableAddress, true);
_memoryManager->IncMasterClock4();
ch.HdmaTableAddress++;
if(ch.HdmaLineCounterAndRepeat == 0) {
ch.HdmaFinished = true;
}
//3. Load Indirect Address, if necessary.
if(ch.HdmaIndirectAddressing) {
uint8_t lsb = _memoryManager->ReadDma((ch.SrcBank << 16) | ch.HdmaTableAddress++, true);
_memoryManager->IncMasterClock4();
uint8_t msb = _memoryManager->ReadDma((ch.SrcBank << 16) | ch.HdmaTableAddress++, true);
_memoryManager->IncMasterClock4();
ch.TransferSize = (msb << 8) | lsb;
}
}
}
if(needSync) {
SyncEndDma();
}
UpdateNeedToProcessFlag();
return true;
}
void DmaController::RunHdmaTransfer(DmaChannelConfig &channel)
{
const uint8_t *transferOffsets = _transferOffset[channel.TransferMode];
uint8_t transferByteCount = _transferByteCount[channel.TransferMode];
channel.DmaActive = false;
uint8_t i = 0;
if(channel.HdmaIndirectAddressing) {
do {
CopyDmaByte(
(channel.HdmaBank << 16) | channel.TransferSize,
0x2100 | (channel.DestAddress + transferOffsets[i]),
channel.InvertDirection
);
channel.TransferSize++;
i++;
} while(i < transferByteCount);
} else {
do {
CopyDmaByte(
(channel.SrcBank << 16) | channel.HdmaTableAddress,
0x2100 | (channel.DestAddress + transferOffsets[i]),
channel.InvertDirection
);
channel.HdmaTableAddress++;
i++;
} while(i < transferByteCount);
}
}
void DmaController::SyncStartDma()
{
//"after the pause, wait 2-8 master cycles to reach a whole multiple of 8 master cycles since reset"
_dmaStartClock = _memoryManager->GetMasterClock();
_memoryManager->IncrementMasterClockValue(8 - (_memoryManager->GetMasterClock() & 0x07));
}
void DmaController::SyncEndDma()
{
//"Then wait 2-8 master cycles to reach a whole number of CPU Clock cycles since the pause"
uint8_t cpuSpeed = _memoryManager->GetCpuSpeed();
_memoryManager->IncrementMasterClockValue(cpuSpeed - ((_memoryManager->GetMasterClock() - _dmaStartClock) % cpuSpeed));
}
bool DmaController::HasActiveDmaChannel()
{
for(int i = 0; i < 8; i++) {
if(_channel[i].DmaActive) {
return true;
}
}
return false;
}
bool DmaController::ProcessHdmaChannels()
{
_hdmaPending = false;
if(!_hdmaChannels) {
UpdateNeedToProcessFlag();
return false;
}
bool needSync = !HasActiveDmaChannel();
if(needSync) {
SyncStartDma();
}
_memoryManager->IncMasterClock8();
uint8_t originalActiveChannel = _activeChannel;
//Run all the DMA transfers for each channel first, before fetching data for the next scanline
for(int i = 0; i < 8; i++) {
DmaChannelConfig &ch = _channel[i];
if((_hdmaChannels & (1 << i)) == 0) {
continue;
}
ch.DmaActive = false;
if(ch.HdmaFinished) {
continue;
}
//1. If DoTransfer is false, skip to step 3.
if(ch.DoTransfer) {
//2. For the number of bytes (1, 2, or 4) required for this Transfer Mode...
_activeChannel = DmaController::HdmaChannelFlag | i;
RunHdmaTransfer(ch);
}
}
//Update the channel's state & fetch data for the next scanline
for(int i = 0; i < 8; i++) {
DmaChannelConfig &ch = _channel[i];
if((_hdmaChannels & (1 << i)) == 0 || ch.HdmaFinished) {
continue;
}
//3. Decrement $43xA.
ch.HdmaLineCounterAndRepeat--;
//4. Set DoTransfer to the value of Repeat.
ch.DoTransfer = (ch.HdmaLineCounterAndRepeat & 0x80) != 0;
//"a. Read the next byte from Address into $43xA (thus, into both Line Counter and Repeat)."
