CATSFC/source/dsp4emu.cpp

1483 lines
34 KiB
C++

/*******************************************************************************
Snes9x - Portable Super Nintendo Entertainment System (TM) emulator.
(c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com) and
Jerremy Koot (jkoot@snes9x.com)
(c) Copyright 2001 - 2004 John Weidman (jweidman@slip.net)
(c) Copyright 2002 - 2004 Brad Jorsch (anomie@users.sourceforge.net),
funkyass (funkyass@spam.shaw.ca),
Joel Yliluoma (http://iki.fi/bisqwit/)
Kris Bleakley (codeviolation@hotmail.com),
Matthew Kendora,
Nach (n-a-c-h@users.sourceforge.net),
Peter Bortas (peter@bortas.org) and
zones (kasumitokoduck@yahoo.com)
C4 x86 assembler and some C emulation code
(c) Copyright 2000 - 2003 zsKnight (zsknight@zsnes.com),
_Demo_ (_demo_@zsnes.com), and Nach
C4 C++ code
(c) Copyright 2003 Brad Jorsch
DSP-1 emulator code
(c) Copyright 1998 - 2004 Ivar (ivar@snes9x.com), _Demo_, Gary Henderson,
John Weidman, neviksti (neviksti@hotmail.com),
Kris Bleakley, Andreas Naive
DSP-2 emulator code
(c) Copyright 2003 Kris Bleakley, John Weidman, neviksti, Matthew Kendora, and
Lord Nightmare (lord_nightmare@users.sourceforge.net
OBC1 emulator code
(c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com) and
Kris Bleakley
Ported from x86 assembler to C by sanmaiwashi
SPC7110 and RTC C++ emulator code
(c) Copyright 2002 Matthew Kendora with research by
zsKnight, John Weidman, and Dark Force
S-DD1 C emulator code
(c) Copyright 2003 Brad Jorsch with research by
Andreas Naive and John Weidman
S-RTC C emulator code
(c) Copyright 2001 John Weidman
ST010 C++ emulator code
(c) Copyright 2003 Feather, Kris Bleakley, John Weidman and Matthew Kendora
Super FX x86 assembler emulator code
(c) Copyright 1998 - 2003 zsKnight, _Demo_, and pagefault
Super FX C emulator code
(c) Copyright 1997 - 1999 Ivar, Gary Henderson and John Weidman
SH assembler code partly based on x86 assembler code
(c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se)
Specific ports contains the works of other authors. See headers in
individual files.
Snes9x homepage: http://www.snes9x.com
Permission to use, copy, modify and distribute Snes9x in both binary and
source form, for non-commercial purposes, is hereby granted without fee,
providing that this license information and copyright notice appear with
all copies and any derived work.
This software is provided 'as-is', without any express or implied
warranty. In no event shall the authors be held liable for any damages
arising from the use of this software.
Snes9x is freeware for PERSONAL USE only. Commercial users should
seek permission of the copyright holders first. Commercial use includes
charging money for Snes9x or software derived from Snes9x.
The copyright holders request that bug fixes and improvements to the code
should be forwarded to them so everyone can benefit from the modifications
in future versions.
Super NES and Super Nintendo Entertainment System are trademarks of
Nintendo Co., Limited and its subsidiary companies.
*******************************************************************************/
#include "dsp4.h"
#define DSP4_READ_WORD(x) \
READ_WORD(DSP4.parameters+x)
#define DSP4_WRITE_WORD(x,d) \
WRITE_WORD(DSP4.output+x,d);
// used to wait for dsp i/o
#define DSP4_WAIT(x) \
DSP4_Logic = x; return;
//////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////
void DSP4_Multiply(short Multiplicand, short Multiplier, int &Product)
{
Product = Multiplicand * Multiplier;
}
void DSP4_UnknownOP11(short A, short B, short C, short D, short &M)
{
M = ((A * 0x0155 >> 2) & 0xf000) | ((B * 0x0155 >> 6) & 0x0f00) |
((C * 0x0155 >> 10) & 0x00f0) | ((D * 0x0155 >> 14) & 0x000f);
}
//////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////
void DSP4_Op06(bool8 size, bool8 msb)
{
// save post-oam table data for future retrieval
op06_OAM[op06_index] |= (msb<<(op06_offset+0));
