Kaizen/external/capstone/arch/BPF/BPFInstPrinter.c

370 lines
9.2 KiB
C

/* Capstone Disassembly Engine */
/* BPF Backend by david942j <david942j@gmail.com>, 2019 */
/* SPDX-FileCopyrightText: 2024 Roee Toledano <roeetoledano10@gmail.com> */
/* SPDX-License-Identifier: BSD-3 */
#include <capstone/platform.h>
#include "BPFConstants.h"
#include "BPFInstPrinter.h"
#include "BPFMapping.h"
#include "../../Mapping.h"
static cs_bpf_op *expand_bpf_operands(cs_bpf *bpf)
{
assert(bpf->op_count < 3);
return &bpf->operands[bpf->op_count++];
}
static void push_op_reg(cs_bpf *bpf, bpf_op_type val, uint8_t ac_mode)
{
cs_bpf_op *op = expand_bpf_operands(bpf);
op->type = BPF_OP_REG;
op->reg = val;
op->access = ac_mode;
}
static void push_op_imm(cs_bpf *bpf, uint64_t val, const bool is_signed)
{
cs_bpf_op *op = expand_bpf_operands(bpf);
op->type = BPF_OP_IMM;
op->imm = val;
op->is_signed = is_signed;
}
static void push_op_off(cs_bpf *bpf, uint32_t val, const bool is_signed)
{
cs_bpf_op *op = expand_bpf_operands(bpf);
op->type = BPF_OP_OFF;
op->off = val;
op->is_signed = is_signed;
}
static void push_op_mem(cs_bpf *bpf, bpf_reg reg, uint32_t val,
const bool is_signed, const bool is_pkt)
{
cs_bpf_op *op = expand_bpf_operands(bpf);
op->type = BPF_OP_MEM;
op->mem.base = reg;
op->mem.disp = val;
op->is_signed = is_signed;
op->is_pkt = is_pkt;
}
static void push_op_mmem(cs_bpf *bpf, uint32_t val)
{
cs_bpf_op *op = expand_bpf_operands(bpf);
op->type = BPF_OP_MMEM;
op->mmem = val;
}
static void push_op_msh(cs_bpf *bpf, uint32_t val)
{
cs_bpf_op *op = expand_bpf_operands(bpf);
op->type = BPF_OP_MSH;
op->msh = val;
}
static void push_op_ext(cs_bpf *bpf, bpf_ext_type val)
{
cs_bpf_op *op = expand_bpf_operands(bpf);
op->type = BPF_OP_EXT;
op->ext = val;
}
static void convert_operands(MCInst *MI, cs_bpf *bpf)
{
unsigned opcode = MCInst_getOpcode(MI);
unsigned mc_op_count = MCInst_getNumOperands(MI);
MCOperand *op;
MCOperand *op2;
bpf->op_count = 0;
if (BPF_CLASS(opcode) == BPF_CLASS_LD ||
BPF_CLASS(opcode) == BPF_CLASS_LDX) {
switch (BPF_MODE(opcode)) {
case BPF_MODE_IMM:
if (EBPF_MODE(MI->csh->mode)) {
push_op_reg(bpf,
MCOperand_getReg(
MCInst_getOperand(MI, 0)),
CS_AC_WRITE);
push_op_imm(bpf,
MCOperand_getImm(
MCInst_getOperand(MI, 1)),
false);
} else {
push_op_imm(bpf,
MCOperand_getImm(
MCInst_getOperand(MI, 0)),
false);
}
break;
case BPF_MODE_ABS:
op = MCInst_getOperand(MI, 0);
push_op_mem(bpf, BPF_REG_INVALID,
(uint32_t)MCOperand_getImm(op), EBPF_MODE(MI->csh->mode), true);
break;
case BPF_MODE_IND:
op = MCInst_getOperand(MI, 0);
if (EBPF_MODE(MI->csh->mode))
push_op_mem(bpf, MCOperand_getReg(op), 0x0,
true, true);
else {
op2 = MCInst_getOperand(MI, 1);
push_op_mem(bpf, MCOperand_getReg(op),
(uint32_t)MCOperand_getImm(op2),
false, true);
}
break;
case BPF_MODE_MEM:
if (EBPF_MODE(MI->csh->mode)) {
/* ldx{w,h,b,dw} dst, [src+off] */
