Kaizen/external/parallel-rdp/parallel-rdp-standalone/util/arena_allocator.cpp

197 lines
5.3 KiB
C++

/* Copyright (c) 2017-2023 Hans-Kristian Arntzen
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "arena_allocator.hpp"
#include "bitops.hpp"
#include <assert.h>
namespace Util
{
void LegionAllocator::allocate(uint32_t num_blocks, uint32_t &out_mask, uint32_t &out_offset)
{
assert(NumSubBlocks >= num_blocks);
assert(num_blocks != 0);
uint32_t block_mask;
if (num_blocks == NumSubBlocks)
block_mask = ~0u;
else
block_mask = ((1u << num_blocks) - 1u);
uint32_t mask = free_blocks[num_blocks - 1];
uint32_t b = trailing_zeroes(mask);
assert(((free_blocks[0] >> b) & block_mask) == block_mask);
uint32_t sb = block_mask << b;
free_blocks[0] &= ~sb;
update_longest_run();
out_mask = sb;
out_offset = b;
}
void LegionAllocator::free(uint32_t mask)
{
assert((free_blocks[0] & mask) == 0);
free_blocks[0] |= mask;
update_longest_run();
}
void LegionAllocator::update_longest_run()
{
uint32_t f = free_blocks[0];
longest_run = 0;
while (f)
{
free_blocks[longest_run++] = f;
f &= f >> 1;
}
}
bool SliceSubAllocator::allocate_backing_heap(AllocatedSlice *allocation)
{
uint32_t count = sub_block_size * Util::LegionAllocator::NumSubBlocks;
if (parent)
{
return parent->allocate(count, allocation);
}
else if (global_allocator)
{
uint32_t index = global_allocator->allocate(count);
if (index == UINT32_MAX)
return false;
*allocation = {};
allocation->count = count;
allocation->buffer_index = index;
return true;
}
else
{
return false;
}
}
void SliceSubAllocator::free_backing_heap(AllocatedSlice *allocation) const
{
if (parent)
parent->free(allocation->heap, allocation->mask);
else if (global_allocator)
global_allocator->free(allocation->buffer_index);
}
void SliceSubAllocator::prepare_allocation(AllocatedSlice *allocation, Util::IntrusiveList<MiniHeap>::Iterator heap,
const Util::SuballocationResult &suballoc)
{
allocation->buffer_index = heap->allocation.buffer_index;
allocation->offset = heap->allocation.offset + suballoc.offset;
allocation->count = suballoc.size;
allocation->mask = suballoc.mask;
allocation->heap = heap;
allocation->alloc = this;
}
void SliceAllocator::init(uint32_t sub_block_size, uint32_t num_sub_blocks_in_arena_log2,
Util::SliceBackingAllocator *alloc)
{
global_allocator = alloc;
assert(num_sub_blocks_in_arena_log2 < SliceAllocatorCount * 5 && num_sub_blocks_in_arena_log2 >= 5);
unsigned num_hierarchies = (num_sub_blocks_in_arena_log2 + 4) / 5;
assert(num_hierarchies <= SliceAllocatorCount);
for (unsigned i = 0; i < num_hierarchies - 1; i++)
allocators[i].parent = &allocators[i + 1];
allocators[num_hierarchies - 1].global_allocator = alloc;
unsigned shamt[SliceAllocatorCount] = {};
shamt[num_hierarchies - 1] = num_sub_blocks_in_arena_log2 - Util::floor_log2(Util::LegionAllocator::NumSubBlocks);
// Spread out the multiplier if possible.
for (unsigned i = num_hierarchies - 1; i > 1; i--)
{
shamt[i - 1] = shamt[i] - shamt[i] / (i);
assert(shamt[i] - shamt[i - 1] <= Util::floor_log2(Util::LegionAllocator::NumSubBlocks));
}
for (unsigned i = 0; i < num_hierarchies; i++)
{
allocators[i].set_sub_block_size(sub_block_size << shamt[i]);
allocators[i].set_object_pool(&object_pool);
}
}
void SliceAllocator::free(const Util::AllocatedSlice &slice)
{
if (slice.alloc)
slice.alloc->free(slice.heap, slice.mask);
else if (slice.buffer_index != UINT32_MAX)
global_allocator->free(slice.buffer_index);
}
void SliceAllocator::prime(const void *opaque_meta)
{
for (auto &alloc : allocators)
{
if (alloc.global_allocator)
{
alloc.global_allocator->prime(alloc.get_sub_block_size() * Util::LegionAllocator::NumSubBlocks, opaque_meta);
break;
}
}
}
bool SliceAllocator::allocate(uint32_t count, Util::AllocatedSlice *slice)
{
for (auto &alloc : allocators)
{
uint32_t max_alloc_size = alloc.get_max_allocation_size();
if (count <= max_alloc_size)
return alloc.allocate(count, slice);
}
LOGE("Allocation of %u elements is too large for SliceAllocator.\n", count);
return false;
}
void SliceBackingAllocatorVA::free(uint32_t)
{
allocated = false;
}
uint32_t SliceBackingAllocatorVA::allocate(uint32_t)
{
if (allocated)
return UINT32_MAX;
else
{
allocated = true;
return 0;
}
}
void SliceBackingAllocatorVA::prime(uint32_t, const void *)
{
}
}