mirror of
https://github.com/fail0verflow/switch-coreboot.git
synced 2025-05-04 01:39:18 -04:00
For S3 resume path SPD is only used for DIMM replacement detection. As this detection already fails in the case of removal/insertion of same DIMM, we can rely on cbmem_recovery() failure alone to force system reset in case someone accidentally does DIMM replacements while system is suspend-to-ram stage. Skipping DIMM replacement detection allows skipping slow SPD loading, thus reducing S3 resume path time by 80ms for every installed DIMM. Change-Id: I4f2838c05f172d3cb351b027c9b8dd6543ab5944 Signed-off-by: Kyösti Mälkki <kyosti.malkki@gmail.com> Reviewed-on: https://review.coreboot.org/17490 Tested-by: build bot (Jenkins) Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net> Reviewed-by: Patrick Rudolph <siro@das-labor.org> Reviewed-by: Aaron Durbin <adurbin@chromium.org>
4422 lines
120 KiB
C
4422 lines
120 KiB
C
/*
|
|
* This file is part of the coreboot project.
|
|
*
|
|
* Copyright (C) 2014 Damien Zammit <damien@zamaudio.com>
|
|
* Copyright (C) 2014 Vladimir Serbinenko <phcoder@gmail.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <console/console.h>
|
|
#include <console/usb.h>
|
|
#include <bootmode.h>
|
|
#include <string.h>
|
|
#include <arch/io.h>
|
|
#include <cbmem.h>
|
|
#include <arch/cbfs.h>
|
|
#include <cbfs.h>
|
|
#include <halt.h>
|
|
#include <ip_checksum.h>
|
|
#include <timestamp.h>
|
|
#include <pc80/mc146818rtc.h>
|
|
#include <northbridge/intel/common/mrc_cache.h>
|
|
#include <device/pci_def.h>
|
|
#include <memory_info.h>
|
|
#include <smbios.h>
|
|
#include "raminit_native.h"
|
|
#include "sandybridge.h"
|
|
#include <delay.h>
|
|
#include <lib.h>
|
|
#include <device/device.h>
|
|
|
|
/* Management Engine is in the southbridge */
|
|
#include "southbridge/intel/bd82x6x/me.h"
|
|
/* For SPD. */
|
|
#include "southbridge/intel/bd82x6x/smbus.h"
|
|
#include "arch/cpu.h"
|
|
#include "cpu/x86/msr.h"
|
|
#include <northbridge/intel/sandybridge/chip.h>
|
|
|
|
/* FIXME: no ECC support. */
|
|
/* FIXME: no support for 3-channel chipsets. */
|
|
|
|
/*
|
|
* Register description:
|
|
* Intel provides a command queue of depth four.
|
|
* Every command is configured by using multiple registers.
|
|
* On executing the command queue you have to provide the depth used.
|
|
*
|
|
* Known registers:
|
|
* Channel X = [0, 1]
|
|
* Command queue index Y = [0, 1, 2, 3]
|
|
*
|
|
* DEFAULT_MCHBAR + 0x4220 + 0x400 * X + 4 * Y: command io register
|
|
* Controls the DRAM command signals
|
|
* Bit 0: !RAS
|
|
* Bit 1: !CAS
|
|
* Bit 2: !WE
|
|
*
|
|
* DEFAULT_MCHBAR + 0x4200 + 0x400 * X + 4 * Y: addr bankslot io register
|
|
* Controls the address, bank address and slotrank signals
|
|
* Bit 0-15 : Address
|
|
* Bit 20-22: Bank Address
|
|
* Bit 24-25: slotrank
|
|
*
|
|
* DEFAULT_MCHBAR + 0x4230 + 0x400 * X + 4 * Y: idle register
|
|
* Controls the idle time after issuing this DRAM command
|
|
* Bit 16-32: number of clock-cylces to idle
|
|
*
|
|
* DEFAULT_MCHBAR + 0x4284 + 0x400 * channel: execute command queue
|
|
* Starts to execute all queued commands
|
|
* Bit 0 : start DRAM command execution
|
|
* Bit 16-20: (number of queued commands - 1) * 4
|
|
*/
|
|
|
|
#define BASEFREQ 133
|
|
#define tDLLK 512
|
|
|
|
#define IS_SANDY_CPU(x) ((x & 0xffff0) == 0x206a0)
|
|
#define IS_SANDY_CPU_C(x) ((x & 0xf) == 4)
|
|
#define IS_SANDY_CPU_D0(x) ((x & 0xf) == 5)
|
|
#define IS_SANDY_CPU_D1(x) ((x & 0xf) == 6)
|
|
#define IS_SANDY_CPU_D2(x) ((x & 0xf) == 7)
|
|
|
|
#define IS_IVY_CPU(x) ((x & 0xffff0) == 0x306a0)
|
|
#define IS_IVY_CPU_C(x) ((x & 0xf) == 4)
|
|
#define IS_IVY_CPU_K(x) ((x & 0xf) == 5)
|
|
#define IS_IVY_CPU_D(x) ((x & 0xf) == 6)
|
|
#define IS_IVY_CPU_E(x) ((x & 0xf) >= 8)
|
|
|
|
#define NUM_CHANNELS 2
|
|
#define NUM_SLOTRANKS 4
|
|
#define NUM_SLOTS 2
|
|
#define NUM_LANES 8
|
|
|
|
/* FIXME: Vendor BIOS uses 64 but our algorithms are less
|
|
performant and even 1 seems to be enough in practice. */
|
|
#define NUM_PATTERNS 4
|
|
|
|
typedef struct odtmap_st {
|
|
u16 rttwr;
|
|
u16 rttnom;
|
|
} odtmap;
|
|
|
|
