CATSFC/source/cpuexec.cpp
Nebuleon Fumika b3a7f8f1fc Synchronise the controller status more spread out inside a rendered frame:
* before rendering a background;
* before rendering sprites;
* while rendering more than 128 samples of audio at once ("Prefer fluid video");
* after every 16 scanlines of CPU execution instead of every 1;
* while waiting for an audio buffer to become available;
* while killing time between frames with fast-forward disabled.

Controller presses and releases are now combined in a DS button bitfield using a shorter 32-bit algorithm. See entry.cpp:NDSSFCAccumulateJoypad and #define ACCUMULATE_JOYPAD in the source.

This is still not suitable for playing platformers frame-perfectly, but it's much better than half a second of latency to press or release a button, and one still needs to press buttons a bit more than just light taps. I'd say 50 milliseconds is the latency now. Platformers requiring more precision can be played with frameskip 0.

DMA does not require double-buffered displaying, so synchronise the controller more often by disabling double-buffered displaying again.
2013-02-03 19:26:34 -05:00

844 lines
21 KiB
C++

/*******************************************************************************
Snes9x - Portable Super Nintendo Entertainment System (TM) emulator.
(c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com) and
Jerremy Koot (jkoot@snes9x.com)
(c) Copyright 2001 - 2004 John Weidman (jweidman@slip.net)
(c) Copyright 2002 - 2004 Brad Jorsch (anomie@users.sourceforge.net),
funkyass (funkyass@spam.shaw.ca),
Joel Yliluoma (http://iki.fi/bisqwit/)
Kris Bleakley (codeviolation@hotmail.com),
Matthew Kendora,
Nach (n-a-c-h@users.sourceforge.net),
Peter Bortas (peter@bortas.org) and
zones (kasumitokoduck@yahoo.com)
C4 x86 assembler and some C emulation code
(c) Copyright 2000 - 2003 zsKnight (zsknight@zsnes.com),
_Demo_ (_demo_@zsnes.com), and Nach
C4 C++ code
(c) Copyright 2003 Brad Jorsch
DSP-1 emulator code
(c) Copyright 1998 - 2004 Ivar (ivar@snes9x.com), _Demo_, Gary Henderson,
John Weidman, neviksti (neviksti@hotmail.com),
Kris Bleakley, Andreas Naive
DSP-2 emulator code
(c) Copyright 2003 Kris Bleakley, John Weidman, neviksti, Matthew Kendora, and
Lord Nightmare (lord_nightmare@users.sourceforge.net
OBC1 emulator code
(c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com) and
Kris Bleakley
Ported from x86 assembler to C by sanmaiwashi
SPC7110 and RTC C++ emulator code
(c) Copyright 2002 Matthew Kendora with research by
zsKnight, John Weidman, and Dark Force
S-DD1 C emulator code
(c) Copyright 2003 Brad Jorsch with research by
Andreas Naive and John Weidman
S-RTC C emulator code
(c) Copyright 2001 John Weidman
ST010 C++ emulator code
(c) Copyright 2003 Feather, Kris Bleakley, John Weidman and Matthew Kendora
Super FX x86 assembler emulator code
(c) Copyright 1998 - 2003 zsKnight, _Demo_, and pagefault
Super FX C emulator code
(c) Copyright 1997 - 1999 Ivar, Gary Henderson and John Weidman
SH assembler code partly based on x86 assembler code
(c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se)
Specific ports contains the works of other authors. See headers in
individual files.
Snes9x homepage: http://www.snes9x.com
Permission to use, copy, modify and distribute Snes9x in both binary and
source form, for non-commercial purposes, is hereby granted without fee,
providing that this license information and copyright notice appear with
all copies and any derived work.
This software is provided 'as-is', without any express or implied
warranty. In no event shall the authors be held liable for any damages
arising from the use of this software.
Snes9x is freeware for PERSONAL USE only. Commercial users should
seek permission of the copyright holders first. Commercial use includes
charging money for Snes9x or software derived from Snes9x.