op06_OAM[op06_index] |= (size<<(op06_offset+1));
op06_offset += 2;
if(op06_offset==8)
{
// move to next byte in buffer
op06_offset=0;
op06_index++;
}
}
#if OP==0x0001
#define PRINT
#endif
void DSP4_Op01()
{
uint16 command;
DSP4.waiting4command = FALSE;
// op flow control
switch(DSP4_Logic) {
case 1: goto resume1; break;
case 2: goto resume2; break;
}
////////////////////////////////////////////////////
// process initial inputs
// sort inputs
// 0x00 = DSP4_READ_WORD(0x00);
project_focaly = DSP4_READ_WORD(0x02);
raster = DSP4_READ_WORD(0x04);
viewport_top = DSP4_READ_WORD(0x06);
project_y = DSP4_READ_WORD(0x08);
viewport_bottom = DSP4_READ_WORD(0x0a);
project_x1low = DSP4_READ_WORD(0x0c);
project_focalx = DSP4_READ_WORD(0x0e);
project_centerx = DSP4_READ_WORD(0x10);
project_ptr = DSP4_READ_WORD(0x12);
// (envelope?) 0xc0 = DSP4_READ_WORD(0x14);
project_pitchylow = DSP4_READ_WORD(0x16);
project_pitchy = DSP4_READ_WORD(0x18);
project_pitchxlow = DSP4_READ_WORD(0x1a);
project_pitchx = DSP4_READ_WORD(0x1c);
far_plane = DSP4_READ_WORD(0x1e);
// ? = DSP4_READ_WORD(0x20);
project_y1low = DSP4_READ_WORD(0x22);
// pre-compute
view_plane = PLANE_START;
// find starting projection points
project_x1 = project_focalx;
project_y -= viewport_bottom;
project_x = project_centerx + project_x1;
// multi-op storage
multi_index1 = 0;
multi_index2 = 0;
// debug
block=0;
////////////////////////////////////////////////////
// command check
do {
// scan next command
DSP4.in_count = 2;
DSP4_WAIT(1) resume1:
// inspect input
command = DSP4_READ_WORD(0);
// check for termination
if(command == 0x8000) break;
// already have 2 bytes in queue
DSP4.in_index = 2;
DSP4.in_count = 8;
DSP4_WAIT(2) resume2:
////////////////////////////////////////////////////
// process one iteration of projection
// inspect inputs
int16 plane = DSP4_READ_WORD(0);
int16 index, lcv;
int16 py_dy=0, px_dx=0;
int16 y_out, x_out;
// ignore invalid data
if((uint16) plane == 0x8001) continue;
// one-time init
if(far_plane)
{
// setup final parameters
project_focalx += plane;
project_x1 = project_focalx;
project_y1 = project_focaly;
plane = far_plane;
far_plane = 0;
}
// use proportional triangles to project new coords
project_x2 = project_focalx * plane / view_plane;
project_y2 = project_focaly * plane / view_plane;
// quadratic regression (rough)
if(project_focaly>=-0x0f)
py_dy = (short) (project_focaly * project_focaly * -0.20533553
- 1.08330005 * project_focaly - 69.61094639);
else
py_dy = (short) (project_focaly * project_focaly * -0.000657035759
- 1.07629051 * project_focaly - 65.69315963);
// approximate # of raster lines
segments = abs(project_y2-project_y1);
// prevent overdraw
if(project_y2>=raster) segments=0;
else raster=project_y2;
// don't draw outside the window
if(project_y2<viewport_top) segments=0;
// project new positions
if(segments>0)
{
// interpolate between projected points
px_dx = ((project_x2-project_x1)<<8)/segments;
}
// debug
++block;
#ifdef PRINT
printf("(line %d) Op01 check %02X, plane %04X, focal_y %04X, y2 %04X\n",c,(uint16)segments,(uint16)(plane),(uint16)project_focaly,(uint16)project_y2);
#endif
// prepare output
DSP4.out_count=8+2+6*segments;
// pre-block data
DSP4_WRITE_WORD(0,project_focalx);
DSP4_WRITE_WORD(2,project_x2);
DSP4_WRITE_WORD(4,project_focaly);
DSP4_WRITE_WORD(6,project_y2);
DSP4_WRITE_WORD(8,segments);
#if 0
DSP4_WRITE_WORD(0,-1);
DSP4_WRITE_WORD(2,-1);
DSP4_WRITE_WORD(4,-1);
DSP4_WRITE_WORD(6,-1);
DSP4_WRITE_WORD(8,-1);
#endif
index=10;
// iterate through each point
for( lcv=0; lcv<segments; lcv++ )
{
// step through the projected line
y_out = project_y+((py_dy*lcv)>>8);
x_out = project_x+((px_dx*lcv)>>8);
#if 0
project_ptr=-1;
y_out=-1;
x_out=-1;
#endif
// data
DSP4_WRITE_WORD(index+0,project_ptr);
DSP4_WRITE_WORD(index+2,y_out);
DSP4_WRITE_WORD(index+4,x_out);
index += 6;
// post-update
project_ptr -= 4;