typedef struct dimm_info_st {
|
|
dimm_attr dimm[NUM_CHANNELS][NUM_SLOTS];
|
|
} dimm_info;
|
|
|
|
struct ram_rank_timings {
|
|
/* Register 4024. One byte per slotrank. */
|
|
u8 val_4024;
|
|
/* Register 4028. One nibble per slotrank. */
|
|
u8 val_4028;
|
|
|
|
int val_320c;
|
|
|
|
struct ram_lane_timings {
|
|
/* lane register offset 0x10. */
|
|
u16 timA; /* bits 0 - 5, bits 16 - 18 */
|
|
u8 rising; /* bits 8 - 14 */
|
|
u8 falling; /* bits 20 - 26. */
|
|
|
|
/* lane register offset 0x20. */
|
|
int timC; /* bit 0 - 5, 19. */
|
|
u16 timB; /* bits 8 - 13, 15 - 17. */
|
|
} lanes[NUM_LANES];
|
|
};
|
|
|
|
struct ramctr_timing_st;
|
|
|
|
typedef struct ramctr_timing_st {
|
|
u16 spd_crc[NUM_CHANNELS][NUM_SLOTS];
|
|
int mobile;
|
|
|
|
u16 cas_supported;
|
|
/* tLatencies are in units of ns, scaled by x256 */
|
|
u32 tCK;
|
|
u32 tAA;
|
|
u32 tWR;
|
|
u32 tRCD;
|
|
u32 tRRD;
|
|
u32 tRP;
|
|
u32 tRAS;
|
|
u32 tRFC;
|
|
u32 tWTR;
|
|
u32 tRTP;
|
|
u32 tFAW;
|
|
/* Latencies in terms of clock cycles
|
|
* They are saved separately as they are needed for DRAM MRS commands*/
|
|
u8 CAS; /* CAS read latency */
|
|
u8 CWL; /* CAS write latency */
|
|
|
|
u32 tREFI;
|
|
u32 tMOD;
|
|
u32 tXSOffset;
|
|
u32 tWLO;
|
|
u32 tCKE;
|
|
u32 tXPDLL;
|
|
u32 tXP;
|
|
u32 tAONPD;
|
|
|
|
u16 reg_5064b0; /* bits 0-11. */
|
|
|
|
u8 rankmap[NUM_CHANNELS];
|
|
int ref_card_offset[NUM_CHANNELS];
|
|
u32 mad_dimm[NUM_CHANNELS];
|
|
int channel_size_mb[NUM_CHANNELS];
|
|
u32 cmd_stretch[NUM_CHANNELS];
|
|
|
|
int reg_c14_offset;
|
|
int reg_320c_range_threshold;
|
|
|
|
int edge_offset[3];
|
|
int timC_offset[3];
|
|
|
|
int extended_temperature_range;
|
|
int auto_self_refresh;
|
|
|
|
int rank_mirror[NUM_CHANNELS][NUM_SLOTRANKS];
|
|
|
|
struct ram_rank_timings timings[NUM_CHANNELS][NUM_SLOTRANKS];
|
|
|
|
dimm_info info;
|
|
} ramctr_timing;
|
|
|
|
#define SOUTHBRIDGE PCI_DEV(0, 0x1f, 0)
|
|
#define NORTHBRIDGE PCI_DEV(0, 0x0, 0)
|
|
#define FOR_ALL_LANES for (lane = 0; lane < NUM_LANES; lane++)
|
|
#define FOR_ALL_CHANNELS for (channel = 0; channel < NUM_CHANNELS; channel++)
|
|
#define FOR_ALL_POPULATED_RANKS for (slotrank = 0; slotrank < NUM_SLOTRANKS; slotrank++) if (ctrl->rankmap[channel] & (1 << slotrank))
|
|
#define FOR_ALL_POPULATED_CHANNELS for (channel = 0; channel < NUM_CHANNELS; channel++) if (ctrl->rankmap[channel])
|
|
#define MAX_EDGE_TIMING 71
|
|
#define MAX_TIMC 127
|
|
#define MAX_TIMB 511
|
|
#define MAX_TIMA 127
|
|
|
|
#define MAKE_ERR ((channel<<16)|(slotrank<<8)|1)
|
|
#define GET_ERR_CHANNEL(x) (x>>16)
|
|
|
|
#define MC_BIOS_REQ 0x5e00
|
|
#define MC_BIOS_DATA 0x5e04
|
|
|
|
static void program_timings(ramctr_timing * ctrl, int channel);
|
|
static unsigned int get_mmio_size(void);
|
|
|
|
static const char *ecc_decoder[] = {
|
|
"inactive",
|
|
"active on IO",
|
|
"disabled on IO",
|
|
"active"
|
|
};
|
|
|
|
static void wait_txt_clear(void)
|
|
{
|
|
struct cpuid_result cp;
|
|
|
|
cp = cpuid_ext(0x1, 0x0);
|
|
/* Check if TXT is supported? */
|
|
if (!(cp.ecx & 0x40))
|
|
return;
|
|
/* Some TXT public bit. */
|
|
if (!(read32((void *)0xfed30010) & 1))
|
|
return;
|
|
/* Wait for TXT clear. */
|
|
while (!(read8((void *)0xfed40000) & (1 << 7)));
|
|
}
|
|
|
|
static void sfence(void)
|
|
{
|
|
asm volatile ("sfence");
|
|
}
|
|
|
|
static void toggle_io_reset(void) {
|
|
/* toggle IO reset bit */
|
|
u32 r32 = read32(DEFAULT_MCHBAR + 0x5030);
|
|
write32(DEFAULT_MCHBAR + 0x5030, r32 | 0x20);
|
|
udelay(1);
|
|
write32(DEFAULT_MCHBAR + 0x5030, r32 & ~0x20);
|
|
udelay(1);
|
|
}
|
|
|
|
/*
|
|
* Disable a channel in ramctr_timing.
|
|
*/
|
|
static void disable_channel(ramctr_timing *ctrl, int channel) {
|
|
ctrl->rankmap[channel] = 0;
|
|
memset(&ctrl->rank_mirror[channel][0], 0, sizeof(ctrl->rank_mirror[0]));
|
|
ctrl->channel_size_mb[channel] = 0;
|
|
ctrl->cmd_stretch[channel] = 0;
|
|
ctrl->mad_dimm[channel] = 0;
|
|
memset(&ctrl->timings[channel][0], 0, sizeof(ctrl->timings[0]));
|
|
memset(&ctrl->info.dimm[channel][0], 0, sizeof(ctrl->info.dimm[0]));
|
|
}
|
|
|
|
/*
|
|
* Fill cbmem with information for SMBIOS type 17.