The copyright holders request that bug fixes and improvements to the code
should be forwarded to them so everyone can benefit from the modifications
in future versions.
Super NES and Super Nintendo Entertainment System are trademarks of
Nintendo Co., Limited and its subsidiary companies.
*******************************************************************************/
#include "ds2_timer.h"
#include "ds2_cpu.h"
#include "ds2io.h"
#include "snes9x.h"
#include "memmap.h"
#include "cpuops.h"
#include "ppu.h"
#include "cpuexec.h"
#include "debug.h"
#include "snapshot.h"
#include "gfx.h"
#include "missing.h"
#include "apu.h"
#include "dma.h"
#include "fxemu.h"
#include "sa1.h"
#include "spc7110.h"
#ifdef ACCUMULATE_JOYPAD
#include "display.h"
#endif
extern void S9xProcessSound (unsigned int);
void S9xMainLoop_SA1_SFX (void);
void S9xMainLoop_SA1_NoSFX (void);
void S9xMainLoop_NoSA1_SFX (void);
void S9xMainLoop_NoSA1_NoSFX (void);
/*
* This is a CATSFC modification inspired by a Snes9x-Euphoria modification.
* The emulator selects a main loop based on the chips used in an entire
* frame. This avoids the constant SA1.Executing and Settings.SuperFX checks.
*
* The original version of S9xMainLoop is S9xMainLoop_SA1_SFX below. Remember
* to propagate modifications to the SA1_NoSFX, NoSA1_SFX and NoSA1_NoSFX
* versions.
*/
void S9xMainLoop (void)
{
if (Settings.SA1)
{
if (Settings.SuperFX) S9xMainLoop_SA1_SFX ();
else /* if (!Settings.SuperFX) */ S9xMainLoop_SA1_NoSFX ();
}
else /* if (!Settings.SA1) */
{
if (Settings.SuperFX) S9xMainLoop_NoSA1_SFX ();
else /* if (!Settings.SuperFX) */ S9xMainLoop_NoSA1_NoSFX ();
}
}
void S9xMainLoop_SA1_SFX (void)
{
for (;;)
{
APU_EXECUTE ();
if (CPU.Flags)
{
if (CPU.Flags & NMI_FLAG)
{
if (--CPU.NMICycleCount == 0) {
CPU.Flags &= ~NMI_FLAG;
if (CPU.WaitingForInterrupt) {
CPU.WaitingForInterrupt = FALSE;
CPU.PC++;
}
S9xOpcode_NMI ();
}
}
CHECK_SOUND ();
if (CPU.Flags & IRQ_PENDING_FLAG)
{
if (CPU.IRQCycleCount == 0)
{
if (CPU.WaitingForInterrupt) {
CPU.WaitingForInterrupt = FALSE;
CPU.PC++;
}
if (CPU.IRQActive && !Settings.DisableIRQ) {
if (!CheckFlag (IRQ))
S9xOpcode_IRQ ();
}
else
CPU.Flags &= ~IRQ_PENDING_FLAG;
}
else
{
if(--CPU.IRQCycleCount==0 && CheckFlag (IRQ))
CPU.IRQCycleCount=1;
}
}
if (CPU.Flags & SCAN_KEYS_FLAG)
break;
}
#ifdef CPU_SHUTDOWN
CPU.PCAtOpcodeStart = CPU.PC;
#endif
CPU.Cycles += CPU.MemSpeed;
(*ICPU.S9xOpcodes [*CPU.PC++].S9xOpcode) ();