}
// post-update
project_y += ((py_dy*lcv)>>8);
project_x += ((px_dx*lcv)>>8);
// new positions
if(segments>0)
{
project_x1 = project_x2;
project_y1 = project_y2;
// multi-op storage
multi_focaly[multi_index2++] = project_focaly;
multi_farplane[1] = plane;
multi_raster[1] = project_y1-1;
}
// update projection points
project_pitchy += (int8)DSP4.parameters[3];
project_pitchx += (int8)DSP4.parameters[5];
project_focaly += project_pitchy;
project_focalx += project_pitchx;
} while (1);
// terminate op
DSP4.waiting4command = TRUE;
DSP4.out_count = 0;
}
#undef PRINT
#if OP==0x0007
#define PRINT
#endif
void DSP4_Op07()
{
uint16 command;
DSP4.waiting4command = FALSE;
// op flow control
switch(DSP4_Logic) {
case 1: goto resume1; break;
case 2: goto resume2; break;
}
////////////////////////////////////////////////////
// sort inputs
// 0x00 = DSP4_READ_WORD(0x00);
project_focaly = DSP4_READ_WORD(0x02);
raster = DSP4_READ_WORD(0x04);
viewport_top = DSP4_READ_WORD(0x06);
project_y = DSP4_READ_WORD(0x08);
viewport_bottom = DSP4_READ_WORD(0x0a);
project_x1low = DSP4_READ_WORD(0x0c);
project_x1 = DSP4_READ_WORD(0x0e);
project_centerx = DSP4_READ_WORD(0x10);
project_ptr = DSP4_READ_WORD(0x12);
// (envelope?) 0xc0 = DSP4_READ_WORD(0x14);
// pre-compute
view_plane = PLANE_START;
// find projection targets
project_y1 = project_focaly;
project_y -= viewport_bottom;
project_x = project_centerx + project_x1;
// multi-op storage
multi_index2 = 0;
// debug
block=0;
#ifdef PRINT
printf("(line %d) Op07 data %04X\n",c,(uint16)project_y1);
#endif
////////////////////////////////////////////////////
// command check
do {
// scan next command
DSP4.in_count = 2;
DSP4_WAIT(1) resume1:
// inspect input
command = DSP4_READ_WORD(0);
// check for opcode termination
if(command == 0x8000) break;
// already have 2 bytes in queue
DSP4.in_index = 2;
DSP4.in_count = 12;
DSP4_WAIT(2) resume2:
////////////////////////////////////////////////////
// process one loop of projection
int16 plane;
int16 index,lcv;
int16 y_out,x_out;
int16 py_dy=0,px_dx=0;
// debug
++block;
// inspect inputs
plane = DSP4_READ_WORD(0);
project_y2 = DSP4_READ_WORD(2);
// ? = DSP4_READ_WORD(4);
project_x2 = DSP4_READ_WORD(6);
// ignore invalid data
if((uint16) plane == 0x8001) continue;
// multi-op storage
project_focaly = multi_focaly[multi_index2];
// quadratic regression (rough)
if(project_focaly>=-0x0f)
py_dy = (short) (project_focaly * project_focaly * -0.20533553
- 1.08330005 * project_focaly - 69.61094639);
else
py_dy = (short) (project_focaly * project_focaly * -0.000657035759
- 1.07629051 * project_focaly - 65.69315963);
// approximate # of raster lines
segments = abs(project_y2-project_y1);
// prevent overdraw
if(project_y2>=raster) segments=0;
else raster=project_y2;
// don't draw outside the window
if(project_y2<viewport_top) segments=0;
// project new positions
if(segments>0)
{
// interpolate between projected points
px_dx = ((project_x2-project_x1)<<8)/segments;
}
#ifdef PRINT
printf("(line %d) Op07 block %d, loc %04X, out %02X, project_x2 %04X\n",c,block,plane,segments,(uint16)project_x2);
#endif
// prepare pre-output
DSP4.out_count=4+2+6*segments;
DSP4_WRITE_WORD(0,project_x2);
DSP4_WRITE_WORD(2,project_y2);
DSP4_WRITE_WORD(4,segments);
#if 0
DSP4_WRITE_WORD(0,-1);
DSP4_WRITE_WORD(2,-1);
DSP4_WRITE_WORD(4,-1);
#endif
index=6;
for( lcv=0; lcv<segments; lcv++ )
{
// pre-compute
y_out = project_y+((py_dy*lcv)>>8);
x_out = project_x+((px_dx*lcv)>>8);
#if 0
project_ptr = -1;
//y_out = -1;
x_out = -1;
#endif
// data
DSP4_WRITE_WORD(index+0,project_ptr);
DSP4_WRITE_WORD(index+2,y_out);
DSP4_WRITE_WORD(index+4,x_out);
index += 6;
// post-update
project_ptr -= 4;
}
// update internal variables
project_y += ((py_dy*lcv)>>8);
project_x += ((px_dx*lcv)>>8);
// new positions
if(segments>0)
{
project_x1 = project_x2;
project_y1 = project_y2;
// multi-op storage
