switch-coreboot/device/device.c
Myles Watson 7741b2273c This patch clarifies comments and changes a little whitespace in device/device.c
Signed-off-by: Myles Watson <mylesgw@gmail.com>
Acked-by: Myles Watson <mylesgw@gmail.com>


git-svn-id: svn://coreboot.org/repository/coreboot-v3@966 f3766cd6-281f-0410-b1cd-43a5c92072e9
2008-10-31 17:57:42 +00:00

1082 lines
30 KiB
C

/*
* This file is part of the coreboot project.
*
* It was originally based on the Linux kernel (arch/i386/kernel/pci-pc.c).
*
* Modifications are:
* Copyright (C) 2003 Eric Biederman <ebiederm@xmission.com>
* Copyright (C) 2003-2004 Linux Networx
* (Written by Eric Biederman <ebiederman@lnxi.com> for Linux Networx)
* Copyright (C) 2003 Ronald G. Minnich <rminnich@gmail.com>
* Copyright (C) 2004-2005 Li-Ta Lo <ollie@lanl.gov>
* Copyright (C) 2005-2006 Tyan
* (Written by Yinghai Lu for Tyan)
* Copyright (C) 2005-2006 Stefan Reinauer <stepan@openbios.org>
* Copyright (C) 2007 coresystems GmbH
*/
/*
* (c) 1999--2000 Martin Mares <mj@suse.cz>
*/
/* lots of mods by ron minnich (rminnich@lanl.gov), with
* the final architecture guidance from Tom Merritt (tjm@codegen.com)
* In particular, we changed from the one-pass original version to
* Tom's recommended multiple-pass version. I wasn't sure about doing
* it with multiple passes, until I actually started doing it and saw
* the wisdom of Tom's recommendations ...
*
* Lots of cleanups by Eric Biederman to handle bridges, and to
* handle resource allocation for non-pci devices.
*/
#include <console.h>
#include <io.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <string.h>
#include <lib.h>
#include <spinlock.h>
/** Linked list of all devices. */
struct device *all_devices = &dev_root;
/**
* Pointer to the last device -- computed at run time.
* No more config tool magic.
*/
struct device **last_dev_p;
/**
* The upper limit of MEM resource of the devices.
* Reserve 20M for the system.
*/
#define DEVICE_MEM_HIGH 0xFEBFFFFFUL
/**
* The lower limit of I/O resource of the devices.
* Reserve 4K for ISA/Legacy devices.
*/
#define DEVICE_IO_START 0x1000
/**
* device memory. All the device tree wil live here
*/
#define MAX_DEVICES 256
static struct device devs[MAX_DEVICES];
/**
* the number of devices that have been allocated
*/
static int devcnt;
/**
* The device creator.
*
* reserves a piece of memory for a device in the tree
*
* @return Pointer to the newly created device structure.
*/
static struct device *new_device(void)
{
devcnt++;
printk(BIOS_SPEW, "%s: devcnt %d\n", __FUNCTION__, devcnt);
/* Should we really die here? */
if (devcnt>=MAX_DEVICES) {
die("Too many devices. Increase MAX_DEVICES\n");
}
return &devs[devcnt];
}
/**
* The default constructor, which simply sets the ops pointer.
*
* Initialize device->ops of a newly allocated device structure.
*
* @param dev Pointer to the newly created device structure.
* @param ops Pointer to device_operations
*/
void default_device_constructor(struct device *dev, struct device_operations *ops)
{
printk(BIOS_DEBUG, "default device constructor called\n");
dev->ops = ops;
}
/**
* Given a path, locate the device_operations for it from all_device_operations.
*
* @param id TODO
* @return Pointer to the ops or 0, if none found.
* @see device_path
*/
struct device_operations *find_device_operations(struct device_id *id)
{
extern struct device_operations *all_device_operations[];
struct device_operations *c;
int i;
for (i = 0; all_device_operations[i]; i++) {
printk(BIOS_SPEW, "%s: check all_device_operations[i] %p\n",
__func__, all_device_operations[i]);
c = all_device_operations[i];
printk(BIOS_SPEW, "%s: cons %p, cons id %s\n",
__func__, c, dev_id_string(&c->id));
if (id_eq(&c->id, id)) {
printk(BIOS_SPEW, "%s: match\n", __func__);
return c;
}
}
return NULL;
}
/**
* Initialization tasks for the device tree code.
