CATSFC/source/clip.cpp

767 lines
21 KiB
C++

/*******************************************************************************
Snes9x - Portable Super Nintendo Entertainment System (TM) emulator.
(c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com) and
Jerremy Koot (jkoot@snes9x.com)
(c) Copyright 2001 - 2004 John Weidman (jweidman@slip.net)
(c) Copyright 2002 - 2004 Brad Jorsch (anomie@users.sourceforge.net),
funkyass (funkyass@spam.shaw.ca),
Joel Yliluoma (http://iki.fi/bisqwit/)
Kris Bleakley (codeviolation@hotmail.com),
Matthew Kendora,
Nach (n-a-c-h@users.sourceforge.net),
Peter Bortas (peter@bortas.org) and
zones (kasumitokoduck@yahoo.com)
C4 x86 assembler and some C emulation code
(c) Copyright 2000 - 2003 zsKnight (zsknight@zsnes.com),
_Demo_ (_demo_@zsnes.com), and Nach
C4 C++ code
(c) Copyright 2003 Brad Jorsch
DSP-1 emulator code
(c) Copyright 1998 - 2004 Ivar (ivar@snes9x.com), _Demo_, Gary Henderson,
John Weidman, neviksti (neviksti@hotmail.com),
Kris Bleakley, Andreas Naive
DSP-2 emulator code
(c) Copyright 2003 Kris Bleakley, John Weidman, neviksti, Matthew Kendora, and
Lord Nightmare (lord_nightmare@users.sourceforge.net
OBC1 emulator code
(c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com) and
Kris Bleakley
Ported from x86 assembler to C by sanmaiwashi
SPC7110 and RTC C++ emulator code
(c) Copyright 2002 Matthew Kendora with research by
zsKnight, John Weidman, and Dark Force
S-DD1 C emulator code
(c) Copyright 2003 Brad Jorsch with research by
Andreas Naive and John Weidman
S-RTC C emulator code
(c) Copyright 2001 John Weidman
ST010 C++ emulator code
(c) Copyright 2003 Feather, Kris Bleakley, John Weidman and Matthew Kendora
Super FX x86 assembler emulator code
(c) Copyright 1998 - 2003 zsKnight, _Demo_, and pagefault
Super FX C emulator code
(c) Copyright 1997 - 1999 Ivar, Gary Henderson and John Weidman
SH assembler code partly based on x86 assembler code
(c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se)
Specific ports contains the works of other authors. See headers in
individual files.
Snes9x homepage: http://www.snes9x.com
Permission to use, copy, modify and distribute Snes9x in both binary and
source form, for non-commercial purposes, is hereby granted without fee,
providing that this license information and copyright notice appear with
all copies and any derived work.
This software is provided 'as-is', without any express or implied
warranty. In no event shall the authors be held liable for any damages
arising from the use of this software.
Snes9x is freeware for PERSONAL USE only. Commercial users should
seek permission of the copyright holders first. Commercial use includes
charging money for Snes9x or software derived from Snes9x.
The copyright holders request that bug fixes and improvements to the code
should be forwarded to them so everyone can benefit from the modifications
in future versions.
Super NES and Super Nintendo Entertainment System are trademarks of
Nintendo Co., Limited and its subsidiary companies.
*******************************************************************************/
#include <stdlib.h>
#include "snes9x.h"
#include "memmap.h"
#include "ppu.h"
struct Band
{
uint32 Left;
uint32 Right;
};
#undef MIN
#undef MAX
#define MIN(A,B) ((A) < (B) ? (A) : (B))
#define MAX(A,B) ((A) > (B) ? (A) : (B))
#define BAND_EMPTY(B) (B.Left >= B.Right)
#define BANDS_INTERSECT(A,B) ((A.Left >= B.Left && A.Left < B.Right) || \
(B.Left >= A.Left && B.Left < A.Right))
#define OR_BANDS(R,A,B) {\
R.Left = MIN(A.Left, B.Left); \
R.Right = MAX(A.Right, B.Right);}
#define AND_BANDS(R,A,B) {\
R.Left = MAX(A.Left, B.Left); \
R.Right = MIN(A.Right, B.Right);}
static int IntCompare (const void *d1, const void *d2)
{
if (*(uint32 *) d1 > *(uint32 *) d2)
return (1);
else
if (*(uint32 *) d1 < *(uint32 *) d2)
return (-1);
return (0);
}
static int BandCompare (const void *d1, const void *d2)
{
if (((struct Band *) d1)->Left > ((struct Band *) d2)->Left)
return (1);
else
if (((struct Band *) d1)->Left < ((struct Band *) d2)->Left)
return (-1);
return (0);
}
void ComputeClipWindows ()
{
struct ClipData *pClip = &IPPU.Clip [0];
// Loop around the main screen then the sub-screen.