multi_index2++;
}
} while(1);
DSP4.waiting4command = TRUE;
DSP4.out_count = 0;
}
#undef PRINT
#if OP==0x0008
#define PRINT
#endif
void DSP4_Op08()
{
uint16 command;
DSP4.waiting4command = FALSE;
// op flow control
switch(DSP4_Logic) {
case 1: goto resume1; break;
case 2: goto resume2; break;
}
////////////////////////////////////////////////////
// process initial inputs
// clip values
path_clipRight[0] = DSP4_READ_WORD(0x00);
path_clipRight[1] = DSP4_READ_WORD(0x02);
path_clipRight[2] = DSP4_READ_WORD(0x04);
path_clipRight[3] = DSP4_READ_WORD(0x06);
path_clipLeft[0] = DSP4_READ_WORD(0x08);
path_clipLeft[1] = DSP4_READ_WORD(0x0a);
path_clipLeft[2] = DSP4_READ_WORD(0x0c);
path_clipLeft[3] = DSP4_READ_WORD(0x0e);
// unknown (constant)
// unknown (constant)
// path positions
path_pos[0] = DSP4_READ_WORD(0x20);
path_pos[1] = DSP4_READ_WORD(0x22);
path_pos[2] = DSP4_READ_WORD(0x24);
path_pos[3] = DSP4_READ_WORD(0x26);
// data locations
path_ptr[0] = DSP4_READ_WORD(0x28);
path_ptr[1] = DSP4_READ_WORD(0x2a);
path_ptr[2] = DSP4_READ_WORD(0x2c);
path_ptr[3] = DSP4_READ_WORD(0x2e);
// project_y1 lines
path_raster[0] = DSP4_READ_WORD(0x30);
path_raster[1] = DSP4_READ_WORD(0x32);
path_raster[2] = DSP4_READ_WORD(0x34);
path_raster[3] = DSP4_READ_WORD(0x36);
// viewport_top
path_top[0] = DSP4_READ_WORD(0x38);
path_top[1] = DSP4_READ_WORD(0x3a);
path_top[2] = DSP4_READ_WORD(0x3c);
path_top[3] = DSP4_READ_WORD(0x3e);
// unknown (constants)
view_plane = PLANE_START;
// debug
block=0;
////////////////////////////////////////////////////
// command check
do {
// scan next command
DSP4.in_count = 2;
DSP4_WAIT(1) resume1:
// inspect input
command = DSP4_READ_WORD(0);
// terminate op
if(command == 0x8000) break;
// already have 2 bytes in queue
DSP4.in_index = 2;
DSP4.in_count = 18;
DSP4_WAIT(2) resume2:
////////////////////////////////////////////////////
// projection begins
// debug
++block;
// used in envelope shaping
int16 x1_final;
int16 x2_final;
// look at guidelines
int16 plane = DSP4_READ_WORD(0x00);
int16 x_left = DSP4_READ_WORD(0x02);
int16 y_left = DSP4_READ_WORD(0x04);
int16 x_right = DSP4_READ_WORD(0x06);
int16 y_right = DSP4_READ_WORD(0x08);
// envelope guidelines (one frame only)
int16 envelope1 = DSP4_READ_WORD(0x0a);
int16 envelope2 = DSP4_READ_WORD(0x0c);
// ignore invalid data
if((uint16) plane == 0x8001) continue;
// first init
if(plane == 0x7fff)
{
int pos1,pos2;
// initialize projection
path_x[0] = x_left;
path_x[1] = x_right;
path_y[0] = y_left;
path_y[1] = y_right;
// update coordinates
path_pos[0]-=x_left;
path_pos[1]-=x_left;
path_pos[2]-=x_right;
path_pos[3]-=x_right;
pos1 = path_pos[0]+envelope1;
pos2 = path_pos[1]+envelope2;
// clip offscreen data
if(pos1<path_clipLeft[0]) pos1 = path_clipLeft[0];
if(pos1>path_clipRight[0]) pos1 = path_clipRight[0];
if(pos2<path_clipLeft[1]) pos2 = path_clipLeft[1];
if(pos2>path_clipRight[1]) pos2 = path_clipRight[1];
#if 0
pos1=-1;
//pos2=-1;
#endif
path_plane[0] = plane;
path_plane[1] = plane;
// initial output
DSP4.out_count = 2;
DSP4.output[0]=pos1&0xFF;
DSP4.output[1]=pos2&0xFF;
#ifdef PRINT
printf("(line %d) Op08 x_left %04X\n",c,(uint16)x_left);
#endif
}
// proceed with projection
else
{
int16 index=0, lcv;
int16 left_inc=0,right_inc=0;
int16 dx1=0,dx2=0,dx3,dx4;
// # segments to traverse
segments = abs(y_left - path_y[0]);
// prevent overdraw
if(y_left>=path_raster[0]) segments=0;
else path_raster[0]=y_left;
// don't draw outside the window
if(path_raster[0]<path_top[0]) segments=0;
// proceed if visibility rules apply
if(segments>0)
{
// use previous data
dx1 = (envelope1 * path_plane[0] / view_plane);
dx2 = (envelope2 * path_plane[0] / view_plane);
// use temporary envelope pitch (this frame only)
dx3 = (envelope1 * plane / view_plane);
dx4 = (envelope2 * plane / view_plane);
// project new shapes (left side)
x1_final = x_left+dx1;
x2_final = path_x[0]+dx3;