*
* Sets up last_dev_p, which used to be done by
* Fucking Magic (FM) in the config tool. Also, for each of the
* devices, tries to find the constructor, and from there, the ops,
* for the device.
*/
void dev_init(void)
{
struct device *dev;
struct device_operations *c;
for (dev = all_devices; dev; dev = dev->next) {
c = dev->ops;
if (c)
dev->id = c->id;
/* note the difference from the constructor function below.
* we are not allocating the device here, just setting the id.
* We set the id here because we don't want to set it in the dts
* as we used to. The user sees none of this work.
*/
if (c)
dev->ops = c;
last_dev_p = &dev->next;
}
devcnt = 0;
}
/**
* Given a device, find a constructor function and, if found, run it.
*
* Given a device, use the device id in the device to find a device_operations.
* Call the device_operations->constructor, with itself as
* a parameter; return the result. If there is no constructor,
* then no constructor is run.
*
* @param dev Pointer to the newly created device structure.
* @see device_path
*/
void constructor(struct device *dev)
{
struct device_operations *c;
c = dev->ops;
if (!c)
c = find_device_operations(&dev->id);
printk(BIOS_SPEW, "%s: constructor is %p\n", __func__, c);
if(c) {
if(c->constructor)
c->constructor(dev, c);
else
default_device_constructor(dev, c);
}
else
printk(BIOS_INFO, "No ops found and no constructor called for %s.\n",
dev_id_string(&dev->id));
}
spin_define(dev_lock);
/**
* Allocate a new device structure and attach it to the device tree as a
* child of the parent bus.
*
* @param parent Parent bus the newly created device is attached to.
* @param path Path to the device to be created.
* @param devid TODO
* @return Pointer to the newly created device structure.
* @see device_path
*/
struct device *alloc_dev(struct bus *parent, struct device_path *path,
struct device_id *devid)
{
struct device *dev, *child;
int link;
spin_lock(&dev_lock);
/* Find the last child of our parent. */
for (child = parent->children; child && child->sibling; /* */) {
child = child->sibling;
}
dev = new_device();
if (!dev)
goto out;
memset(dev, 0, sizeof(*dev));
dev->path = *path;
dev->id = *devid;
/* Initialize the back pointers in the link fields. */
for (link = 0; link < MAX_LINKS; link++) {
dev->link[link].dev = dev;
dev->link[link].link = link;
}
/* By default devices are enabled. */
dev->enabled = 1;
/* Add the new device to the list of children of the bus. */
dev->bus = parent;
if (child) {
child->sibling = dev;
} else {
parent->children = dev;
}
/* Append a new device to the global device list.
* The list is used to find devices once everything is set up.
*/
*last_dev_p = dev;
last_dev_p = &dev->next;
/* Give the device a name. */
sprintf(dev->dtsname, "dynamic %s", dev_path(dev));
/* Run the device specific constructor as last part of the chain
* so it gets the chance to overwrite the "inherited" values above
*/
constructor(dev);
out:
spin_unlock(&dev_lock);
return dev;
}
/**
* Read the resources on all devices of a given bus.
*
* @param bus Bus to read the resources on.