for (int c = 0; c < 2; c++, pClip++)
{
// Loop around the colour window then a clip window for each of the
// background layers.
for (int w = 5; w >= 0; w--)
{
pClip->Count[w] = 0;
if (w == 5) // The colour window...
{
if (c == 0) // ... on the main screen
{
if ((Memory.FillRAM [0x2130] & 0xc0) == 0xc0)
{
// The whole of the main screen is switched off,
// completely clip everything.
for (int i = 0; i < 6; i++)
{
IPPU.Clip [c].Count [i] = 1;
IPPU.Clip [c].Left [0][i] = 1;
IPPU.Clip [c].Right [0][i] = 0;
}
continue;
}
else if ((Memory.FillRAM [0x2130] & 0xc0) == 0x00)
continue;
}
else
{
// .. colour window on the sub-screen.
if ((Memory.FillRAM [0x2130] & 0x30) == 0x30)
{
// The sub-screen is switched off, completely
// clip everything.
for (int i = 0; i < 6; i++)
{
IPPU.Clip [1].Count [i] = 1;
IPPU.Clip [1].Left [0][i] = 1;
IPPU.Clip [1].Right [0][i] = 0;
}
return;
}
else if ((Memory.FillRAM [0x2130] & 0x30) == 0x00)
continue;
}
}
// if (!Settings.DisableGraphicWindows)
{
if (w == 5 || pClip->Count [5] ||
(Memory.FillRAM [0x212c + c] & Memory.FillRAM [0x212e + c] & (1 << w)))
{
struct Band Win1[3];
struct Band Win2[3];
uint32 Window1Enabled = 0;
uint32 Window2Enabled = 0;
bool8 invert = (w == 5 &&
((c == 1 && (Memory.FillRAM [0x2130] & 0x30) == 0x10) ||
(c == 0 && (Memory.FillRAM [0x2130] & 0xc0) == 0x40)));
if (w == 5 ||
(Memory.FillRAM [0x212c + c] & Memory.FillRAM [0x212e + c] & (1 << w)))
{
if (PPU.ClipWindow1Enable [w])
{
if (!PPU.ClipWindow1Inside [w])
{
Win1[Window1Enabled].Left = PPU.Window1Left;
Win1[Window1Enabled++].Right = PPU.Window1Right + 1;
}
else
{
if (PPU.Window1Left <= PPU.Window1Right)
{
if (PPU.Window1Left > 0)
{
Win1[Window1Enabled].Left = 0;
Win1[Window1Enabled++].Right = PPU.Window1Left;
}
if (PPU.Window1Right < 255)
{
Win1[Window1Enabled].Left = PPU.Window1Right + 1;
Win1[Window1Enabled++].Right = 256;
}
if (Window1Enabled == 0)
{
Win1[Window1Enabled].Left = 1;
Win1[Window1Enabled++].Right = 0;
}
}
else
{
// 'outside' a window with no range -
// appears to be the whole screen.