// interpolate between projected points with shaping
left_inc = ((x2_final-x1_final)<<8)/segments;
// project new shapes (right side)
x1_final = x_left+dx2;
x2_final = path_x[0]+dx4;
// interpolate between projected points with shaping
right_inc = ((x2_final-x1_final)<<8)/segments;
path_plane[0] = plane;
}
#ifdef PRINT
printf("(line %d) Op08 block %d, out %02X, raster %02X\n",c,block,segments,(uint16)y_left);
#endif
// zone 1
DSP4.out_count = (2+4*segments);
DSP4_WRITE_WORD(index,segments); index+=2;
for( lcv=1; lcv<=segments; lcv++ )
{
int16 pos1,pos2;
// pre-compute
pos1 = path_pos[0]+((left_inc*lcv)>>8)+dx1;
pos2 = path_pos[1]+((right_inc*lcv)>>8)+dx2;
// clip offscreen data
if(pos1<path_clipLeft[0]) pos1 = path_clipLeft[0];
if(pos1>path_clipRight[0]) pos1 = path_clipRight[0];
if(pos2<path_clipLeft[1]) pos2 = path_clipLeft[1];
if(pos2>path_clipRight[1]) pos2 = path_clipRight[1];
#if 0
if(pos1==0x00ff) pos1=0;
if(pos2==0x00ff) pos2=0;
path_ptr[0] = -1;
pos1 = -1;
pos2 = -1;
#endif
// data
DSP4_WRITE_WORD(index,path_ptr[0]); index+=2;
DSP4.output[index++]=pos1&0xFF;
DSP4.output[index++]=pos2&0xFF;
// post-update
path_ptr[0] -= 4;
path_ptr[1] -= 4;
}
lcv--;
if(segments>0)
{
// project points w/out the envelopes
int16 inc = ((path_x[0]-x_left)<<8)/segments;
// post-store
path_pos[0] += ((inc*lcv)>>8);
path_pos[1] += ((inc*lcv)>>8);
path_x[0] = x_left;
path_y[0] = y_left;
}
//////////////////////////////////////////////
// zone 2
segments = abs(y_right - path_y[1]);
// prevent overdraw
if(y_right>=path_raster[2]) segments=0;
else path_raster[2]=y_right;
// don't draw outside the window
if(path_raster[2]<path_top[2]) segments=0;
// proceed if visibility rules apply
if(segments>0)
{
// use previous data
dx1 = (envelope1 * path_plane[1] / view_plane);
dx2 = (envelope2 * path_plane[1] / view_plane);
// use temporary envelope pitch (this frame only)
dx3 = (envelope1 * plane / view_plane);
dx4 = (envelope2 * plane / view_plane);
// project new shapes (left side)
x1_final = x_left+dx1;
x2_final = path_x[1]+dx3;
// interpolate between projected points with shaping
left_inc = ((x2_final-x1_final)<<8)/segments;
// project new shapes (right side)
x1_final = x_left+dx2;
x2_final = path_x[1]+dx4;
// interpolate between projected points with shaping
right_inc = ((x2_final-x1_final)<<8)/segments;
path_plane[1] = plane;
}
// write out results
DSP4.out_count += (2+4*segments);
DSP4_WRITE_WORD(index,segments); index+=2;
for( lcv=1; lcv<=segments; lcv++ )
{
int16 pos1,pos2;
// pre-compute
pos1 = path_pos[2]+((left_inc*lcv)>>8)+dx1;
pos2 = path_pos[3]+((right_inc*lcv)>>8)+dx2;
// clip offscreen data
if(pos1<path_clipLeft[2]) pos1 = path_clipLeft[2];
if(pos1>path_clipRight[2]) pos1 = path_clipRight[2];
if(pos2<path_clipLeft[3]) pos2 = path_clipLeft[3];
if(pos2>path_clipRight[3]) pos2 = path_clipRight[3];
#if 0
if(pos1==0x00ff) pos1=0;
if(pos2==0x00ff) pos2=0;
path_ptr[2] = -1;
//pos1 = -1;
pos2 = -1;
#endif
// data
DSP4_WRITE_WORD(index,path_ptr[2]); index+=2;
DSP4.output[index++]=pos1&0xFF;
DSP4.output[index++]=pos2&0xFF;
// post-update
path_ptr[2] -= 4;
path_ptr[3] -= 4;
}
lcv--;
if(segments>0)
{
// project points w/out the envelopes
int16 inc = ((path_x[1]-x_right)<<8)/segments;
// post-store
path_pos[2] += ((inc*lcv)>>8);
path_pos[3] += ((inc*lcv)>>8);
path_x[1] = x_right;
path_y[1] = y_right;
}
}
} while(1);
DSP4.waiting4command = TRUE;
DSP4.out_count = 2;
DSP4_WRITE_WORD(0,0);
}
#undef PRINT
#if OP==0x000D
#define PRINT
#endif
void DSP4_Op0D()
{
uint16 command;
DSP4.waiting4command = FALSE;
// op flow control
switch(DSP4_Logic) {
case 1: goto resume1; break;
case 2: goto resume2; break;
}
////////////////////////////////////////////////////
// process initial inputs
// sort inputs
// 0x00 = DSP4_READ_WORD(0x00);
project_focaly = DSP4_READ_WORD(0x02);
raster = DSP4_READ_WORD(0x04);
viewport_top = DSP4_READ_WORD(0x06);