*/
void read_resources(struct bus *bus)
{
struct device *curdev;
printk(BIOS_SPEW, "%s: %s(%s) read_resources bus %d link: %d\n",
__func__,
(bus->dev ? bus->dev->dtsname : "No dtsname for NULL device"),
(bus->dev ? dev_path(bus->dev) : "No path for NULL device"),
bus->secondary, bus->link);
if (!bus->dev)
printk(BIOS_WARNING, "%s: ERROR: bus->dev is NULL!\n",
__func__);
/* Walk through all devices and find which resources they need. */
for (curdev = bus->children; curdev; curdev = curdev->sibling) {
unsigned int links;
int i;
printk(BIOS_SPEW,
"%s: %s(%s) dtsname %s have_resources %d enabled %d\n",
__func__, bus->dev? bus->dev->dtsname : "NOBUSDEV",
bus->dev ? dev_path(bus->dev) : "NOBUSDEV",
curdev->dtsname,
curdev->have_resources, curdev->enabled);
if (curdev->have_resources) {
continue;
}
if (!curdev->enabled) {
continue;
}
if (!curdev->ops || !curdev->ops->phase4_read_resources) {
printk(BIOS_ERR,
"%s: %s(%s) missing phase4_read_resources\n",
__func__, curdev->dtsname, dev_path(curdev));
continue;
}
curdev->ops->phase4_read_resources(curdev);
curdev->have_resources = 1;
/* Read in subtractive resources behind the current device. */
links = 0;
for (i = 0; i < curdev->resources; i++) {
struct resource *resource;
unsigned int link;
resource = &curdev->resource[i];
if (!(resource->flags & IORESOURCE_SUBTRACTIVE))
continue;
link = IOINDEX_SUBTRACTIVE_LINK(resource->index);
if (link > MAX_LINKS) {
printk(BIOS_ERR,
"%s subtractive index on link: %d\n",
dev_path(curdev), link);
continue;
}
if (!(links & (1 << link))) {
links |= (1 << link);
read_resources(&curdev->link[link]);
}
}
}
printk(BIOS_SPEW, "%s: %s(%s) read_resources bus %d link: %d done\n",
__func__, bus->dev->dtsname, dev_path(bus->dev), bus->secondary,
bus->link);
}
struct pick_largest_state {
struct resource *last;
struct device *result_dev;
struct resource *result;
int seen_last;
};
static void pick_largest_resource(void *gp, struct device *dev,
struct resource *resource)
{
struct pick_largest_state *state = gp;
struct resource *last;
last = state->last;
/* Be certain to pick the successor to last. */
if (resource == last) {
state->seen_last = 1;
return;
}
if (resource->flags & IORESOURCE_FIXED)
return; // Skip it.
if (last && ((last->align < resource->align) ||
((last->align == resource->align) &&
(last->size < resource->size)) ||
((last->align == resource->align) &&
(last->size == resource->size) && (!state->seen_last)))) {
return;
}
if (!state->result ||
(state->result->align < resource->align) ||
((state->result->align == resource->align) &&
(state->result->size < resource->size))) {
state->result_dev = dev;
state->result = resource;
}
}
static struct device *largest_resource(struct bus *bus, struct resource
**result_res, unsigned long type_mask,
unsigned long type)
{
struct pick_largest_state state;
state.last = *result_res;
state.result_dev = 0;
state.result = 0;
state.seen_last = 0;
search_bus_resources(bus, type_mask, type, pick_largest_resource,
&state);
*result_res = state.result;
return state.result_dev;
}
/**
* This function is the guts of the resource allocator.
*
* The problem.
* - Allocate resource locations for every device.
* - Don't overlap, and follow the rules of bridges.
* - Don't overlap with resources in fixed locations.
* - Be efficient so we don't have ugly strategies.
*
* The strategy.
* - Devices that have fixed addresses are the minority so don't
* worry about them too much. Instead only use part of the address
* space for devices with programmable addresses. This easily handles
* everything except bridges.
*
* - PCI devices are required to have their sizes and their alignments
* equal. In this case an optimal solution to the packing problem
* exists. Allocate all devices from highest alignment to least
* alignment or vice versa. Use this.
*
* - So we can handle more than PCI run two allocation passes on bridges. The
* first to see how large the resources are behind the bridge, and what
* their alignment requirements are. The second to assign a safe address to
* the devices behind the bridge. This allows us to treat a bridge as just
* a device with a couple of resources, and not need to special case it in
* the allocator. Also this allows handling of other types of bridges.
*
* @param bus TODO
* @param bridge TODO
* @param type_mask TODO
* @param type TODO
*/
void compute_allocate_resource(struct bus *bus, struct resource *bridge,
unsigned long type_mask, unsigned long type)
{
struct device *dev;
struct resource *resource;
resource_t base;
unsigned long align, min_align;
min_align = 0;
base = bridge->base;
printk(BIOS_SPEW,
"%s compute_allocate_%s: base: %08llx size: %08llx align: %d gran: %d\n",
dev_path(bus->dev),
(bridge->flags & IORESOURCE_IO) ? "io" : (bridge->flags & IORESOURCE_PREFETCH) ? "prefmem" : "mem",
base, bridge->size, bridge->align, bridge->gran);
/* We want different minimum alignments for different kinds of
* resources. These minimums are not device type specific but
* resource type specific.