push_op_reg(bpf,
MCOperand_getReg(
MCInst_getOperand(MI, 0)),
CS_AC_WRITE);
op = MCInst_getOperand(MI, 1);
op2 = MCInst_getOperand(MI, 2);
push_op_mem(bpf, MCOperand_getReg(op),
(uint32_t)MCOperand_getImm(op2),
true, false);
} else {
push_op_mmem(bpf,
(uint32_t)MCOperand_getImm(
MCInst_getOperand(MI, 0)));
}
break;
case BPF_MODE_LEN:
push_op_ext(bpf, BPF_EXT_LEN);
break;
case BPF_MODE_MSH:
op = MCInst_getOperand(MI, 0);
push_op_msh(bpf, (uint32_t)MCOperand_getImm(op));
break;
/* case BPF_MODE_XADD: // not exists */
}
return;
}
if (BPF_CLASS(opcode) == BPF_CLASS_ST ||
BPF_CLASS(opcode) == BPF_CLASS_STX) {
if (!EBPF_MODE(MI->csh->mode)) {
// cBPF has only one case - st* M[k]
push_op_mmem(bpf, (uint32_t)MCOperand_getImm(
MCInst_getOperand(MI, 0)));
return;
}
/* eBPF has two cases:
* - st [dst + off], src
* - xadd [dst + off], src
* they have same form of operands.
*/
op = MCInst_getOperand(MI, 0);
op2 = MCInst_getOperand(MI, 1);
push_op_mem(bpf, MCOperand_getReg(op),
(uint32_t)MCOperand_getImm(op2), true, false);
op = MCInst_getOperand(MI, 2);
if (MCOperand_isImm(op))
push_op_imm(bpf, MCOperand_getImm(op), false);
else if (MCOperand_isReg(op))
push_op_reg(bpf, MCOperand_getReg(op), CS_AC_READ);
return;
}
{
const bool is_jmp32 = EBPF_MODE(MI->csh->mode) &&
(BPF_CLASS(opcode) == BPF_CLASS_JMP32);
if (BPF_CLASS(opcode) == BPF_CLASS_JMP || is_jmp32) {
for (size_t i = 0; i < mc_op_count; i++) {
op = MCInst_getOperand(MI, i);
if (MCOperand_isImm(op)) {
/* Decide if we're using IMM or OFF here (and if OFF, then signed or unsigned):
*
* 1. any jump/jump32 + signed off (not including exit/call and ja on jump32) // eBPF
* 2. exit/call/ja + k // eBPF
* 3. ja + unsigned off // cBPF (cBPF programs can only jump forwards)
* 4. any jump {x,k}, +jt, +jf // cBPF
* */
if ((BPF_OP(opcode) == BPF_JUMP_JA &&
!is_jmp32) ||
(!EBPF_MODE(MI->csh->mode) &&
i >= 1) ||
(EBPF_MODE(MI->csh->mode) &&
i == 2))
push_op_off(
bpf,
MCOperand_getImm(op),
EBPF_MODE(
MI->csh->mode));
else
push_op_imm(
bpf,
MCOperand_getImm(op),
true);
} else if (MCOperand_isReg(op)) {
push_op_reg(bpf, MCOperand_getReg(op),
CS_AC_READ);
}
}
return;
}
}
if (!EBPF_MODE(MI->csh->mode)) {
/* In cBPF mode, all registers in operands are accessed as read */
for (size_t i = 0; i < mc_op_count; i++) {
op = MCInst_getOperand(MI, i);
if (MCOperand_isImm(op))
push_op_imm(bpf, MCOperand_getImm(op), false);
else if (MCOperand_isReg(op))
push_op_reg(bpf, MCOperand_getReg(op),
CS_AC_READ);
}
return;
}
/* remain cases are: eBPF mode && ALU */
/* if (BPF_CLASS(opcode) == BPF_CLASS_ALU || BPF_CLASS(opcode) == BPF_CLASS_ALU64) */
/* We have three types:
* 1. {l,b}e dst // dst = byteswap(dst)
* 2. neg dst // dst = -dst
* 3. <op> dst, {src_reg, imm} // dst = dst <op> src
* so we can simply check the number of operands,
* exactly one operand means we are in case 1. and 2.,
* otherwise in case 3.