|
|
*/
|
|
static void fill_smbios17(ramctr_timing *ctrl)
|
|
{
|
|
struct memory_info *mem_info;
|
|
int channel, slot;
|
|
struct dimm_info *dimm;
|
|
uint16_t ddr_freq;
|
|
dimm_info *info = &ctrl->info;
|
|
|
|
ddr_freq = (1000 << 8) / ctrl->tCK;
|
|
|
|
/*
|
|
* Allocate CBMEM area for DIMM information used to populate SMBIOS
|
|
* table 17
|
|
*/
|
|
mem_info = cbmem_add(CBMEM_ID_MEMINFO, sizeof(*mem_info));
|
|
printk(BIOS_DEBUG, "CBMEM entry for DIMM info: 0x%p\n", mem_info);
|
|
if (!mem_info)
|
|
return;
|
|
|
|
memset(mem_info, 0, sizeof(*mem_info));
|
|
|
|
FOR_ALL_CHANNELS for (slot = 0; slot < NUM_SLOTS; slot++) {
|
|
dimm = &mem_info->dimm[mem_info->dimm_cnt];
|
|
if (info->dimm[channel][slot].size_mb) {
|
|
dimm->ddr_type = MEMORY_TYPE_DDR3;
|
|
dimm->ddr_frequency = ddr_freq;
|
|
dimm->dimm_size = info->dimm[channel][slot].size_mb;
|
|
dimm->channel_num = channel;
|
|
dimm->rank_per_dimm = info->dimm[channel][slot].ranks;
|
|
dimm->dimm_num = slot;
|
|
memcpy(dimm->module_part_number,
|
|
info->dimm[channel][slot].part_number, 16);
|
|
dimm->mod_id = info->dimm[channel][slot].manufacturer_id;
|
|
dimm->mod_type = info->dimm[channel][slot].dimm_type;
|
|
dimm->bus_width = info->dimm[channel][slot].width;
|
|
mem_info->dimm_cnt++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Dump in the log memory controller configuration as read from the memory
|
|
* controller registers.
|
|
*/
|
|
static void report_memory_config(void)
|
|
{
|
|
u32 addr_decoder_common, addr_decode_ch[NUM_CHANNELS];
|
|
int i;
|
|
|
|
addr_decoder_common = MCHBAR32(0x5000);
|
|
addr_decode_ch[0] = MCHBAR32(0x5004);
|
|
addr_decode_ch[1] = MCHBAR32(0x5008);
|
|
|
|
printk(BIOS_DEBUG, "memcfg DDR3 clock %d MHz\n",
|
|
(MCHBAR32(MC_BIOS_DATA) * 13333 * 2 + 50) / 100);
|
|
printk(BIOS_DEBUG, "memcfg channel assignment: A: %d, B % d, C % d\n",
|
|
addr_decoder_common & 3, (addr_decoder_common >> 2) & 3,
|
|
(addr_decoder_common >> 4) & 3);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(addr_decode_ch); i++) {
|
|
u32 ch_conf = addr_decode_ch[i];
|
|
printk(BIOS_DEBUG, "memcfg channel[%d] config (%8.8x):\n", i,
|
|
ch_conf);
|
|
printk(BIOS_DEBUG, " ECC %s\n",
|
|
ecc_decoder[(ch_conf >> 24) & 3]);
|
|
printk(BIOS_DEBUG, " enhanced interleave mode %s\n",
|
|
((ch_conf >> 22) & 1) ? "on" : "off");
|
|
printk(BIOS_DEBUG, " rank interleave %s\n",
|
|
((ch_conf >> 21) & 1) ? "on" : "off");
|
|
printk(BIOS_DEBUG, " DIMMA %d MB width x%d %s rank%s\n",
|
|
((ch_conf >> 0) & 0xff) * 256,
|
|
((ch_conf >> 19) & 1) ? 16 : 8,
|
|
((ch_conf >> 17) & 1) ? "dual" : "single",
|
|
((ch_conf >> 16) & 1) ? "" : ", selected");
|
|
printk(BIOS_DEBUG, " DIMMB %d MB width x%d %s rank%s\n",
|
|
((ch_conf >> 8) & 0xff) * 256,
|
|
((ch_conf >> 20) & 1) ? 16 : 8,
|
|
((ch_conf >> 18) & 1) ? "dual" : "single",
|
|
((ch_conf >> 16) & 1) ? ", selected" : "");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return CRC16 match for all SPDs.