*/
if (bridge->flags & IORESOURCE_IO) {
min_align = log2c(DEVICE_IO_ALIGN);
}
if (bridge->flags & IORESOURCE_MEM) {
min_align = log2c(DEVICE_MEM_ALIGN);
}
/* Make certain we have read in all of the resources. */
read_resources(bus);
/* Remember we haven't found anything yet. */
resource = 0;
/* Walk through all the devices on the current bus and
* compute the addresses.
*/
while ((dev = largest_resource(bus, &resource, type_mask, type))) {
resource_t size;
/* Do NOT, I repeat do not, ignore resources which have zero
* size. If they need to be ignored dev->read_resources should
* not even return them. Some resources must be set even when
* they have no size. PCI bridge resources are a good example
* of this.
*/
/* Make certain we are dealing with a good minimum size. */
size = resource->size;
align = resource->align;
if (align < min_align) {
align = min_align;
}
/* Propagate the resource alignment to the bridge register */
if (align > bridge->align) {
bridge->align = align;
}
if (resource->flags & IORESOURCE_FIXED) {
continue;
}
/* Propagate the resource limit to the bridge register. */
if (bridge->limit > resource->limit) {
bridge->limit = resource->limit;
}
/* Artificially deny limits between DEVICE_MEM_HIGH and 0xffffffff. */
if ((bridge->limit > DEVICE_MEM_HIGH)
&& (bridge->limit <= 0xffffffff)) {
bridge->limit = DEVICE_MEM_HIGH;
}
if (resource->flags & IORESOURCE_IO) {
/* Don't allow potential aliases over the legacy PCI
* expansion card addresses. The legacy PCI decodes
* only 10 bits, uses 0x100 - 0x3ff. Therefore, only
* 0x00 - 0xff can be used out of each 0x400 block of
* I/O space.
*/
if ((base & 0x300) != 0) {
base = (base & ~0x3ff) + 0x400;
}
/* Don't allow allocations in the VGA I/O range.
* PCI has special cases for that.
*/
else if ((base >= 0x3b0) && (base <= 0x3df)) {
base = 0x3e0;
}
}
if (((align_up(base, align) + size) - 1) <= resource->limit) {
/* Base must be aligned to size. */
base = align_up(base, align);
resource->base = base;
resource->flags |= IORESOURCE_ASSIGNED;
resource->flags &= ~IORESOURCE_STORED;
base += size;
printk(BIOS_SPEW,
"%s %02lx * [0x%08llx - 0x%08llx] %s\n",
dev_path(dev),
resource->index,
resource->base,
resource->base + resource->size - 1,
(resource->flags & IORESOURCE_IO) ? "io" :
(resource->
flags & IORESOURCE_PREFETCH) ? "prefmem" :
"mem");
}
}
/* A PCI bridge resource does not need to be a power of two size, but
* it does have a minimum granularity. Round the size up to that
* minimum granularity so we know not to place something else at an
* address positively decoded by the bridge.
*/
bridge->size = align_up(base, bridge->gran) - bridge->base;
printk(BIOS_SPEW,
"%s compute_allocate_%s: base: %08llx size: %08llx align: %d gran: %d done\n",
dev_path(bus->dev),
(bridge->flags & IORESOURCE_IO) ? "io" : (bridge->flags & IORESOURCE_PREFETCH) ? "prefmem" : "mem",
base, bridge->size, bridge->align, bridge->gran);
}
#ifdef CONFIG_PCI_OPTION_ROM_RUN
struct device *vga_pri = 0;
int vga_inited = 0;
static void allocate_vga_resource(void)
{
#warning Modify allocate_vga_resource so it is less PCI centric.
// FIXME: This function knows too much about PCI stuff,
// it should just be an iterator/visitor.