project_y = DSP4_READ_WORD(0x08);
viewport_bottom = DSP4_READ_WORD(0x0a);
project_x1low = DSP4_READ_WORD(0x0c);
project_x1 = DSP4_READ_WORD(0x0e);
project_focalx = DSP4_READ_WORD(0x0e);
project_centerx = DSP4_READ_WORD(0x10);
project_ptr = DSP4_READ_WORD(0x12);
// 0xc0 = DSP4_READ_WORD(0x14);
project_pitchylow = DSP4_READ_WORD(0x16);
project_pitchy = DSP4_READ_WORD(0x18);
project_pitchxlow = DSP4_READ_WORD(0x1a);
project_pitchx = DSP4_READ_WORD(0x1c);
far_plane = DSP4_READ_WORD(0x1e);
// ? = DSP4_READ_WORD(0x20);
// multi-op storage
multi_index1++;
multi_index1%=4;
// remap 0D->09 window data ahead of time
// index starts at 1-3,0
//
// Op0D: BL,TL,BR,TR
// Op09: TL,TR,BL,BR (1,2,3,0)
switch(multi_index1)
{
case 1: multi_index2=3; break;
case 2: multi_index2=1; break;
case 3: multi_index2=0; break;
case 0: multi_index2=2; break;
}
// pre-compute
view_plane = PLANE_START;
// figure out projection data
project_y -= viewport_bottom;
project_x = project_centerx + project_x1;
// debug
block=0;
////////////////////////////////////////////////////
// command check
do {
// scan next command
DSP4.in_count = 2;
DSP4_WAIT(1) resume1:
// inspect input
command = DSP4_READ_WORD(0);
// terminate op
if(command == 0x8000) break;
// already have 2 bytes in queue
DSP4.in_index = 2;
DSP4.in_count = 8;
DSP4_WAIT(2) resume2:
////////////////////////////////////////////////////
// project section of the track
// inspect inputs
int16 plane = DSP4_READ_WORD(0);
int16 index, lcv;
int16 py_dy=0, px_dx=0;
int16 y_out, x_out;
// ignore invalid data
if((uint16) plane == 0x8001) continue;
// one-time init
if(far_plane)
{
// setup final data
// low16=plane
project_x1 = project_focalx;
project_y1 = project_focaly;
plane = far_plane;
far_plane = 0;
}
// use proportional triangles to project new coords
project_x2 = project_focalx * plane / view_plane;
project_y2 = project_focaly * plane / view_plane;
// quadratic regression (rough)
if(project_focaly>=-0x0f)
py_dy = (short) (project_focaly * project_focaly * -0.20533553
- 1.08330005 * project_focaly - 69.61094639);
else
py_dy = (short) (project_focaly * project_focaly * -0.000657035759
- 1.07629051 * project_focaly - 65.69315963);
// approximate # of raster lines
segments = abs(project_y2-project_y1);
// prevent overdraw
if(project_y2>=raster) segments=0;
else raster=project_y2;
// don't draw outside the window
if(project_y2<viewport_top) segments=0;
// project new positions
if(segments>0)
{
// interpolate between projected points
px_dx = ((project_x2-project_x1)<<8)/segments;
}
// debug
++block;
#ifdef PRINT
printf("(line %d) Op0D check %02X, plane %04X\n",c,(uint16)segments,(uint16)(plane));
#endif
// prepare output
DSP4.out_count=8+2+6*segments;
DSP4_WRITE_WORD(0,project_focalx);
DSP4_WRITE_WORD(2,project_x2);
DSP4_WRITE_WORD(4,project_focaly);
DSP4_WRITE_WORD(6,project_y2);
DSP4_WRITE_WORD(8,segments);
#if 0
DSP4_WRITE_WORD(0,-1);
DSP4_WRITE_WORD(2,-1);
DSP4_WRITE_WORD(4,-1);
DSP4_WRITE_WORD(6,-1);
DSP4_WRITE_WORD(8,-1);
#endif
index=10;
// iterate through each point
for( lcv=0; lcv<segments; lcv++ )
{
// step through the projected line
y_out = project_y+((py_dy*lcv)>>8);
x_out = project_x+((px_dx*lcv)>>8);
#if 0
project_ptr=-1;
//y_out=-1;
x_out=-1;
#endif
// data
DSP4_WRITE_WORD(index+0,project_ptr);
DSP4_WRITE_WORD(index+2,y_out);
DSP4_WRITE_WORD(index+4,x_out);
index += 6;
// post-update
project_ptr -= 4;
}
// post-update
project_y += ((py_dy*lcv)>>8);
project_x += ((px_dx*lcv)>>8);
if(segments > 0)
{
project_x1 = project_x2;
project_y1 = project_y2;
// multi-op storage
multi_farplane[multi_index2] = plane;
multi_raster[multi_index2] = project_y1;
}
// update focal projection points
project_pitchy += (int8)DSP4.parameters[3];
project_pitchx += (int8)DSP4.parameters[5];
project_focaly += project_pitchy;
project_focalx += project_pitchx;
} while(1);
DSP4.waiting4command = TRUE;