if (SA1.Executing)
S9xSA1MainLoop ();
DO_HBLANK_CHECK_SFX();
}
ICPU.Registers.PC = CPU.PC - CPU.PCBase;
S9xPackStatus ();
IAPU.Registers.PC = IAPU.PC - IAPU.RAM;
S9xAPUPackStatus ();
if (CPU.Flags & SCAN_KEYS_FLAG)
{
S9xSyncSpeed ();
CPU.Flags &= ~SCAN_KEYS_FLAG;
}
#ifdef DETECT_NASTY_FX_INTERLEAVE
if (CPU.BRKTriggered && Settings.SuperFX && !CPU.TriedInterleavedMode2)
{
CPU.TriedInterleavedMode2 = TRUE;
CPU.BRKTriggered = FALSE;
S9xDeinterleaveMode2 ();
}
#endif
}
void S9xMainLoop_SA1_NoSFX (void)
{
for (;;)
{
APU_EXECUTE ();
if (CPU.Flags)
{
if (CPU.Flags & NMI_FLAG)
{
if (--CPU.NMICycleCount == 0) {
CPU.Flags &= ~NMI_FLAG;
if (CPU.WaitingForInterrupt) {
CPU.WaitingForInterrupt = FALSE;
CPU.PC++;
}
S9xOpcode_NMI ();
}
}
CHECK_SOUND ();
if (CPU.Flags & IRQ_PENDING_FLAG)
{
if (CPU.IRQCycleCount == 0)
{
if (CPU.WaitingForInterrupt) {
CPU.WaitingForInterrupt = FALSE;
CPU.PC++;
}
if (CPU.IRQActive && !Settings.DisableIRQ) {
if (!CheckFlag (IRQ))
S9xOpcode_IRQ ();
}
else
CPU.Flags &= ~IRQ_PENDING_FLAG;
}
else
{
if(--CPU.IRQCycleCount==0 && CheckFlag (IRQ))
CPU.IRQCycleCount=1;
}
}
if (CPU.Flags & SCAN_KEYS_FLAG)
break;
}
#ifdef CPU_SHUTDOWN
CPU.PCAtOpcodeStart = CPU.PC;
#endif
CPU.Cycles += CPU.MemSpeed;
(*ICPU.S9xOpcodes [*CPU.PC++].S9xOpcode) ();
if (SA1.Executing)
S9xSA1MainLoop ();
DO_HBLANK_CHECK_NoSFX();
}
ICPU.Registers.PC = CPU.PC - CPU.PCBase;
S9xPackStatus ();
IAPU.Registers.PC = IAPU.PC - IAPU.RAM;
S9xAPUPackStatus ();
if (CPU.Flags & SCAN_KEYS_FLAG)
{
S9xSyncSpeed ();
CPU.Flags &= ~SCAN_KEYS_FLAG;
}
}
void S9xMainLoop_NoSA1_SFX (void)
{
for (;;)
{
APU_EXECUTE ();
if (CPU.Flags)
{
if (CPU.Flags & NMI_FLAG)
{
if (--CPU.NMICycleCount == 0) {
CPU.Flags &= ~NMI_FLAG;
if (CPU.WaitingForInterrupt) {
CPU.WaitingForInterrupt = FALSE;
CPU.PC++;
}
S9xOpcode_NMI ();
}
}
CHECK_SOUND ();
if (CPU.Flags & IRQ_PENDING_FLAG)
{
if (CPU.IRQCycleCount == 0)
{
if (CPU.WaitingForInterrupt) {
CPU.WaitingForInterrupt = FALSE;
CPU.PC++;
}
if (CPU.IRQActive && !Settings.DisableIRQ) {
if (!CheckFlag (IRQ))
S9xOpcode_IRQ ();
}
else
CPU.Flags &= ~IRQ_PENDING_FLAG;
}
else
{
if(--CPU.IRQCycleCount==0 && CheckFlag (IRQ))
CPU.IRQCycleCount=1;
}
}
if (CPU.Flags & SCAN_KEYS_FLAG)
break;
}
#ifdef CPU_SHUTDOWN
CPU.PCAtOpcodeStart = CPU.PC;
#endif
CPU.Cycles += CPU.MemSpeed;
(*ICPU.S9xOpcodes [*CPU.PC++].S9xOpcode) ();
DO_HBLANK_CHECK_SFX();
}
ICPU.Registers.PC = CPU.PC - CPU.PCBase;
S9xPackStatus ();