/* FIXME: Handle the VGA palette snooping. */
struct device *dev, *vga, *vga_onboard, *vga_first, *vga_last;
struct bus *bus;
bus = 0;
vga = 0;
vga_onboard = 0;
vga_first = 0;
vga_last = 0;
for (dev = all_devices; dev; dev = dev->next) {
if (!dev->enabled)
continue;
if (((dev->class >> 16) == PCI_BASE_CLASS_DISPLAY) &&
((dev->class >> 8) != PCI_CLASS_DISPLAY_OTHER)) {
if (!vga_first) {
if (dev->on_mainboard) {
vga_onboard = dev;
} else {
vga_first = dev;
}
} else {
if (dev->on_mainboard) {
vga_onboard = dev;
} else {
vga_last = dev;
}
}
/* It isn't safe to enable other VGA cards. */
dev->command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_IO);
}
}
vga = vga_last;
if (!vga) {
vga = vga_first;
}
#ifdef CONFIG_INITIALIZE_ONBOARD_VGA_FIRST
if (vga_onboard) // Will use on board VGA as pri.
#else
if (!vga) // Will use last add on adapter as pri.
#endif
{
vga = vga_onboard;
}
if (vga) {
/* VGA is first add on card or the only onboard VGA. */
printk(BIOS_DEBUG, "Allocating VGA resource %s\n",
dev_path(vga));
/* All legacy VGA cards have MEM & I/O space registers. */
vga->command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_IO);
vga_pri = vga;
bus = vga->bus;
}
/* Now walk up the bridges setting the VGA enable. */
while (bus) {
printk(BIOS_DEBUG, "Setting PCI_BRIDGE_CTL_VGA for bridge %s\n",
dev_path(bus->dev));
bus->bridge_ctrl |= PCI_BRIDGE_CTL_VGA;
bus = (bus == bus->dev->bus) ? 0 : bus->dev->bus;
}
}
#endif
/**
* Assign the computed resources to the devices on the bus.
*
* Use the device specific set_resources method to store the computed
* resources to hardware. For bridge devices, the set_resources() method
* has to recurse into every down stream buses.
*
* Mutual recursion:
* assign_resources() -> device_operation::set_resources()
* device_operation::set_resources() -> assign_resources()
*
* @param bus Pointer to the structure for this bus.
*/
void phase4_assign_resources(struct bus *bus)
{
struct device *curdev;
printk(BIOS_SPEW, "%s(%s) assign_resources, bus %d link: %d\n",
bus->dev->dtsname, dev_path(bus->dev), bus->secondary,
bus->link);
for (curdev = bus->children; curdev; curdev = curdev->sibling) {
if (!curdev->enabled || !curdev->resources) {
continue;
}
if (!curdev->ops) {
printk(BIOS_WARNING, "%s(%s) missing ops\n",
curdev->dtsname, dev_path(curdev));
continue;
}
if (!curdev->ops->phase4_set_resources) {
printk(BIOS_WARNING,
"%s(%s) ops has no phase4_set_resources\n",
curdev->dtsname, dev_path(curdev));
continue;
}
curdev->ops->phase4_set_resources(curdev);
}
printk(BIOS_SPEW, "%s(%s) assign_resources done, bus %d link: %d\n",
bus->dev->dtsname, dev_path(bus->dev), bus->secondary,
bus->link);
}
/**
* Enable the resources of the device by calling the device specific
* phase5() method.
*
* The parent's resources should be enabled first to avoid having enabling
* order problem. This is done by calling the parent's phase5() method and
* let that method to call it's children's phase5() method via the (global)
* phase5_children().
*
* Indirect mutual recursion:
* dev_phase5() -> device_operations::phase5()
* device_operations::phase5() -> phase5_children()
* phase5_children() -> dev_phase5()
*
* @param dev The device whose resources are to be enabled.
*/
void dev_phase5(struct device *dev)
{
if (!dev->enabled) {
return;
}
if (!dev->ops) {
printk(BIOS_WARNING, "%s: %s(%s) missing ops\n",
__FUNCTION__, dev->dtsname, dev_path(dev));
return;
}
if (!dev->ops->phase5_enable_resources) {
printk(BIOS_WARNING,
"%s: %s(%s) ops are missing phase5_enable_resources\n",
__FUNCTION__, dev->dtsname, dev_path(dev));
return;
}
dev->ops->phase5_enable_resources(dev);
}
/**
* Reset all of the devices on a bus and clear the bus's reset_needed flag.