|
|
*/
|
|
static int verify_crc16_spds_ddr3(spd_raw_data *spd, ramctr_timing *ctrl)
|
|
{
|
|
int channel, slot, spd_slot;
|
|
int match = 1;
|
|
|
|
FOR_ALL_CHANNELS {
|
|
for (slot = 0; slot < NUM_SLOTS; slot++) {
|
|
spd_slot = 2 * channel + slot;
|
|
match &= ctrl->spd_crc[channel][slot] ==
|
|
spd_ddr3_calc_unique_crc(spd[spd_slot], sizeof(spd_raw_data));
|
|
}
|
|
}
|
|
return match;
|
|
}
|
|
|
|
void read_spd(spd_raw_data * spd, u8 addr)
|
|
{
|
|
int j;
|
|
for (j = 0; j < 256; j++)
|
|
(*spd)[j] = do_smbus_read_byte(SMBUS_IO_BASE, addr, j);
|
|
}
|
|
|
|
static void dram_find_spds_ddr3(spd_raw_data *spd, ramctr_timing *ctrl)
|
|
{
|
|
int dimms = 0, dimms_on_channel;
|
|
int channel, slot, spd_slot;
|
|
dimm_info *dimm = &ctrl->info;
|
|
|
|
memset (ctrl->rankmap, 0, sizeof(ctrl->rankmap));
|
|
|
|
ctrl->extended_temperature_range = 1;
|
|
ctrl->auto_self_refresh = 1;
|
|
|
|
FOR_ALL_CHANNELS {
|
|
ctrl->channel_size_mb[channel] = 0;
|
|
|
|
dimms_on_channel = 0;
|
|
/* count dimms on channel */
|
|
for (slot = 0; slot < NUM_SLOTS; slot++) {
|
|
spd_slot = 2 * channel + slot;
|
|
spd_decode_ddr3(&dimm->dimm[channel][slot], spd[spd_slot]);
|
|
if (dimm->dimm[channel][slot].dram_type == SPD_MEMORY_TYPE_SDRAM_DDR3)
|
|
dimms_on_channel++;
|
|
}
|
|
|
|
for (slot = 0; slot < NUM_SLOTS; slot++) {
|
|
spd_slot = 2 * channel + slot;
|
|
/* search for XMP profile */
|
|
spd_xmp_decode_ddr3(&dimm->dimm[channel][slot],
|
|
spd[spd_slot],
|
|
DDR3_XMP_PROFILE_1);
|
|
|
|
if (dimm->dimm[channel][slot].dram_type != SPD_MEMORY_TYPE_SDRAM_DDR3) {
|
|
printram("No valid XMP profile found.\n");
|
|
spd_decode_ddr3(&dimm->dimm[channel][slot], spd[spd_slot]);
|
|
} else if (dimms_on_channel > dimm->dimm[channel][slot].dimms_per_channel) {
|
|
printram("XMP profile supports %u DIMMs, but %u DIMMs are installed.\n",
|
|
dimm->dimm[channel][slot].dimms_per_channel,
|
|
dimms_on_channel);
|
|
spd_decode_ddr3(&dimm->dimm[channel][slot], spd[spd_slot]);
|
|
} else if (dimm->dimm[channel][slot].voltage != 1500) {
|
|
/* TODO: support other DDR3 voltage than 1500mV */
|
|
printram("XMP profile's requested %u mV is unsupported.\n",
|
|
dimm->dimm[channel][slot].voltage);
|
|
spd_decode_ddr3(&dimm->dimm[channel][slot], spd[spd_slot]);
|
|
}
|
|
|
|
/* fill in CRC16 for MRC cache */
|
|
ctrl->spd_crc[channel][slot] =
|
|
spd_ddr3_calc_unique_crc(spd[spd_slot], sizeof(spd_raw_data));
|
|
|
|
if (dimm->dimm[channel][slot].dram_type != SPD_MEMORY_TYPE_SDRAM_DDR3) {
|
|
// set dimm invalid
|
|
dimm->dimm[channel][slot].ranks = 0;
|
|
dimm->dimm[channel][slot].size_mb = 0;
|
|
continue;
|
|
}
|
|
|
|
dram_print_spd_ddr3(&dimm->dimm[channel][slot]);
|
|
dimms++;
|
|
ctrl->rank_mirror[channel][slot * 2] = 0;
|
|
ctrl->rank_mirror[channel][slot * 2 + 1] = dimm->dimm[channel][slot].flags.pins_mirrored;
|
|
ctrl->channel_size_mb[channel] += dimm->dimm[channel][slot].size_mb;
|
|
|
|
ctrl->auto_self_refresh &= dimm->dimm[channel][slot].flags.asr;
|
|
ctrl->extended_temperature_range &= dimm->dimm[channel][slot].flags.ext_temp_refresh;
|
|
|
|
ctrl->rankmap[channel] |= ((1 << dimm->dimm[channel][slot].ranks) - 1) << (2 * slot);
|
|
printk(BIOS_DEBUG, "channel[%d] rankmap = 0x%x\n",
|
|
channel, ctrl->rankmap[channel]);
|
|
}
|
|
if ((ctrl->rankmap[channel] & 3) && (ctrl->rankmap[channel] & 0xc)
|
|
&& dimm->dimm[channel][0].reference_card <= 5 && dimm->dimm[channel][1].reference_card <= 5) {
|
|
const int ref_card_offset_table[6][6] = {
|
|
{ 0, 0, 0, 0, 2, 2, },
|
|
{ 0, 0, 0, 0, 2, 2, },
|
|
{ 0, 0, 0, 0, 2, 2, },
|
|
{ 0, 0, 0, 0, 1, 1, },
|
|
{ 2, 2, 2, 1, 0, 0, },
|
|
{ 2, 2, 2, 1, 0, 0, },
|
|
};
|
|
ctrl->ref_card_offset[channel] = ref_card_offset_table[dimm->dimm[channel][0].reference_card]
|
|
[dimm->dimm[channel][1].reference_card];
|
|
} else
|
|
ctrl->ref_card_offset[channel] = 0;
|
|
}
|
|
|
|
if (!dimms)
|
|
die("No DIMMs were found");
|
|
}
|
|
|
|
static void dram_find_common_params(ramctr_timing *ctrl)
|
|
{
|
|
size_t valid_dimms;
|
|
int channel, slot;
|
|
dimm_info *dimms = &ctrl->info;
|
|
|
|
ctrl->cas_supported = 0xff;
|
|
valid_dimms = 0;
|
|
FOR_ALL_CHANNELS for (slot = 0; slot < 2; slot++) {
|
|
const dimm_attr *dimm = &dimms->dimm[channel][slot];
|
|
if (dimm->dram_type != SPD_MEMORY_TYPE_SDRAM_DDR3)
|
|
continue;
|
|
valid_dimms++;
|
|
|
|
/* Find all possible CAS combinations */
|
|
ctrl->cas_supported &= dimm->cas_supported;
|
|
|
|
/* Find the smallest common latencies supported by all DIMMs */
|
|
ctrl->tCK = MAX(ctrl->tCK, dimm->tCK);
|
|
ctrl->tAA = MAX(ctrl->tAA, dimm->tAA);
|
|
ctrl->tWR = MAX(ctrl->tWR, dimm->tWR);
|
|
ctrl->tRCD = MAX(ctrl->tRCD, dimm->tRCD);
|
|
ctrl->tRRD = MAX(ctrl->tRRD, dimm->tRRD);
|
|
ctrl->tRP = MAX(ctrl->tRP, dimm->tRP);
|
|
ctrl->tRAS = MAX(ctrl->tRAS, dimm->tRAS);
|
|
ctrl->tRFC = MAX(ctrl->tRFC, dimm->tRFC);
|
|
ctrl->tWTR = MAX(ctrl->tWTR, dimm->tWTR);
|
|
ctrl->tRTP = MAX(ctrl->tRTP, dimm->tRTP);
|
|
ctrl->tFAW = MAX(ctrl->tFAW, dimm->tFAW);
|
|
}
|
|
|
|
if (!ctrl->cas_supported)
|
|
die("Unsupported DIMM combination. "
|
|
"DIMMS do not support common CAS latency");
|
|
if (!valid_dimms)
|
|
die("No valid DIMMs found");
|
|
}
|
|
|
|
/* CAS write latency. To be programmed in MR2.