//This value is discarded if the line counter isn't 0
uint8_t newCounter = _memoryManager->ReadDma((ch.SrcBank << 16) | ch.HdmaTableAddress, true);
_memoryManager->IncMasterClock4();
//5. If Line Counter is zero...
if((ch.HdmaLineCounterAndRepeat & 0x7F) == 0) {
ch.HdmaLineCounterAndRepeat = newCounter;
ch.HdmaTableAddress++;
//"b. If Addressing Mode is Indirect, read two bytes from Address into Indirect Address(and increment Address by two bytes)."
if(ch.HdmaIndirectAddressing) {
if(ch.HdmaLineCounterAndRepeat == 0 && IsLastActiveHdmaChannel(i)) {
//"One oddity: if $43xA is 0 and this is the last active HDMA channel for this scanline, only load one byte for Address,
//and use the $00 for the low byte.So Address ends up incremented one less than otherwise expected, and one less CPU Cycle is used."
uint8_t msb = _memoryManager->ReadDma((ch.SrcBank << 16) | ch.HdmaTableAddress++, true);
_memoryManager->IncMasterClock4();
ch.TransferSize = (msb << 8);
} else {
//"If a new indirect address is required, 16 master cycles are taken to load it."
uint8_t lsb = _memoryManager->ReadDma((ch.SrcBank << 16) | ch.HdmaTableAddress++, true);
_memoryManager->IncMasterClock4();
uint8_t msb = _memoryManager->ReadDma((ch.SrcBank << 16) | ch.HdmaTableAddress++, true);
_memoryManager->IncMasterClock4();
ch.TransferSize = (msb << 8) | lsb;
}
}
//"c. If $43xA is zero, terminate this HDMA channel for this frame. The bit in $420c is not cleared, though, so it may be automatically restarted next frame."
if(ch.HdmaLineCounterAndRepeat == 0) {
ch.HdmaFinished = true;
}
//"d. Set DoTransfer to true."
ch.DoTransfer = true;
}
}
if(needSync) {
//If we ran a HDMA transfer, sync
SyncEndDma();
}
_activeChannel = originalActiveChannel;
UpdateNeedToProcessFlag();
return true;
}
bool DmaController::IsLastActiveHdmaChannel(uint8_t channel)
{
for(int i = channel + 1; i < 8; i++) {
if((_hdmaChannels & (1 << i)) && !_channel[i].HdmaFinished) {
return false;
}
}
return true;
}
void DmaController::UpdateNeedToProcessFlag()
{
//Slightly faster execution time by doing this rather than processing all 4 flags on each cycle
_needToProcess = _hdmaPending || _hdmaInitPending || _dmaStartDelay || _dmaPending;
}
void DmaController::BeginHdmaTransfer()
{
if(_hdmaChannels) {
_hdmaPending = true;
UpdateNeedToProcessFlag();
}
}
void DmaController::BeginHdmaInit()
{
_hdmaInitPending = true;
UpdateNeedToProcessFlag();
}
bool DmaController::ProcessPendingTransfers()
{
if(!_needToProcess) {
return false;
}
if(_dmaStartDelay) {
_dmaStartDelay = false;
return false;
}
if(_hdmaPending) {
return ProcessHdmaChannels();
} else if(_hdmaInitPending) {
return InitHdmaChannels();
} else if(_dmaPending) {
_dmaPending = false;
SyncStartDma();
_memoryManager->IncMasterClock8();
ProcessPendingTransfers();
for(int i = 0; i < 8; i++) {
if(_channel[i].DmaActive) {
_activeChannel = i;
RunDma(_channel[i]);
}
}
SyncEndDma();
UpdateNeedToProcessFlag();
return true;
}
return false;
}
void DmaController::Write(uint16_t addr, uint8_t value)
{
switch(addr) {
case 0x420B: {
//MDMAEN - DMA Enable
for(int i = 0; i < 8; i++) {
if(value & (1 << i)) {
_channel[i].DmaActive = true;
}
}
if(value) {
_dmaPending = true;
_dmaStartDelay = true;
UpdateNeedToProcessFlag();
}
break;
}
case 0x420C:
//HDMAEN - HDMA Enable
_hdmaChannels = value;
break;
case 0x4300: case 0x4310: case 0x4320: case 0x4330: case 0x4340: case 0x4350: case 0x4360: case 0x4370:
{
//DMAPx - DMA Control for Channel x
DmaChannelConfig &channel = _channel[(addr & 0x70) >> 4];
channel.InvertDirection = (value & 0x80) != 0;
channel.HdmaIndirectAddressing = (value & 0x40) != 0;
channel.UnusedFlag = (value & 0x20) != 0;
channel.Decrement = (value & 0x10) != 0;
channel.FixedTransfer = (value & 0x08) != 0;
channel.TransferMode = value & 0x07;
break;
}
case 0x4301: case 0x4311: case 0x4321: case 0x4331: case 0x4341: case 0x4351: case 0x4361: case 0x4371:
{
//BBADx - DMA Destination Register for Channel x
DmaChannelConfig &channel = _channel[(addr & 0x70) >> 4];
channel.DestAddress = value;
break;
}
case 0x4302: case 0x4312: case 0x4322: case 0x4332: case 0x4342: case 0x4352: case 0x4362: case 0x4372:
{
DmaChannelConfig &channel = _channel[(addr & 0x70) >> 4];
channel.SrcAddress = (channel.SrcAddress & 0xFF00) | value;
break;
}
case 0x4303: case 0x4313: case 0x4323: case 0x4333: case 0x4343: case 0x4353: case 0x4363: case 0x4373:
{
DmaChannelConfig &channel = _channel[(addr & 0x70) >> 4];
channel.SrcAddress = (channel.SrcAddress & 0xFF) | (value << 8);
break;
}
case 0x4304: case 0x4314: case 0x4324: case 0x4334: case 0x4344: case 0x4354: case 0x4364: case 0x4374:
{
DmaChannelConfig &channel = _channel[(addr & 0x70) >> 4];
channel.SrcBank = value;
break;
}
case 0x4305: case 0x4315: case 0x4325: case 0x4335: case 0x4345: case 0x4355: case 0x4365: case 0x4375:
{
//DASxL - DMA Size / HDMA Indirect Address low byte(x = 0 - 7)
DmaChannelConfig &channel = _channel[(addr & 0x70) >> 4];
channel.TransferSize = (channel.TransferSize & 0xFF00) | value;
break;
}
case 0x4306: case 0x4316: case 0x4326: case 0x4336: case 0x4346: case 0x4356: case 0x4366: case 0x4376:
{
//DASxL - DMA Size / HDMA Indirect Address low byte(x = 0 - 7)
DmaChannelConfig &channel = _channel[(addr & 0x70) >> 4];
channel.TransferSize = (channel.TransferSize & 0xFF) | (value << 8);
break;
}
case 0x4307: case 0x4317: case 0x4327: case 0x4337: case 0x4347: case 0x4357: case 0x4367: case 0x4377:
{
//DASBx - HDMA Indirect Address bank byte (x=0-7)
DmaChannelConfig &channel = _channel[(addr & 0x70) >> 4];
channel.HdmaBank = value;
break;
}
case 0x4308: case 0x4318: case 0x4328: case 0x4338: case 0x4348: case 0x4358: case 0x4368: case 0x4378:
{
//A2AxL - HDMA Table Address low byte (x=0-7)
DmaChannelConfig &channel = _channel[(addr & 0x70) >> 4];
channel.HdmaTableAddress = (channel.HdmaTableAddress & 0xFF00) | value;
break;
}
case 0x4309: case 0x4319: case 0x4329: case 0x4339: case 0x4349: case 0x4359: case 0x4369: case 0x4379:
{
//A2AxH - HDMA Table Address high byte (x=0-7)
DmaChannelConfig &channel = _channel[(addr & 0x70) >> 4];
channel.HdmaTableAddress = (value << 8) | (channel.HdmaTableAddress & 0xFF);
break;
}
case 0x430A: case 0x431A: case 0x432A: case 0x433A: case 0x434A: case 0x435A: case 0x436A: case 0x437A:
{
//DASBx - HDMA Indirect Address bank byte (x=0-7)
DmaChannelConfig &channel = _channel[(addr & 0x70) >> 4];
channel.HdmaLineCounterAndRepeat = value;
break;
}
}
}
uint8_t DmaController::Read(uint16_t addr)
{
switch(addr) {
case 0x4300: case 0x4310: case 0x4320: case 0x4330: case 0x4340: case 0x4350: case 0x4360: case 0x4370:
{
//DMAPx - DMA Control for Channel x
DmaChannelConfig &channel = _channel[(addr & 0x70) >> 4];
return (
(channel.InvertDirection ? 0x80 : 0) |
(channel.HdmaIndirectAddressing ? 0x40 : 0) |