*
* @param bus Pointer to the bus structure.
* @return 1 if the bus was successfully reset, 0 otherwise.
*/
int reset_bus(struct bus *bus)
{
if (bus && bus->dev && bus->dev->ops && bus->dev->ops->reset_bus) {
bus->dev->ops->reset_bus(bus);
bus->reset_needed = 0;
return 1;
}
return 0;
}
/**
* Do very early setup for all devices in the global device list.
*
* Starting at the first device on the global device link list,
* walk the list and call the device's phase1() method to do very
* early setup.
*/
void dev_phase1(void)
{
struct device *dev;
post_code(POST_STAGE2_PHASE1_ENTER);
printk(BIOS_DEBUG, "Phase 1: Very early setup...\n");
for (dev = all_devices; dev; dev = dev->next) {
if (dev->ops && dev->ops->phase1_set_device_operations) {
dev->ops->phase1_set_device_operations(dev);
}
}
post_code(POST_STAGE2_PHASE1_DONE);
printk(BIOS_DEBUG, "Phase 1: done\n");
post_code(POST_STAGE2_PHASE1_EXIT);
}
/**
* Do early setup for all devices in the global device list.
*
* Starting at the first device on the global device link list,
* walk the list and call the device's phase2() method to do
* early setup.
*/
void dev_phase2(void)
{
struct device *dev;
post_code(POST_STAGE2_PHASE2_ENTER);
printk(BIOS_DEBUG, "Phase 2: Early setup...\n");
for (dev = all_devices; dev; dev = dev->next) {
printk(BIOS_SPEW,
"%s: dev %s: ops %p ops->phase2_fixup %p\n",
__FUNCTION__, dev->dtsname, dev->ops,
dev->ops? dev->ops->phase2_fixup : NULL);
if (dev->ops && dev->ops->phase2_fixup) {
printk(BIOS_SPEW,
"Calling phase2 phase2_fixup...\n");
dev->ops->phase2_fixup(dev);
printk(BIOS_SPEW, "phase2_fixup done\n");
}
}
post_code(POST_STAGE2_PHASE2_DONE);
printk(BIOS_DEBUG, "Phase 2: Done.\n");
post_code(POST_STAGE2_PHASE2_EXIT);
}
/**
* Scan for devices on a bus.
*
* If there are bridges on the bus, recursively scan the buses behind the
* bridges. If the setting up and tuning of the bus causes a reset to be
* required, reset the bus and scan it again.
*
* @param busdevice Pointer to the bus device.
* @param max Current bus number.
* @return The maximum bus number found, after scanning all subordinate buses.
*/
unsigned int dev_phase3_scan(struct device *busdevice, unsigned int max)
{
unsigned int new_max;
int do_phase3;
post_code(POST_STAGE2_PHASE3_SCAN_ENTER);
if (!busdevice || !busdevice->enabled ||
!busdevice->ops || !busdevice->ops->phase3_scan) {
printk(BIOS_INFO, "%s: %s: busdevice %p enabled %d ops %p\n",
__FUNCTION__, busdevice->dtsname, busdevice,
busdevice ? busdevice->enabled : 0,
busdevice ? busdevice->ops : NULL);
printk(BIOS_INFO, "%s: can not scan from here, returning %d\n",
__FUNCTION__, max);
return max;
}
do_phase3 = 1;
while (do_phase3) {
int link;
printk(BIOS_INFO, "%s: scanning %s(%s)\n", __FUNCTION__,
busdevice->dtsname, dev_path(busdevice));
#warning do we call phase3_enable here.
new_max = busdevice->ops->phase3_scan(busdevice, max);
do_phase3 = 0;
/* do we *ever* use this path */
for (link = 0; link < busdevice->links; link++) {
if (busdevice->link[link].reset_needed) {
if (reset_bus(&busdevice->link[link])) {
do_phase3 = 1;
} else {
busdevice->bus->reset_needed = 1;
}
}
}
}
post_code(POST_STAGE2_PHASE3_SCAN_EXIT);
printk(BIOS_INFO, "%s: returning %d\n", __FUNCTION__, max);
return new_max;
}
/**
* Determine the existence of devices and extend the device tree.