|
|
* See DDR3 SPEC for MR2 documentation. */
|
|
static u8 get_CWL(u32 tCK)
|
|
{
|
|
/* Get CWL based on tCK using the following rule: */
|
|
switch (tCK) {
|
|
case TCK_1333MHZ:
|
|
return 12;
|
|
case TCK_1200MHZ:
|
|
case TCK_1100MHZ:
|
|
return 11;
|
|
case TCK_1066MHZ:
|
|
case TCK_1000MHZ:
|
|
return 10;
|
|
case TCK_933MHZ:
|
|
case TCK_900MHZ:
|
|
return 9;
|
|
case TCK_800MHZ:
|
|
case TCK_700MHZ:
|
|
return 8;
|
|
case TCK_666MHZ:
|
|
return 7;
|
|
case TCK_533MHZ:
|
|
return 6;
|
|
default:
|
|
return 5;
|
|
}
|
|
}
|
|
|
|
/* Frequency multiplier. */
|
|
static u32 get_FRQ(u32 tCK)
|
|
{
|
|
u32 FRQ;
|
|
FRQ = 256000 / (tCK * BASEFREQ);
|
|
if (FRQ > 8)
|
|
return 8;
|
|
if (FRQ < 3)
|
|
return 3;
|
|
return FRQ;
|
|
}
|
|
|
|
static u32 get_REFI(u32 tCK)
|
|
{
|
|
/* Get REFI based on MCU frequency using the following rule:
|
|
* _________________________________________
|
|
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
|
|
* REFI: | 3120 | 4160 | 5200 | 6240 | 7280 | 8320 |
|
|
*/
|
|
static const u32 frq_refi_map[] =
|
|
{ 3120, 4160, 5200, 6240, 7280, 8320 };
|
|
return frq_refi_map[get_FRQ(tCK) - 3];
|
|
}
|
|
|
|
static u8 get_XSOffset(u32 tCK)
|
|
{
|
|
/* Get XSOffset based on MCU frequency using the following rule:
|
|
* _________________________
|
|
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
|
|
* XSOffset : | 4 | 6 | 7 | 8 | 10 | 11 |
|
|
*/
|
|
static const u8 frq_xs_map[] = { 4, 6, 7, 8, 10, 11 };
|
|
return frq_xs_map[get_FRQ(tCK) - 3];
|
|
}
|
|
|
|
static u8 get_MOD(u32 tCK)
|
|
{
|
|
/* Get MOD based on MCU frequency using the following rule:
|
|
* _____________________________
|
|
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
|
|
* MOD : | 12 | 12 | 12 | 12 | 15 | 16 |
|
|
*/
|
|
static const u8 frq_mod_map[] = { 12, 12, 12, 12, 15, 16 };
|
|
return frq_mod_map[get_FRQ(tCK) - 3];
|
|
}
|
|
|
|
static u8 get_WLO(u32 tCK)
|
|
{
|
|
/* Get WLO based on MCU frequency using the following rule:
|
|
* _______________________
|
|
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
|
|
* WLO : | 4 | 5 | 6 | 6 | 8 | 8 |
|
|
*/
|
|
static const u8 frq_wlo_map[] = { 4, 5, 6, 6, 8, 8 };
|
|
return frq_wlo_map[get_FRQ(tCK) - 3];
|
|
}
|
|
|
|
static u8 get_CKE(u32 tCK)
|
|
{
|
|
/* Get CKE based on MCU frequency using the following rule:
|
|
* _______________________
|
|
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
|
|
* CKE : | 3 | 3 | 4 | 4 | 5 | 6 |
|
|
*/
|
|
static const u8 frq_cke_map[] = { 3, 3, 4, 4, 5, 6 };
|
|
return frq_cke_map[get_FRQ(tCK) - 3];
|
|
}
|
|
|
|
static u8 get_XPDLL(u32 tCK)
|
|
{
|
|
/* Get XPDLL based on MCU frequency using the following rule:
|
|
* _____________________________
|
|
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
|
|
* XPDLL : | 10 | 13 | 16 | 20 | 23 | 26 |
|
|
*/
|
|
static const u8 frq_xpdll_map[] = { 10, 13, 16, 20, 23, 26 };
|
|
return frq_xpdll_map[get_FRQ(tCK) - 3];
|
|
}
|
|
|
|
static u8 get_XP(u32 tCK)
|
|
{
|
|
/* Get XP based on MCU frequency using the following rule:
|
|
* _______________________
|
|
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
|
|
* XP : | 3 | 4 | 4 | 5 | 6 | 7 |
|
|
*/
|
|
static const u8 frq_xp_map[] = { 3, 4, 4, 5, 6, 7 };
|
|
return frq_xp_map[get_FRQ(tCK) - 3];
|
|
}
|
|
|
|
static u8 get_AONPD(u32 tCK)
|
|
{
|
|
/* Get AONPD based on MCU frequency using the following rule:
|
|
* ________________________