DSP4.out_count = 0;
}
#undef PRINT
#if OP==0x0009
#define PRINT
#endif
#if OP==0x0006
#define PRINT
#endif
void DSP4_Op09()
{
uint16 command;
DSP4.waiting4command = FALSE;
// op flow control
switch(DSP4_Logic) {
case 1: goto resume1; break;
case 2: goto resume2; break;
case 3: goto resume3; break;
case 4: goto resume4; break;
case 5: goto resume5; break;
case 6: goto resume6; break;
case 7: goto resume7; break;
}
////////////////////////////////////////////////////
// process initial inputs
// debug
block=0;
// grab screen information
view_plane = PLANE_START;
center_x = DSP4_READ_WORD(0x00);
center_y = DSP4_READ_WORD(0x02);
// 0x00 = DSP4_READ_WORD(0x04);
viewport_left = DSP4_READ_WORD(0x06);
viewport_right = DSP4_READ_WORD(0x08);
viewport_top = DSP4_READ_WORD(0x0a);
viewport_bottom = DSP4_READ_WORD(0x0c);
#ifdef PRINT2
printf("Window: (%04X,%04X) (%04X,%04X)\n",
viewport_left,viewport_right,viewport_top,viewport_bottom);
#endif
// expand viewport dimensions
viewport_left -= 8;
// cycle through viewport window data
multi_index1++;
multi_index1%=4;
#if 1
// convert track line to the window region
project_y2 = center_y + multi_raster[multi_index1] *
(viewport_bottom-center_y)/(0x33-0);
if(op09_mode==0) project_y2 -= 2;
#endif
goto no_sprite;
do {
////////////////////////////////////////////////////
// check for new sprites
do {
uint16 second;
DSP4.in_count = 4;
DSP4.in_index = 2;
DSP4_WAIT(1) resume1:
// try to classify sprite
second = DSP4_READ_WORD(2);
// op termination
if(second == 0x8000) goto terminate;
second >>= 8;
sprite_type = 0;
// vehicle sprite
if(second == 0x90)
{
sprite_type = 1;
break;
}
// terrain sprite
else if(second != 0)
{
sprite_type = 2;
break;
}
no_sprite:
// no sprite. try again
DSP4.in_count = 2;
DSP4_WAIT(2) resume2:
;
} while (1);
////////////////////////////////////////////////////
// process projection information
sprite_found:
// vehicle sprite
if(sprite_type == 1)
{
int16 plane;
int16 car_left, car_right, car_left_a;
int16 focal_back, focal_front;
uint8 distance, id;
// we already have 4 bytes we want
DSP4.in_count = 6+12;
DSP4.in_index = 4;
DSP4_WAIT(3) resume3:
// filter inputs
project_y1 = DSP4_READ_WORD(0x00);
// 0x9000 = DSP4_READ_WORD(0x02);
id = DSP4.parameters[0x04];
distance = DSP4.parameters[0x05];
focal_back = DSP4_READ_WORD(0x06);
focal_front = DSP4_READ_WORD(0x08);
car_left_a = DSP4_READ_WORD(0x0a);
car_left = DSP4_READ_WORD(0x0c);
plane = DSP4_READ_WORD(0x0e);
car_right = DSP4_READ_WORD(0x10);
// calculate car's x-center
project_focalx = car_right-car_left;
// determine how far into the screen to project
project_focaly = focal_back;
project_x = project_focalx * plane / view_plane;
segments = 0x33 - project_focaly * plane / view_plane;
far_plane = plane;
// prepare memory
sprite_x = center_x+project_x;
sprite_y = viewport_bottom-segments;
far_plane = plane;
// debug
++block;
#ifdef PRINT
printf("(line %d) Op09 vehicle block %d, Loop %04X\n",c,block,(uint16)project_y1);
//printf("%04X %04X %04X %04X / ",focal_back,focal_front,car_left_a,car_left);
//printf("%02X %02X ", distance, id);
#endif
// make the car's x-center available
DSP4.out_count = 2;
DSP4_WRITE_WORD(0,project_focalx);
#if 0
DSP4_WRITE_WORD(0,-1);
#endif
// grab a few remaining vehicle values
DSP4.in_count = 4;
DSP4_WAIT(4) resume4:
// store final values
int height = DSP4_READ_WORD(0);
sprite_offset = DSP4_READ_WORD(2);
// vertical lift factor
sprite_y += height;
#ifdef PRINT_09
printf("%04X\n",sprite_offset);
#endif
}
// terrain sprite
else if(sprite_type == 2)
{
int16 plane;
// we already have 4 bytes we want
DSP4.in_count = 6+6+2;
DSP4.in_index = 4;
DSP4_WAIT(5) resume5:
// sort loop inputs
project_y1 = DSP4_READ_WORD(0x00);
plane = DSP4_READ_WORD(0x02);
project_centerx = DSP4_READ_WORD(0x04);
//project_y1 = DSP4_READ_WORD(0x06);
project_focalx = DSP4_READ_WORD(0x08);
project_focaly = DSP4_READ_WORD(0x0a);