IAPU.Registers.PC = IAPU.PC - IAPU.RAM;
S9xAPUPackStatus ();
if (CPU.Flags & SCAN_KEYS_FLAG)
{
S9xSyncSpeed ();
CPU.Flags &= ~SCAN_KEYS_FLAG;
}
#ifdef DETECT_NASTY_FX_INTERLEAVE
if (CPU.BRKTriggered && Settings.SuperFX && !CPU.TriedInterleavedMode2)
{
CPU.TriedInterleavedMode2 = TRUE;
CPU.BRKTriggered = FALSE;
S9xDeinterleaveMode2 ();
}
#endif
}
void S9xMainLoop_NoSA1_NoSFX (void)
{
for (;;)
{
APU_EXECUTE ();
if (CPU.Flags)
{
if (CPU.Flags & NMI_FLAG)
{
if (--CPU.NMICycleCount == 0) {
CPU.Flags &= ~NMI_FLAG;
if (CPU.WaitingForInterrupt) {
CPU.WaitingForInterrupt = FALSE;
CPU.PC++;
}
S9xOpcode_NMI ();
}
}
CHECK_SOUND ();
if (CPU.Flags & IRQ_PENDING_FLAG)
{
if (CPU.IRQCycleCount == 0)
{
if (CPU.WaitingForInterrupt) {
CPU.WaitingForInterrupt = FALSE;
CPU.PC++;
}
if (CPU.IRQActive && !Settings.DisableIRQ) {
if (!CheckFlag (IRQ))
S9xOpcode_IRQ ();
}
else
CPU.Flags &= ~IRQ_PENDING_FLAG;
}
else
{
if(--CPU.IRQCycleCount==0 && CheckFlag (IRQ))
CPU.IRQCycleCount=1;
}
}
if (CPU.Flags & SCAN_KEYS_FLAG)
break;
}
#ifdef CPU_SHUTDOWN
CPU.PCAtOpcodeStart = CPU.PC;
#endif
CPU.Cycles += CPU.MemSpeed;
(*ICPU.S9xOpcodes [*CPU.PC++].S9xOpcode) ();
DO_HBLANK_CHECK_NoSFX();
}
ICPU.Registers.PC = CPU.PC - CPU.PCBase;
S9xPackStatus ();
IAPU.Registers.PC = IAPU.PC - IAPU.RAM;
S9xAPUPackStatus ();
if (CPU.Flags & SCAN_KEYS_FLAG)
{
S9xSyncSpeed ();
CPU.Flags &= ~SCAN_KEYS_FLAG;
}
}
void S9xSetIRQ (uint32 source)
{
CPU.IRQActive |= source;
CPU.Flags |= IRQ_PENDING_FLAG;
CPU.IRQCycleCount = 3;
if (CPU.WaitingForInterrupt)
{
// Force IRQ to trigger immediately after WAI -
// Final Fantasy Mystic Quest crashes without this.
CPU.IRQCycleCount = 0;
CPU.WaitingForInterrupt = FALSE;
CPU.PC++;
}
}
void S9xClearIRQ (uint32 source)
{
CLEAR_IRQ_SOURCE (source);
}
/*
* This is a CATSFC modification inspired by a Snes9x-Euphoria modification.
* The emulator selects an HBlank processor based on the chips used in an
* entire frame. This avoids the constant Settings.SuperFX checks.
*
* The original version of S9xDoHBlankProcessing is S9xDoHBlankProcessing_SFX
* below. Remember to propagate modifications to the NoSFX version.
*/
void S9xDoHBlankProcessing_SFX ()
{
#ifdef CPU_SHUTDOWN
CPU.WaitCounter++;
#endif
switch (CPU.WhichEvent)
{
case HBLANK_START_EVENT:
#ifdef ACCUMULATE_JOYPAD
/*
* This call allows NDSSFC to synchronise the DS controller more often.
* If porting a later version of Snes9x into NDSSFC, it is essential to
* preserve it.