|
|
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
|
|
* AONPD : | 4 | 5 | 6 | 8 | 8 | 10 |
|
|
*/
|
|
static const u8 frq_aonpd_map[] = { 4, 5, 6, 8, 8, 10 };
|
|
return frq_aonpd_map[get_FRQ(tCK) - 3];
|
|
}
|
|
|
|
static u32 get_COMP2(u32 tCK)
|
|
{
|
|
/* Get COMP2 based on MCU frequency using the following rule:
|
|
* ___________________________________________________________
|
|
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
|
|
* COMP : | D6BEDCC | CE7C34C | CA57A4C | C6369CC | C42514C | C21410C |
|
|
*/
|
|
static const u32 frq_comp2_map[] = { 0xD6BEDCC, 0xCE7C34C, 0xCA57A4C,
|
|
0xC6369CC, 0xC42514C, 0xC21410C
|
|
};
|
|
return frq_comp2_map[get_FRQ(tCK) - 3];
|
|
}
|
|
|
|
static u32 get_XOVER_CLK(u8 rankmap)
|
|
{
|
|
return rankmap << 24;
|
|
}
|
|
|
|
static u32 get_XOVER_CMD(u8 rankmap)
|
|
{
|
|
u32 reg;
|
|
|
|
// enable xover cmd
|
|
reg = 0x4000;
|
|
|
|
// enable xover ctl
|
|
if (rankmap & 0x3)
|
|
reg |= 0x20000;
|
|
|
|
if (rankmap & 0xc)
|
|
reg |= 0x4000000;
|
|
|
|
return reg;
|
|
}
|
|
|
|
static void dram_timing(ramctr_timing * ctrl)
|
|
{
|
|
u8 val;
|
|
u32 val32;
|
|
|
|
/* Maximum supported DDR3 frequency is 1066MHz (DDR3 2133) so make sure
|
|
* we cap it if we have faster DIMMs.
|
|
* Then, align it to the closest JEDEC standard frequency */
|
|
if (ctrl->tCK <= TCK_1066MHZ) {
|
|
ctrl->tCK = TCK_1066MHZ;
|
|
ctrl->edge_offset[0] = 16;
|
|
ctrl->edge_offset[1] = 7;
|
|
ctrl->edge_offset[2] = 7;
|
|
ctrl->timC_offset[0] = 18;
|
|
ctrl->timC_offset[1] = 7;
|
|
ctrl->timC_offset[2] = 7;
|
|
ctrl->reg_320c_range_threshold = 13;
|
|
} else if (ctrl->tCK <= TCK_933MHZ) {
|
|
ctrl->tCK = TCK_933MHZ;
|
|
ctrl->edge_offset[0] = 14;
|
|
ctrl->edge_offset[1] = 6;
|
|
ctrl->edge_offset[2] = 6;
|
|
ctrl->timC_offset[0] = 15;
|
|
ctrl->timC_offset[1] = 6;
|
|
ctrl->timC_offset[2] = 6;
|
|
ctrl->reg_320c_range_threshold = 15;
|
|
} else if (ctrl->tCK <= TCK_800MHZ) {
|
|
ctrl->tCK = TCK_800MHZ;
|
|
ctrl->edge_offset[0] = 13;
|
|
ctrl->edge_offset[1] = 5;
|
|
ctrl->edge_offset[2] = 5;
|
|
ctrl->timC_offset[0] = 14;
|
|
ctrl->timC_offset[1] = 5;
|
|
ctrl->timC_offset[2] = 5;
|
|
ctrl->reg_320c_range_threshold = 15;
|
|
} else if (ctrl->tCK <= TCK_666MHZ) {
|
|
ctrl->tCK = TCK_666MHZ;
|
|
ctrl->edge_offset[0] = 10;
|
|
ctrl->edge_offset[1] = 4;
|
|
ctrl->edge_offset[2] = 4;
|
|
ctrl->timC_offset[0] = 11;
|
|
ctrl->timC_offset[1] = 4;
|
|
ctrl->timC_offset[2] = 4;
|
|
ctrl->reg_320c_range_threshold = 16;
|
|
} else if (ctrl->tCK <= TCK_533MHZ) {
|
|
ctrl->tCK = TCK_533MHZ;
|
|
ctrl->edge_offset[0] = 8;
|
|
ctrl->edge_offset[1] = 3;
|
|
ctrl->edge_offset[2] = 3;
|
|
ctrl->timC_offset[0] = 9;
|
|
ctrl->timC_offset[1] = 3;
|
|
ctrl->timC_offset[2] = 3;
|
|
ctrl->reg_320c_range_threshold = 17;
|
|
} else {
|
|
ctrl->tCK = TCK_400MHZ;
|
|
ctrl->edge_offset[0] = 6;
|
|
ctrl->edge_offset[1] = 2;
|
|
ctrl->edge_offset[2] = 2;
|
|
ctrl->timC_offset[0] = 6;
|
|
ctrl->timC_offset[1] = 2;
|
|
ctrl->timC_offset[2] = 2;
|
|
ctrl->reg_320c_range_threshold = 17;
|
|
}
|
|
|
|
/* Initial phase between CLK/CMD pins */
|
|
ctrl->reg_c14_offset = (256000 / ctrl->tCK) / 66;
|
|
|
|
/* DLL_CONFIG_MDLL_W_TIMER */
|
|
ctrl->reg_5064b0 = (128000 / ctrl->tCK) + 3;
|
|
|
|
val32 = (1000 << 8) / ctrl->tCK;
|
|
printk(BIOS_DEBUG, "Selected DRAM frequency: %u MHz\n", val32);
|
|
|
|
/* Find CAS latency */
|
|
val = (ctrl->tAA + ctrl->tCK - 1) / ctrl->tCK;