Win1[Window1Enabled].Left = 0;
Win1[Window1Enabled++].Right = 256;
}
}
}
if (PPU.ClipWindow2Enable [w])
{
if (!PPU.ClipWindow2Inside [w])
{
Win2[Window2Enabled].Left = PPU.Window2Left;
Win2[Window2Enabled++].Right = PPU.Window2Right + 1;
}
else
{
if (PPU.Window2Left <= PPU.Window2Right)
{
if (PPU.Window2Left > 0)
{
Win2[Window2Enabled].Left = 0;
Win2[Window2Enabled++].Right = PPU.Window2Left;
}
if (PPU.Window2Right < 255)
{
Win2[Window2Enabled].Left = PPU.Window2Right + 1;
Win2[Window2Enabled++].Right = 256;
}
if (Window2Enabled == 0)
{
Win2[Window2Enabled].Left = 1;
Win2[Window2Enabled++].Right = 0;
}
}
else
{
Win2[Window2Enabled].Left = 0;
Win2[Window2Enabled++].Right = 256;
}
}
}
}
if (Window1Enabled && Window2Enabled)
{
// Overlap logic
//
// Each window will be in one of three states:
// 1. <no range> (Left > Right. One band)
// 2. | ---------------- | (Left >= 0, Right <= 255, Left <= Right. One band)
// 3. |------------ ----------| (Left1 == 0, Right1 < Left2; Left2 > Right1, Right2 == 255. Two bands)
struct Band Bands [6];
int B = 0;
switch (PPU.ClipWindowOverlapLogic [w] ^ 1)
{
case CLIP_OR:
if (Window1Enabled == 1)
{
if (BAND_EMPTY(Win1[0]))
{
B = Window2Enabled;
// memmove converted: Different stack allocations [Neb]
memcpy (Bands, Win2,
sizeof(Win2[0]) * Window2Enabled);
}
else
{
if (Window2Enabled == 1)
{
if (BAND_EMPTY (Win2[0]))
Bands[B++] = Win1[0];
else
{
if (BANDS_INTERSECT (Win1[0], Win2[0]))
{
OR_BANDS(Bands[0],Win1[0], Win2[0])
B = 1;
}
else
{
Bands[B++] = Win1[0];
Bands[B++] = Win2[0];
}
}
}
else
{
if (BANDS_INTERSECT(Win1[0], Win2[0]))
{
OR_BANDS(Bands[0], Win1[0], Win2[0])
if (BANDS_INTERSECT(Win1[0], Win2[1]))
OR_BANDS(Bands[1], Win1[0], Win2[1])
else
Bands[1] = Win2[1];
B = 1;
if (BANDS_INTERSECT(Bands[0], Bands[1]))
OR_BANDS(Bands[0], Bands[0], Bands[1])
else
B = 2;
}
else
if (BANDS_INTERSECT(Win1[0], Win2[1]))
{
Bands[B++] = Win2[0];
OR_BANDS(Bands[B], Win1[0], Win2[1]);
B++;
}
else
{
Bands[0] = Win2[0];
Bands[1] = Win1[0];
Bands[2] = Win2[1];
B = 3;
}
}
}
}
else
if (Window2Enabled == 1)
{
if (BAND_EMPTY(Win2[0]))
{
// Window 2 defines an empty range - just
// use window 1 as the clipping (which
// could also be empty).
B = Window1Enabled;
// memmove converted: Different stack allocations [Neb]
memcpy (Bands, Win1,
sizeof(Win1[0]) * Window1Enabled);
}
else
{
// Window 1 has two bands and Window 2 has one.
// Neither is an empty region.
if (BANDS_INTERSECT(Win2[0], Win1[0]))
{
OR_BANDS(Bands[0], Win2[0], Win1[0])
if (BANDS_INTERSECT(Win2[0], Win1[1]))
OR_BANDS(Bands[1], Win2[0], Win1[1])
else
Bands[1] = Win1[1];
B = 1;
if (BANDS_INTERSECT(Bands[0], Bands[1]))
OR_BANDS(Bands[0], Bands[0], Bands[1])
else
B = 2;
}
else
if (BANDS_INTERSECT(Win2[0], Win1[1]))
{
Bands[B++] = Win1[0];
OR_BANDS(Bands[B], Win2[0], Win1[1]);
B++;
}
else
{
Bands[0] = Win1[0];
Bands[1] = Win2[0];
Bands[2] = Win1[1];
B = 3;
}
}
}
else
{
// Both windows have two bands
OR_BANDS(Bands[0], Win1[0], Win2[0]);
OR_BANDS(Bands[1], Win1[1], Win2[1]);
B = 1;
if (BANDS_INTERSECT(Bands[0], Bands[1]))
OR_BANDS(Bands[0], Bands[0], Bands[1])
else
B = 2;
}
break;
case CLIP_AND:
if (Window1Enabled == 1)
{
// Window 1 has one band
if (BAND_EMPTY(Win1[0]))
Bands [B++] = Win1[0];
else
if (Window2Enabled == 1)
{
if (BAND_EMPTY (Win2[0]))
Bands [B++] = Win2[0];
else
{
AND_BANDS(Bands[0], Win1[0], Win2[0]);
B = 1;
}
}
else
{
AND_BANDS(Bands[0], Win1[0], Win2[0]);
AND_BANDS(Bands[1], Win1[0], Win2[1]);
B = 2;
}
}
else
if (Window2Enabled == 1)
{
if (BAND_EMPTY(Win2[0]))
Bands[B++] = Win2[0];
else
{
// Window 1 has two bands.