*/
if ((CPU.V_Counter & 0xF) == 0)
NDSSFCAccumulateJoypad ();
#endif
if (IPPU.HDMA && CPU.V_Counter <= PPU.ScreenHeight)
IPPU.HDMA = S9xDoHDMA (IPPU.HDMA);
break;
case HBLANK_END_EVENT:
S9xSuperFXExec ();
#ifndef STORM
if (Settings.SoundSync)
S9xGenerateSound ();
#endif
CPU.Cycles -= Settings.H_Max;
if (IAPU.APUExecuting)
{
APU.Cycles -= Settings.H_Max;
#ifdef MK_APU
S9xCatchupCount();
#endif
}
else
APU.Cycles = 0;
CPU.NextEvent = -1;
ICPU.Scanline++;
if (++CPU.V_Counter >= (Settings.PAL ? SNES_MAX_PAL_VCOUNTER : SNES_MAX_NTSC_VCOUNTER))
{
CPU.V_Counter = 0;
Memory.FillRAM[0x213F]^=0x80;
PPU.RangeTimeOver = 0;
CPU.NMIActive = FALSE;
ICPU.Frame++;
PPU.HVBeamCounterLatched = 0;
CPU.Flags |= SCAN_KEYS_FLAG;
S9xStartHDMA ();
}
S9xProcessSound (0);
if (PPU.VTimerEnabled && !PPU.HTimerEnabled && CPU.V_Counter == PPU.IRQVBeamPos)
{
S9xSetIRQ (PPU_V_BEAM_IRQ_SOURCE);
}
if (CPU.V_Counter == PPU.ScreenHeight + FIRST_VISIBLE_LINE)
{
// Start of V-blank
S9xEndScreenRefresh ();
IPPU.HDMA = 0;
// Bits 7 and 6 of $4212 are computed when read in S9xGetPPU.
missing.dma_this_frame = 0;
IPPU.MaxBrightness = PPU.Brightness;
PPU.ForcedBlanking = (Memory.FillRAM [0x2100] >> 7) & 1;
if(!PPU.ForcedBlanking)
{
PPU.OAMAddr = PPU.SavedOAMAddr;
uint8 tmp = 0;
if(PPU.OAMPriorityRotation)
tmp = (PPU.OAMAddr&0xFE)>>1;
if((PPU.OAMFlip&1) || PPU.FirstSprite!=tmp)
{
PPU.FirstSprite=tmp;
IPPU.OBJChanged=TRUE;
}
PPU.OAMFlip = 0;
}
Memory.FillRAM[0x4210] = 0x80 |Model->_5A22;
if (Memory.FillRAM[0x4200] & 0x80)
{
CPU.NMIActive = TRUE;
CPU.Flags |= NMI_FLAG;
CPU.NMICycleCount = CPU.NMITriggerPoint;
}
#ifdef OLD_SNAPSHOT_CODE
if (CPU.Flags & SAVE_SNAPSHOT_FLAG)
{
CPU.Flags &= ~SAVE_SNAPSHOT_FLAG;
Registers.PC = CPU.PC - CPU.PCBase;
S9xPackStatus ();
S9xAPUPackStatus ();
Snapshot (NULL);
}
#endif
}
if (CPU.V_Counter == PPU.ScreenHeight + 3)
S9xUpdateJoypads ();
if (CPU.V_Counter == FIRST_VISIBLE_LINE)
{
Memory.FillRAM[0x4210] = Model->_5A22;
CPU.Flags &= ~NMI_FLAG;
S9xStartScreenRefresh ();
}
if (CPU.V_Counter >= FIRST_VISIBLE_LINE &&
CPU.V_Counter < PPU.ScreenHeight + FIRST_VISIBLE_LINE)
{
RenderLine (CPU.V_Counter - FIRST_VISIBLE_LINE);
}
// Use TimerErrorCounter to skip update of SPC700 timers once
// every 128 updates. Needed because this section of code is called
// once every emulated 63.5 microseconds, which coresponds to
// 15.750KHz, but the SPC700 timers need to be updated at multiples
// of 8KHz, hence the error correction.