|
|
printk(BIOS_DEBUG, "Minimum CAS latency : %uT\n", val);
|
|
/* Find lowest supported CAS latency that satisfies the minimum value */
|
|
while (!((ctrl->cas_supported >> (val - 4)) & 1)
|
|
&& (ctrl->cas_supported >> (val - 4))) {
|
|
val++;
|
|
}
|
|
/* Is CAS supported */
|
|
if (!(ctrl->cas_supported & (1 << (val - 4)))) {
|
|
printk(BIOS_ERR, "CAS %uT not supported. ", val);
|
|
val = 18;
|
|
/* Find highest supported CAS latency */
|
|
while (!((ctrl->cas_supported >> (val - 4)) & 1))
|
|
val--;
|
|
|
|
printk(BIOS_ERR, "Using CAS %uT instead.\n", val);
|
|
}
|
|
|
|
printk(BIOS_DEBUG, "Selected CAS latency : %uT\n", val);
|
|
ctrl->CAS = val;
|
|
ctrl->CWL = get_CWL(ctrl->tCK);
|
|
printk(BIOS_DEBUG, "Selected CWL latency : %uT\n", ctrl->CWL);
|
|
|
|
/* Find tRCD */
|
|
ctrl->tRCD = (ctrl->tRCD + ctrl->tCK - 1) / ctrl->tCK;
|
|
printk(BIOS_DEBUG, "Selected tRCD : %uT\n", ctrl->tRCD);
|
|
|
|
ctrl->tRP = (ctrl->tRP + ctrl->tCK - 1) / ctrl->tCK;
|
|
printk(BIOS_DEBUG, "Selected tRP : %uT\n", ctrl->tRP);
|
|
|
|
/* Find tRAS */
|
|
ctrl->tRAS = (ctrl->tRAS + ctrl->tCK - 1) / ctrl->tCK;
|
|
printk(BIOS_DEBUG, "Selected tRAS : %uT\n", ctrl->tRAS);
|
|
|
|
/* Find tWR */
|
|
ctrl->tWR = (ctrl->tWR + ctrl->tCK - 1) / ctrl->tCK;
|
|
printk(BIOS_DEBUG, "Selected tWR : %uT\n", ctrl->tWR);
|
|
|
|
/* Find tFAW */
|
|
ctrl->tFAW = (ctrl->tFAW + ctrl->tCK - 1) / ctrl->tCK;
|
|
printk(BIOS_DEBUG, "Selected tFAW : %uT\n", ctrl->tFAW);
|
|
|
|
/* Find tRRD */
|
|
ctrl->tRRD = (ctrl->tRRD + ctrl->tCK - 1) / ctrl->tCK;
|
|
printk(BIOS_DEBUG, "Selected tRRD : %uT\n", ctrl->tRRD);
|
|
|
|
/* Find tRTP */
|
|
ctrl->tRTP = (ctrl->tRTP + ctrl->tCK - 1) / ctrl->tCK;
|
|
printk(BIOS_DEBUG, "Selected tRTP : %uT\n", ctrl->tRTP);
|
|
|
|
/* Find tWTR */
|
|
ctrl->tWTR = (ctrl->tWTR + ctrl->tCK - 1) / ctrl->tCK;
|
|
printk(BIOS_DEBUG, "Selected tWTR : %uT\n", ctrl->tWTR);
|
|
|
|
/* Refresh-to-Active or Refresh-to-Refresh (tRFC) */
|
|
ctrl->tRFC = (ctrl->tRFC + ctrl->tCK - 1) / ctrl->tCK;
|
|
printk(BIOS_DEBUG, "Selected tRFC : %uT\n", ctrl->tRFC);
|
|
|
|
ctrl->tREFI = get_REFI(ctrl->tCK);
|
|
ctrl->tMOD = get_MOD(ctrl->tCK);
|
|
ctrl->tXSOffset = get_XSOffset(ctrl->tCK);
|
|
ctrl->tWLO = get_WLO(ctrl->tCK);
|
|
ctrl->tCKE = get_CKE(ctrl->tCK);
|
|
ctrl->tXPDLL = get_XPDLL(ctrl->tCK);
|
|
ctrl->tXP = get_XP(ctrl->tCK);
|
|
ctrl->tAONPD = get_AONPD(ctrl->tCK);
|
|
}
|
|
|
|
static void dram_freq(ramctr_timing * ctrl)
|
|
{
|
|
if (ctrl->tCK > TCK_400MHZ) {
|
|
printk (BIOS_ERR, "DRAM frequency is under lowest supported frequency (400 MHz). Increasing to 400 MHz as last resort");
|
|
ctrl->tCK = TCK_400MHZ;
|
|
}
|
|
while (1) {
|
|
u8 val2;
|
|
u32 reg1 = 0;
|
|
|
|
/* Step 1 - Set target PCU frequency */
|
|
|
|
if (ctrl->tCK <= TCK_1066MHZ) {
|
|
ctrl->tCK = TCK_1066MHZ;
|
|
} else if (ctrl->tCK <= TCK_933MHZ) {
|
|
ctrl->tCK = TCK_933MHZ;
|
|
} else if (ctrl->tCK <= TCK_800MHZ) {
|
|
ctrl->tCK = TCK_800MHZ;
|
|
} else if (ctrl->tCK <= TCK_666MHZ) {
|
|
ctrl->tCK = TCK_666MHZ;
|
|
} else if (ctrl->tCK <= TCK_533MHZ) {
|
|
ctrl->tCK = TCK_533MHZ;
|
|
} else if (ctrl->tCK <= TCK_400MHZ) {
|
|
ctrl->tCK = TCK_400MHZ;
|
|
} else {
|
|
die ("No lock frequency found");
|
|
}
|
|
|
|
/* Frequency mulitplier. */
|
|
u32 FRQ = get_FRQ(ctrl->tCK);
|
|
|
|
/* The PLL will never lock if the required frequency is
|
|
* already set. Exit early to prevent a system hang.