AND_BANDS(Bands[0], Win1[0], Win2[0]);
AND_BANDS(Bands[1], Win1[1], Win2[0]);
B = 2;
}
}
else
{
// Both windows have two bands.
AND_BANDS(Bands[0], Win1[0], Win2[0]);
AND_BANDS(Bands[1], Win1[1], Win2[1]);
B = 2;
if (BANDS_INTERSECT(Win1[0], Win2[1]))
{
AND_BANDS(Bands[2], Win1[0], Win2[1]);
B = 3;
}
else
if (BANDS_INTERSECT(Win1[1], Win2[0]))
{
AND_BANDS(Bands[2], Win1[1], Win2[0]);
B = 3;
}
}
break;
case CLIP_XNOR:
invert = !invert;
// Fall...
case CLIP_XOR:
if (Window1Enabled == 1 && BAND_EMPTY(Win1[0]))
{
B = Window2Enabled;
// memmove converted: Different stack allocations [Neb]
memcpy (Bands, Win2,
sizeof(Win2[0]) * Window2Enabled);
}
else
if (Window2Enabled == 1 && BAND_EMPTY(Win2[0]))
{
B = Window1Enabled;
// memmove converted: Different stack allocations [Neb]
memcpy (Bands, Win1,
sizeof(Win1[0]) * Window1Enabled);
}
else
{
uint32 p = 0;
uint32 points [10];
uint32 i;
invert = !invert;
// Build an array of points (window edges)
points [p++] = 0;
for (i = 0; i < Window1Enabled; i++)
{
points [p++] = Win1[i].Left;
points [p++] = Win1[i].Right;
}
for (i = 0; i < Window2Enabled; i++)
{
points [p++] = Win2[i].Left;
points [p++] = Win2[i].Right;
}
points [p++] = 256;
// Sort them
qsort ((void *) points, p, sizeof (points [0]),
IntCompare);
for (i = 0; i < p; i += 2)
{
if (points [i] == points [i + 1])
continue;
Bands [B].Left = points [i];
while (i + 2 < p &&
points [i + 1] == points [i + 2])
{
i += 2;
}
Bands [B++].Right = points [i + 1];
}
}
break;
}
if (invert)
{
int b;
int j = 0;
int empty_band_count = 0;
// First remove all empty bands from the list.
for (b = 0; b < B; b++)
{
if (!BAND_EMPTY(Bands[b]))
{
if (b != j)
Bands[j] = Bands[b];
j++;
}
else
empty_band_count++;
}
if (j > 0)
{
if (j == 1)
{
j = 0;
// Easy case to deal with, so special case it.
if (Bands[0].Left > 0)
{
pClip->Left[j][w] = 0;
pClip->Right[j++][w] = Bands[0].Left + 1;
}
if (Bands[0].Right < 256)
{
pClip->Left[j][w] = Bands[0].Right;
pClip->Right[j++][w] = 256;
}
if (j == 0)
{
pClip->Left[j][w] = 1;
pClip->Right[j++][w] = 0;
}
}
else
{
// Now sort the bands into order
B = j;
qsort ((void *) Bands, B,
sizeof (Bands [0]), BandCompare);
// Now invert the area the bands cover
j = 0;
for (b = 0; b < B; b++)
{
if (b == 0 && Bands[b].Left > 0)
{
pClip->Left[j][w] = 0;
pClip->Right[j++][w] = Bands[b].Left + 1;
}
else
if (b == B - 1 && Bands[b].Right < 256)
{
pClip->Left[j][w] = Bands[b].Right;
pClip->Right[j++][w] = 256;
}
if (b < B - 1)
{
pClip->Left[j][w] = Bands[b].Right;
pClip->Right[j++][w] = Bands[b + 1].Left + 1;
}
}
}
}
else
{
// Inverting a window that consisted of only
// empty bands is the whole width of the screen.