(channel.UnusedFlag ? 0x20 : 0) |
(channel.Decrement ? 0x10 : 0) |
(channel.FixedTransfer ? 0x08 : 0) |
(channel.TransferMode & 0x07)
);
}
case 0x4301: case 0x4311: case 0x4321: case 0x4331: case 0x4341: case 0x4351: case 0x4361: case 0x4371:
{
//BBADx - DMA Destination Register for Channel x
DmaChannelConfig &channel = _channel[(addr & 0x70) >> 4];
return channel.DestAddress;
}
case 0x4302: case 0x4312: case 0x4322: case 0x4332: case 0x4342: case 0x4352: case 0x4362: case 0x4372:
{
DmaChannelConfig &channel = _channel[(addr & 0x70) >> 4];
return channel.SrcAddress & 0xFF;
}
case 0x4303: case 0x4313: case 0x4323: case 0x4333: case 0x4343: case 0x4353: case 0x4363: case 0x4373:
{
DmaChannelConfig &channel = _channel[(addr & 0x70) >> 4];
return (channel.SrcAddress >> 8) & 0xFF;
}
case 0x4304: case 0x4314: case 0x4324: case 0x4334: case 0x4344: case 0x4354: case 0x4364: case 0x4374:
{
DmaChannelConfig &channel = _channel[(addr & 0x70) >> 4];
return channel.SrcBank;
}
case 0x4305: case 0x4315: case 0x4325: case 0x4335: case 0x4345: case 0x4355: case 0x4365: case 0x4375:
{
//DASxL - DMA Size / HDMA Indirect Address low byte(x = 0 - 7)
DmaChannelConfig &channel = _channel[(addr & 0x70) >> 4];
return channel.TransferSize & 0xFF;
}
case 0x4306: case 0x4316: case 0x4326: case 0x4336: case 0x4346: case 0x4356: case 0x4366: case 0x4376:
{
//DASxL - DMA Size / HDMA Indirect Address low byte(x = 0 - 7)
DmaChannelConfig &channel = _channel[(addr & 0x70) >> 4];
return (channel.TransferSize >> 8) & 0xFF;
}
case 0x4307: case 0x4317: case 0x4327: case 0x4337: case 0x4347: case 0x4357: case 0x4367: case 0x4377:
{
//DASBx - HDMA Indirect Address bank byte (x=0-7)
DmaChannelConfig &channel = _channel[(addr & 0x70) >> 4];
return channel.HdmaBank;
}
case 0x4308: case 0x4318: case 0x4328: case 0x4338: case 0x4348: case 0x4358: case 0x4368: case 0x4378:
{
//A2AxL - HDMA Table Address low byte (x=0-7)
DmaChannelConfig &channel = _channel[(addr & 0x70) >> 4];
return channel.HdmaTableAddress & 0xFF;
}
case 0x4309: case 0x4319: case 0x4329: case 0x4339: case 0x4349: case 0x4359: case 0x4369: case 0x4379:
{
//A2AxH - HDMA Table Address high byte (x=0-7)
DmaChannelConfig &channel = _channel[(addr & 0x70) >> 4];
return (channel.HdmaTableAddress >> 8) & 0xFF;
}
case 0x430A: case 0x431A: case 0x432A: case 0x433A: case 0x434A: case 0x435A: case 0x436A: case 0x437A:
{
//DASBx - HDMA Indirect Address bank byte (x=0-7)
DmaChannelConfig &channel = _channel[(addr & 0x70) >> 4];
return channel.HdmaLineCounterAndRepeat;
}
}
return _memoryManager->GetOpenBus();
}
uint8_t DmaController::GetActiveChannel()
{
return _activeChannel;
}
DmaChannelConfig DmaController::GetChannelConfig(uint8_t channel)
{
return _channel[channel];
}
void DmaController::Serialize(Serializer &s)
{
s.Stream(_hdmaPending, _hdmaChannels, _dmaPending, _dmaStartClock, _hdmaInitPending, _dmaStartDelay, _needToProcess);
for(int i = 0; i < 8; i++) {
s.Stream(
_channel[i].Decrement, _channel[i].DestAddress, _channel[i].DoTransfer, _channel[i].FixedTransfer,
_channel[i].HdmaBank, _channel[i].HdmaFinished, _channel[i].HdmaIndirectAddressing,
_channel[i].HdmaLineCounterAndRepeat, _channel[i].HdmaTableAddress,
_channel[i].InvertDirection, _channel[i].SrcAddress, _channel[i].SrcBank, _channel[i].TransferMode,
_channel[i].TransferSize, _channel[i].UnusedFlag, _channel[i].DmaActive
);
}
}