*
* Most of the devices in the system are listed in the mainboard Config.lb
* file. The device structures for these devices are generated at compile
* time by the config tool and are organized into the device tree. This
* function determines if the devices created at compile time actually exist
* in the physical system.
* TODO: Fix comment, v3 doesn't have Config.lb files.
*
* For devices in the physical system but not listed in the Config.lb file,
* the device structures have to be created at run time and attached to the
* device tree.
*
* This function starts from the root device 'dev_root', scan the buses in
* the system recursively, modify the device tree according to the result of
* the probe.
*
* This function has no idea how to scan and probe buses and devices at all.
* It depends on the bus/device specific scan_bus() method to do it. The
* scan_bus() method also has to create the device structure and attach
* it to the device tree.
*/
void dev_root_phase3(void)
{
struct device *root;
unsigned int subordinate;
printk(BIOS_INFO, "Phase 3: Enumerating buses...\n");
root = &dev_root;
if (root->ops && root->ops->phase3_chip_setup_dev) {
root->ops->phase3_chip_setup_dev(root);
}
post_code(POST_STAGE2_PHASE3_MIDDLE);
if (!root->ops) {
printk(BIOS_ERR,
"dev_root_phase3 missing 'ops' initialization\nPhase 3: Failed.\n");
return;
}
if (!root->ops->phase3_scan) {
printk(BIOS_ERR,
"dev_root ops struct missing 'phase3' initialization in ops structure\nPhase 3: Failed.");
return;
}
subordinate = dev_phase3_scan(root, 0);
printk(BIOS_INFO, "Phase 3: Done.\n");
}
/**
* Configure devices on the device tree.
*
* Starting at the root of the device tree, travel it recursively in two
* passes. In the first pass, we compute and allocate resources (ranges)
* required by each device. In the second pass, the resources ranges are
* relocated to their final position and stored to the hardware.
*
* I/O resources start at DEVICE_IO_START and grow upward. MEM resources start
* at DEVICE_MEM_START and grow downward.
*
* Since the assignment is hierarchical we set the values into the dev_root
* struct.
*/
void dev_phase4(void)
{
struct resource *io, *mem;
struct device *root;
printk(BIOS_INFO, "Phase 4: Allocating resources...\n");
root = &dev_root;
if (!root->ops) {
printk(BIOS_ERR,
"Phase 4: dev_root missing ops initialization\nPhase 4: Failed.\n");
return;
}
if (!root->ops->phase4_read_resources) {
printk(BIOS_ERR,
"dev_root ops missing read_resources\nPhase 4: Failed.\n");
return;
}
if (!root->ops->phase4_set_resources) {
printk(BIOS_ERR,
"dev_root ops missing set_resources\nPhase 4: Failed.\n");
return;
}
printk(BIOS_INFO, "Phase 4: Reading resources...\n");
root->ops->phase4_read_resources(root);
printk(BIOS_INFO, "Phase 4: Done reading resources.\n");
/* We have read the resources. We now compute the global allocation of
* resources. We have to create a root resource for the base of the
* tree. The root resource should contain the entire address space for
* IO and MEM resources. The allocation of device resources will be done
* from this resource address space.
*/
/* Allocate a resource from the root device resource pool and initialize
* the system-wide I/O space constraints.
*/
io = new_resource(root, 0);
io->base = 0x400;
io->size = 0;
io->align = 0;
io->gran = 0;
io->limit = 0xffffUL;
io->flags = IORESOURCE_IO;
/* Allocate a resource from the root device resource pool and initialize
* the system-wide memory resources constraints.
*/
mem = new_resource(root, 1);
mem->base = 0;
mem->size = 0;
mem->align = 0;
mem->gran = 0;
mem->limit = 0xffffffffUL;
mem->flags = IORESOURCE_MEM;
compute_allocate_resource(&root->link[0], io,
IORESOURCE_IO, IORESOURCE_IO);
compute_allocate_resource(&root->link[0], mem,
IORESOURCE_MEM, IORESOURCE_MEM);
/* Now we need to adjust the resources. The issue is that mem grows
* downward.