// Needed for Mario Kart's rear-view mirror display.
if (empty_band_count)
{
pClip->Left[j][w] = 0;
pClip->Right[j][w] = 256;
j++;
}
}
pClip->Count[w] = j;
}
else
{
for (int j = 0; j < B; j++)
{
pClip->Left[j][w] = Bands[j].Left;
pClip->Right[j][w] = Bands[j].Right;
}
pClip->Count [w] = B;
}
}
else
{
// Only one window enabled so no need to perform
// complex overlap logic...
if (Window1Enabled)
{
if (invert)
{
int j = 0;
if (Window1Enabled == 1)
{
if (Win1[0].Left <= Win1[0].Right)
{
if (Win1[0].Left > 0)
{
pClip->Left[j][w] = 0;
pClip->Right[j++][w] = Win1[0].Left;
}
if (Win1[0].Right < 256)
{
pClip->Left[j][w] = Win1[0].Right;
pClip->Right[j++][w] = 256;
}
if (j == 0)
{
pClip->Left[j][w] = 1;
pClip->Right[j++][w] = 0;
}
}
else
{
pClip->Left[j][w] = 0;
pClip->Right[j++][w] = 256;
}
}
else
{
pClip->Left [j][w] = Win1[0].Right;
pClip->Right[j++][w] = Win1[1].Left;
}
pClip->Count [w] = j;
}
else
{
for (uint32 j = 0; j < Window1Enabled; j++)
{
pClip->Left [j][w] = Win1[j].Left;
pClip->Right [j][w] = Win1[j].Right;
}
pClip->Count [w] = Window1Enabled;
}
}
else
if (Window2Enabled)
{
if (invert)
{
int j = 0;
if (Window2Enabled == 1)
{
if (Win2[0].Left <= Win2[0].Right)
{
if (Win2[0].Left > 0)
{
pClip->Left[j][w] = 0;
pClip->Right[j++][w] = Win2[0].Left;
}
if (Win2[0].Right < 256)
{
pClip->Left[j][w] = Win2[0].Right;
pClip->Right[j++][w] = 256;
}
if (j == 0)
{
pClip->Left[j][w] = 1;
pClip->Right[j++][w] = 0;
}
}
else
{
pClip->Left[j][w] = 0;
pClip->Right[j++][w] = 256;
}
}
else
{
pClip->Left [j][w] = Win2[0].Right;
pClip->Right[j++][w] = Win2[1].Left + 1;
}
pClip->Count [w] = j;
}
else
{
for (uint32 j = 0; j < Window2Enabled; j++)
{
pClip->Left [j][w] = Win2[j].Left;
pClip->Right [j][w] = Win2[j].Right;
}
pClip->Count [w] = Window2Enabled;
}
}
}
if (w != 5 && pClip->Count [5])
{
// Colour window enabled. Set the
// clip windows for all remaining backgrounds to be
// the same as the colour window.
if (pClip->Count [w] == 0)
{
pClip->Count [w] = pClip->Count [5];
for (uint32 i = 0; i < pClip->Count [w]; i++)
{
pClip->Left [i][w] = pClip->Left [i][5];
pClip->Right [i][w] = pClip->Right [i][5];
}
}
else
{
// Intersect the colour window with the bg's
// own clip window.
for (uint32 i = 0; i < pClip->Count [w]; i++)
{
uint32 j;
for (j = 0; j < pClip->Count [5]; j++)
{
if((pClip->Left[i][w] >= pClip->Left[j][5] && pClip->Left[i][w] < pClip->Right[j][5]) || (pClip->Left[j][5] >= pClip->Left[i][w] && pClip->Left[j][5] < pClip->Right[i][w])){
// Found an intersection!
pClip->Left[i][w]=MAX(pClip->Left[i][w], pClip->Left[j][5]);
pClip->Right[i][w]=MIN(pClip->Right[i][w], pClip->Right[j][5]);
goto Clip_ok;
}
}
// no intersection, nullify it
pClip->Left[i][w]=1;
pClip->Right[i][w]=0;
Clip_ok:
j=0; // dummy statement
}
}
}
} // if (w == 5 | ...
} // if (!Settings.DisableGraphicWindows)
} // for (int w...
} // for (int c...
}