*/
if (mc_op_count == 1) {
op = MCInst_getOperand(MI, 0);
push_op_reg(bpf, MCOperand_getReg(op),
CS_AC_READ | CS_AC_WRITE);
} else { // if (mc_op_count == 2)
op = MCInst_getOperand(MI, 0);
push_op_reg(bpf, MCOperand_getReg(op),
CS_AC_READ | CS_AC_WRITE);
op = MCInst_getOperand(MI, 1);
if (MCOperand_isImm(op))
push_op_imm(bpf, MCOperand_getImm(op), false);
else if (MCOperand_isReg(op))
push_op_reg(bpf, MCOperand_getReg(op), CS_AC_READ);
}
}
static void print_operand(MCInst *MI, struct SStream *O, const cs_bpf_op *op)
{
switch (op->type) {
case BPF_OP_INVALID:
SStream_concat(O, "invalid");
break;
case BPF_OP_REG:
SStream_concat(O, BPF_reg_name((csh)MI->csh, op->reg));
break;
case BPF_OP_IMM:
if (op->is_signed)
printInt32Hex(O, op->imm);
else
SStream_concat(O, "0x%" PRIx64, op->imm);
break;
case BPF_OP_OFF:
if (op->is_signed)
printInt16HexOffset(O, op->off);
else
SStream_concat(O, "+0x%" PRIx32, op->off);
break;
case BPF_OP_MEM:
SStream_concat(O, "[");
if (op->is_pkt && EBPF_MODE(MI->csh->mode)) {
SStream_concat(O, "skb");
if (op->mem.base != BPF_REG_INVALID)
SStream_concat(O, "+%s",
BPF_reg_name((csh)MI->csh,
op->mem.base));
else {
if (op->is_signed)
printInt32HexOffset(O, op->mem.disp);
else
SStream_concat(O, "+0x%" PRIx32,
op->mem.disp);
}
} else {
if (op->mem.base != BPF_REG_INVALID)
SStream_concat(O, BPF_reg_name((csh)MI->csh,
op->mem.base));
if (op->mem.disp != 0) {
if (op->mem.base != BPF_REG_INVALID) {
// if operation is signed, then it always uses off, not k
if (op->is_signed)
printInt16HexOffset(
O, op->mem.disp);
else if (op->is_pkt)
SStream_concat(O, "+0x%" PRIx32,
op->mem.disp);
else
SStream_concat(O, "+0x%" PRIx16,
op->mem.disp);
} else
SStream_concat(O, "0x%" PRIx32,
op->mem.disp);
}
if (op->mem.base == BPF_REG_INVALID &&
op->mem.disp == 0)
SStream_concat(O, "0x0");
}
SStream_concat(O, "]");
break;
case BPF_OP_MMEM:
SStream_concat(O, "m[0x%x]", op->mmem);
break;
case BPF_OP_MSH:
SStream_concat(O, "4*([0x%x]&0xf)", op->msh);
break;
case BPF_OP_EXT:
switch (op->ext) {
case BPF_EXT_LEN:
SStream_concat(O, "#len");
break;
}
break;
}
}
/*
* 1. human readable mnemonic
* 2. set pubOpcode (BPF_INSN_*)
* 3. set detail->bpf.operands
* */
void BPF_printInst(MCInst *MI, struct SStream *O, void *PrinterInfo)
{
cs_bpf bpf = { 0 };
/* set pubOpcode as instruction id */
SStream_concat(O, BPF_insn_name((csh)MI->csh, MCInst_getOpcodePub(MI)));
convert_operands(MI, &bpf);
for (size_t i = 0; i < bpf.op_count; i++) {
if (i == 0)
SStream_concat(O, "\t");
else
SStream_concat(O, ", ");
print_operand(MI, O, &bpf.operands[i]);
}
#ifndef CAPSTONE_DIET
if (detail_is_set(MI)) {
MI->flat_insn->detail->bpf = bpf;
}
#endif
}