sprite_offset = DSP4_READ_WORD(0x0c);
// determine distances into virtual world
segments = 0x33 - project_y1;
project_x = project_focalx * plane / view_plane;
project_y = project_focaly * plane / view_plane;
// prepare memory
sprite_x = center_x+project_x-project_centerx;
sprite_y = viewport_bottom-segments+project_y;
far_plane = plane;
// debug
++block;
#ifdef PRINT
printf("(line %d) Op09 terrain block %d, Loop %04X\n",c,block,(uint16)project_y1);
#endif
}
// default sprite size: 16x16
sprite_size = 1;
////////////////////////////////////////////////////
// convert tile data to OAM
do {
DSP4.in_count = 2;
DSP4_WAIT(6) resume6:
command = DSP4_READ_WORD(0);
// opcode termination
if(command == 0x8000) goto terminate;
// toggle sprite size
if(command == 0x0000)
{
sprite_size = !sprite_size;
#ifdef PRINT
printf("TOGGLE=%02X\n",(uint8)sprite_size);
#endif
continue;
}
// new sprite information
command >>= 8;
if(command != 0x20 && command != 0x40 &&
command != 0x60 && command != 0xa0 &&
command != 0xc0 && command != 0xe0)
break;
DSP4.in_count = 6;
DSP4.in_index = 2;
DSP4_WAIT(7) resume7:
/////////////////////////////////////
// process tile data
bool8 clip;
int16 sp_x, sp_y, sp_oam, sp_msb;
int16 sp_dx, sp_dy;
// sprite deltas
sp_dy = DSP4_READ_WORD(2);
sp_dx = DSP4_READ_WORD(4);
// update coordinates
sp_y = sprite_y + sp_dy;
sp_x = sprite_x + sp_dx;
// reject points outside the clipping window
clip = FALSE;
if(sp_x < viewport_left || sp_x > viewport_right) clip=TRUE;
if(sp_y < viewport_top || sp_y > viewport_bottom) clip=TRUE;
// track depth sorting
if(far_plane <= multi_farplane[multi_index1] &&
sp_y >= project_y2) clip=TRUE;
#ifdef PRINT2
printf("(line %d) %04X, %04X, %04X / %04X %04X\n",line,
(uint16)sp_x,(uint16)sp_y,(uint16)far_plane,(uint16)multi_farplane[multi_index1],(uint16)project_y2);
#endif
// don't draw offscreen coordinates
DSP4.out_count = 0;
if(!clip)
{
int16 out_index = 0;
int16 offset = DSP4_READ_WORD(0);
// update sprite nametable/attribute information
sp_oam = sprite_offset + offset;
sp_msb = (sp_x<0 || sp_x>255);
#ifdef PRINT
printf("(line %d) %04X, %04X, %04X, %04X, %04X\n",line,
(uint16)sp_oam,(uint16)sprite_offset,(uint16)offset,
(uint16)sp_x,(uint16)sp_y);
#endif
// emit transparency information
if(
(sprite_offset&0x08) &&
((sprite_type==1 && sp_y>=0xcc) ||
(sprite_type==2 && sp_y>=0xbb))
)
{
DSP4.out_count = 6;
// one block of OAM data
DSP4_WRITE_WORD(0,1);
// OAM: x,y,tile,no attr
DSP4.output[2] = sp_x&0xFF;
DSP4.output[3] = (sp_y+6)&0xFF;
DSP4_WRITE_WORD(4,0xEE);
out_index = 6;
// OAM: size,msb data
DSP4_Op06(sprite_size,(char) sp_msb);
}
// normal data
DSP4.out_count += 8;
// one block of OAM data
DSP4_WRITE_WORD(out_index+0,1);
// OAM: x,y,tile,attr
DSP4.output[out_index+2] = sp_x&0xFF;
DSP4.output[out_index+3] = sp_y&0xFF;
DSP4_WRITE_WORD(out_index+4,sp_oam);
// no following OAM data
DSP4_WRITE_WORD(out_index+6,0);
// OAM: size,msb data
DSP4_Op06(sprite_size, (char) sp_msb);
#if 0
DSP4_WRITE_WORD(0,-1);
DSP4_WRITE_WORD(2,-1);
DSP4_WRITE_WORD(4,-1);
DSP4_WRITE_WORD(6,-1);
DSP4_WRITE_WORD(8,-1);
DSP4_WRITE_WORD(10,-1);
DSP4_WRITE_WORD(12,-1);
#endif
}
// no sprite information
if(DSP4.out_count == 0)
{
DSP4.out_count = 2;
DSP4_WRITE_WORD(0,0);
}
} while (1);
/////////////////////////////////////
// special cases: plane == 0x0000
// special vehicle case
if(command == 0x90)
{
sprite_type = 1;
// shift bytes
DSP4.parameters[2] = DSP4.parameters[0];
DSP4.parameters[3] = DSP4.parameters[1];
DSP4.parameters[0] = 0;
DSP4.parameters[1] = 0;
goto sprite_found;
}
// special terrain case
else if(command != 0x00 && command != 0xff)
{
sprite_type = 2;
// shift bytes
DSP4.parameters[2] = DSP4.parameters[0];
DSP4.parameters[3] = DSP4.parameters[1];
DSP4.parameters[0] = 0;
DSP4.parameters[1] = 0;
goto sprite_found;
}
} while (1);
terminate:
DSP4.waiting4command = TRUE;
DSP4.out_count=0;
}
#undef PRINT