// IAPU.TimerErrorCounter++;
// if (IAPU.TimerErrorCounter >= )
// IAPU.TimerErrorCounter = 0;
// else
{
if (APU.TimerEnabled [2])
{
APU.Timer [2] += 4;
while (APU.Timer [2] >= APU.TimerTarget [2])
{
IAPU.RAM [0xff] = (IAPU.RAM [0xff] + 1) & 0xf;
APU.Timer [2] -= APU.TimerTarget [2];
#ifdef SPC700_SHUTDOWN
IAPU.WaitCounter++;
IAPU.APUExecuting = TRUE;
#endif
}
}
if (CPU.V_Counter & 1)
{
if (APU.TimerEnabled [0])
{
APU.Timer [0]++;
if (APU.Timer [0] >= APU.TimerTarget [0])
{
IAPU.RAM [0xfd] = (IAPU.RAM [0xfd] + 1) & 0xf;
APU.Timer [0] = 0;
#ifdef SPC700_SHUTDOWN
IAPU.WaitCounter++;
IAPU.APUExecuting = TRUE;
#endif
}
}
if (APU.TimerEnabled [1])
{
APU.Timer [1]++;
if (APU.Timer [1] >= APU.TimerTarget [1])
{
IAPU.RAM [0xfe] = (IAPU.RAM [0xfe] + 1) & 0xf;
APU.Timer [1] = 0;
#ifdef SPC700_SHUTDOWN
IAPU.WaitCounter++;
IAPU.APUExecuting = TRUE;
#endif
}
}
}
}
break;
case HTIMER_BEFORE_EVENT:
case HTIMER_AFTER_EVENT:
if (PPU.HTimerEnabled && (!PPU.VTimerEnabled || CPU.V_Counter == PPU.IRQVBeamPos))
{
S9xSetIRQ (PPU_H_BEAM_IRQ_SOURCE);
}
break;
}
S9xReschedule ();
}
void S9xDoHBlankProcessing_NoSFX ()
{
#ifdef CPU_SHUTDOWN
CPU.WaitCounter++;
#endif
switch (CPU.WhichEvent)
{
case HBLANK_START_EVENT:
#ifdef ACCUMULATE_JOYPAD
/*
* This call allows NDSSFC to synchronise the DS controller more often.
* If porting a later version of Snes9x into NDSSFC, it is essential to
* preserve it.
*/
NDSSFCAccumulateJoypad ();
#endif
if (IPPU.HDMA && CPU.V_Counter <= PPU.ScreenHeight)
IPPU.HDMA = S9xDoHDMA (IPPU.HDMA);
break;
case HBLANK_END_EVENT:
#ifndef STORM
if (Settings.SoundSync)
S9xGenerateSound ();
#endif
CPU.Cycles -= Settings.H_Max;
if (IAPU.APUExecuting)
{
APU.Cycles -= Settings.H_Max;
#ifdef MK_APU
S9xCatchupCount();
#endif
}
else
APU.Cycles = 0;
CPU.NextEvent = -1;
ICPU.Scanline++;
if (++CPU.V_Counter >= (Settings.PAL ? SNES_MAX_PAL_VCOUNTER : SNES_MAX_NTSC_VCOUNTER))
{
CPU.V_Counter = 0;
Memory.FillRAM[0x213F]^=0x80;
PPU.RangeTimeOver = 0;
CPU.NMIActive = FALSE;
ICPU.Frame++;
PPU.HVBeamCounterLatched = 0;
CPU.Flags |= SCAN_KEYS_FLAG;
S9xStartHDMA ();
}
S9xProcessSound (0);
if (PPU.VTimerEnabled && !PPU.HTimerEnabled && CPU.V_Counter == PPU.IRQVBeamPos)
{
S9xSetIRQ (PPU_V_BEAM_IRQ_SOURCE);
}
if (CPU.V_Counter == PPU.ScreenHeight + FIRST_VISIBLE_LINE)
{
// Start of V-blank
S9xEndScreenRefresh ();
IPPU.HDMA = 0;
// Bits 7 and 6 of $4212 are computed when read in S9xGetPPU.