*/
/* Make certain the I/O devices are allocated somewhere safe. */
io->base = DEVICE_IO_START;
io->flags |= IORESOURCE_ASSIGNED;
io->flags &= ~IORESOURCE_STORED;
/* Now reallocate the PCI resources memory with the
* highest addresses I can manage.
*/
mem->base = resource_max(&root->resource[1]);
mem->flags |= IORESOURCE_ASSIGNED;
mem->flags &= ~IORESOURCE_STORED;
#ifdef CONFIG_PCI_OPTION_ROM_RUN
/* Allocate the VGA I/O resource. */
allocate_vga_resource();
#endif
/* now rerun the compute allocate with the adjusted resources */
compute_allocate_resource(&root->link[0], io,
IORESOURCE_IO, IORESOURCE_IO);
compute_allocate_resource(&root->link[0], mem,
IORESOURCE_MEM, IORESOURCE_MEM);
/* Store the computed resource allocations into device registers. */
printk(BIOS_INFO, "Phase 4: Setting resources...\n");
root->ops->phase4_set_resources(root);
printk(BIOS_INFO, "Phase 4: Done setting resources.\n");
#if 0
mem->flags |= IORESOURCE_STORED;
report_resource_stored(root, mem, "");
#endif
printk(BIOS_INFO, "Phase 4: Done allocating resources.\n");
}
/**
* Enable devices on the device tree.
*
* Starting at the root, walk the tree and enable all devices/bridges by
* calling the device's enable_resources() method.
*/
void dev_root_phase5(void)
{
printk(BIOS_INFO, "Phase 5: Enabling resources...\n");
/* Now enable everything. */
dev_phase5(&dev_root);
printk(BIOS_INFO, "Phase 5: Done.\n");
}
/**
* Initialize all devices in the global device list.
*
* Starting at the first device on the global device link list, walk the list
* and call the device's init() method to do device specific setup.
*/
void dev_phase6(void)
{
struct device *dev;
printk(BIOS_INFO, "Phase 6: Initializing devices...\n");
for (dev = all_devices; dev; dev = dev->next) {
if (dev->enabled && dev->ops && dev->ops->phase6_init) {
if (dev->path.type == DEVICE_PATH_I2C) {
printk(BIOS_DEBUG, "Phase 6: smbus: %s[%d]->",
dev_path(dev->bus->dev), dev->bus->link);
}
printk(BIOS_DEBUG, "Phase 6: %s init.\n",
dev_path(dev));
dev->ops->phase6_init(dev);
}
}
printk(BIOS_INFO, "Phase 6: Devices initialized.\n");
}
void show_all_devs(void)
{
struct device *dev;
printk(BIOS_INFO, "Show all devs...\n");
for (dev = all_devices; dev; dev = dev->next) {
printk(BIOS_SPEW,
"%s(%s): enabled %d have_resources %d\n",
dev->dtsname, dev_path(dev), dev->enabled,
dev->have_resources);
}
}
void show_one_resource(struct device *dev, struct resource *resource,
const char *comment)
{
char buf[10];
unsigned long long base, end;
base = resource->base;
end = resource_end(resource);
buf[0] = '\0';
if (resource->flags & IORESOURCE_PCI_BRIDGE) {
#if PCI_BUS_SEGN_BITS
sprintf(buf, "bus %04x:%02x ", dev->bus->secondary >> 8,
dev->link[0].secondary & 0xff);
#else
sprintf(buf, "bus %02x ", dev->link[0].secondary);
#endif
}
printk(BIOS_DEBUG, "%s %02lx <- [0x%010llx - 0x%010llx] "
"size 0x%08Lx gran 0x%02x %s%s%s\n",
dev_path(dev), resource->index, base, end,
resource->size, resource->gran, buf,
resource_type(resource), comment);
}
void show_all_devs_resources(void)
{
struct device *dev;
printk(BIOS_INFO, "Show all devs...\n");
for (dev = all_devices; dev; dev = dev->next) {
int i;
printk(BIOS_SPEW,
"%s(%s): enabled %d have_resources %d\n",
dev->dtsname, dev_path(dev), dev->enabled,
dev->have_resources);
for(i = 0; i < dev->resources; i++)
show_one_resource(dev, &dev->resource[i], "");
}
}