missing.dma_this_frame = 0;
IPPU.MaxBrightness = PPU.Brightness;
PPU.ForcedBlanking = (Memory.FillRAM [0x2100] >> 7) & 1;
if(!PPU.ForcedBlanking)
{
PPU.OAMAddr = PPU.SavedOAMAddr;
uint8 tmp = 0;
if(PPU.OAMPriorityRotation)
tmp = (PPU.OAMAddr&0xFE)>>1;
if((PPU.OAMFlip&1) || PPU.FirstSprite!=tmp)
{
PPU.FirstSprite=tmp;
IPPU.OBJChanged=TRUE;
}
PPU.OAMFlip = 0;
}
Memory.FillRAM[0x4210] = 0x80 |Model->_5A22;
if (Memory.FillRAM[0x4200] & 0x80)
{
CPU.NMIActive = TRUE;
CPU.Flags |= NMI_FLAG;
CPU.NMICycleCount = CPU.NMITriggerPoint;
}
#ifdef OLD_SNAPSHOT_CODE
if (CPU.Flags & SAVE_SNAPSHOT_FLAG)
{
CPU.Flags &= ~SAVE_SNAPSHOT_FLAG;
Registers.PC = CPU.PC - CPU.PCBase;
S9xPackStatus ();
S9xAPUPackStatus ();
Snapshot (NULL);
}
#endif
}
if (CPU.V_Counter == PPU.ScreenHeight + 3)
S9xUpdateJoypads ();
if (CPU.V_Counter == FIRST_VISIBLE_LINE)
{
Memory.FillRAM[0x4210] = Model->_5A22;
CPU.Flags &= ~NMI_FLAG;
S9xStartScreenRefresh ();
}
if (CPU.V_Counter >= FIRST_VISIBLE_LINE &&
CPU.V_Counter < PPU.ScreenHeight + FIRST_VISIBLE_LINE)
{
RenderLine (CPU.V_Counter - FIRST_VISIBLE_LINE);
}
// Use TimerErrorCounter to skip update of SPC700 timers once
// every 128 updates. Needed because this section of code is called
// once every emulated 63.5 microseconds, which coresponds to
// 15.750KHz, but the SPC700 timers need to be updated at multiples
// of 8KHz, hence the error correction.
// IAPU.TimerErrorCounter++;
// if (IAPU.TimerErrorCounter >= )
// IAPU.TimerErrorCounter = 0;
// else
{
if (APU.TimerEnabled [2])
{
APU.Timer [2] += 4;
while (APU.Timer [2] >= APU.TimerTarget [2])
{
IAPU.RAM [0xff] = (IAPU.RAM [0xff] + 1) & 0xf;
APU.Timer [2] -= APU.TimerTarget [2];
#ifdef SPC700_SHUTDOWN
IAPU.WaitCounter++;
IAPU.APUExecuting = TRUE;
#endif
}
}
if (CPU.V_Counter & 1)
{
if (APU.TimerEnabled [0])
{
APU.Timer [0]++;
if (APU.Timer [0] >= APU.TimerTarget [0])
{
IAPU.RAM [0xfd] = (IAPU.RAM [0xfd] + 1) & 0xf;
APU.Timer [0] = 0;
#ifdef SPC700_SHUTDOWN
IAPU.WaitCounter++;
IAPU.APUExecuting = TRUE;
#endif
}
}
if (APU.TimerEnabled [1])
{
APU.Timer [1]++;
if (APU.Timer [1] >= APU.TimerTarget [1])
{
IAPU.RAM [0xfe] = (IAPU.RAM [0xfe] + 1) & 0xf;
APU.Timer [1] = 0;
#ifdef SPC700_SHUTDOWN
IAPU.WaitCounter++;
IAPU.APUExecuting = TRUE;
#endif
}
}
}
}
break;
case HTIMER_BEFORE_EVENT:
case HTIMER_AFTER_EVENT:
if (PPU.HTimerEnabled && (!PPU.VTimerEnabled || CPU.V_Counter == PPU.IRQVBeamPos))
{
S9xSetIRQ (PPU_H_BEAM_IRQ_SOURCE);
}
break;
}
S9xReschedule ();
}