|
|
*/
|
|
reg1 = MCHBAR32(MC_BIOS_DATA);
|
|
val2 = (u8) reg1;
|
|
if (val2)
|
|
return;
|
|
|
|
/* Step 2 - Select frequency in the MCU */
|
|
reg1 = FRQ;
|
|
reg1 |= 0x80000000; // set running bit
|
|
MCHBAR32(MC_BIOS_REQ) = reg1;
|
|
while (reg1 & 0x80000000) {
|
|
printk(BIOS_DEBUG, " PLL busy...");
|
|
reg1 = MCHBAR32(MC_BIOS_REQ);
|
|
}
|
|
printk(BIOS_DEBUG, "done\n");
|
|
|
|
/* Step 3 - Verify lock frequency */
|
|
reg1 = MCHBAR32(MC_BIOS_DATA);
|
|
val2 = (u8) reg1;
|
|
if (val2 >= FRQ) {
|
|
printk(BIOS_DEBUG, "MCU frequency is set at : %d MHz\n",
|
|
(1000 << 8) / ctrl->tCK);
|
|
return;
|
|
}
|
|
printk(BIOS_DEBUG, "PLL didn't lock. Retrying at lower frequency\n");
|
|
ctrl->tCK++;
|
|
}
|
|
}
|
|
|
|
static void dram_xover(ramctr_timing * ctrl)
|
|
{
|
|
u32 reg;
|
|
int channel;
|
|
|
|
FOR_ALL_CHANNELS {
|
|
// enable xover clk
|
|
reg = get_XOVER_CLK(ctrl->rankmap[channel]);
|
|
printram("XOVER CLK [%x] = %x\n", channel * 0x100 + 0xc14,
|
|
reg);
|
|
MCHBAR32(channel * 0x100 + 0xc14) = reg;
|
|
|
|
// enable xover ctl & xover cmd
|
|
reg = get_XOVER_CMD(ctrl->rankmap[channel]);
|
|
printram("XOVER CMD [%x] = %x\n", 0x100 * channel + 0x320c,
|
|
reg);
|
|
MCHBAR32(0x100 * channel + 0x320c) = reg;
|
|
}
|
|
}
|
|
|
|
static void dram_timing_regs(ramctr_timing * ctrl)
|
|
{
|
|
u32 reg, addr, val32, cpu, stretch;
|
|
struct cpuid_result cpures;
|
|
int channel;
|
|
|
|
FOR_ALL_CHANNELS {
|
|
// DBP
|
|
reg = 0;
|
|
reg |= ctrl->tRCD;
|
|
reg |= (ctrl->tRP << 4);
|
|
reg |= (ctrl->CAS << 8);
|
|
reg |= (ctrl->CWL << 12);
|
|
reg |= (ctrl->tRAS << 16);
|
|
printram("DBP [%x] = %x\n", 0x400 * channel + 0x4000, reg);
|
|
MCHBAR32(0x400 * channel + 0x4000) = reg;
|
|
|
|
// RAP
|
|
reg = 0;
|
|
reg |= ctrl->tRRD;
|
|
reg |= (ctrl->tRTP << 4);
|
|
reg |= (ctrl->tCKE << 8);
|
|
reg |= (ctrl->tWTR << 12);
|
|
reg |= (ctrl->tFAW << 16);
|
|
reg |= (ctrl->tWR << 24);
|
|
reg |= (3 << 30);
|
|
printram("RAP [%x] = %x\n", 0x400 * channel + 0x4004, reg);
|
|
MCHBAR32(0x400 * channel + 0x4004) = reg;
|
|
|
|
// OTHP
|
|
addr = 0x400 * channel + 0x400c;
|
|
reg = 0;
|
|
reg |= ctrl->tXPDLL;
|
|
reg |= (ctrl->tXP << 5);
|
|
reg |= (ctrl->tAONPD << 8);
|
|
reg |= 0xa0000;
|
|
printram("OTHP [%x] = %x\n", addr, reg);
|
|
MCHBAR32(addr) = reg;
|
|
|
|
MCHBAR32(0x400 * channel + 0x4014) = 0;
|
|
|
|
MCHBAR32(addr) |= 0x00020000;
|
|
|
|
// ODT stretch
|
|
reg = 0;
|
|
|
|
cpures = cpuid(1);
|
|
cpu = cpures.eax;
|
|
if (IS_IVY_CPU(cpu)
|
|
|| (IS_SANDY_CPU(cpu) && IS_SANDY_CPU_D2(cpu))) {
|
|
stretch = 2;
|
|
addr = 0x400 * channel + 0x400c;
|
|
printram("ODT stretch [%x] = %x\n",
|
|
0x400 * channel + 0x400c, reg);
|
|
reg = MCHBAR32(addr);
|
|
|
|
if (((ctrl->rankmap[channel] & 3) == 0)
|
|
|| (ctrl->rankmap[channel] & 0xc) == 0) {
|
|
|
|
// Rank 0 - operate on rank 2
|
|
reg = (reg & ~0xc0000) | (stretch << 18);
|
|
|
|
// Rank 2 - operate on rank 0
|
|
reg = (reg & ~0x30000) | (stretch << 16);
|
|
|
|
printram("ODT stretch [%x] = %x\n", addr, reg);
|
|
MCHBAR32(addr) = reg;
|
|
}
|
|
|
|
} else if (IS_SANDY_CPU(cpu) && IS_SANDY_CPU_C(cpu)) {
|
|
stretch = 3;
|
|
addr = 0x400 * channel + 0x401c;
|
|
reg = MCHBAR32(addr);
|
|
|
|
if (((ctrl->rankmap[channel] & 3) == 0)
|
|
|| (ctrl->rankmap[channel] & 0xc) == 0) {
|
|
|
|
// Rank 0 - operate on rank 2
|
|
reg = (reg & ~0x3000) | (stretch << 12);
|
|
|
|
// Rank 2 - operate on rank 0
|
|
reg = (reg & ~0xc00) | (stretch << 10);
|
|
|
|
printram("ODT stretch [%x] = %x\n", addr, reg);
|
|
MCHBAR32(addr) = reg;
|
|
}
|
|
} else {
|
|
stretch = 0;
|
|
}
|
|
|
|
// REFI
|
|
reg = 0;
|
|
val32 = ctrl->tREFI;
|
|
reg = (reg & ~0xffff) | val32;
|
|
val32 = ctrl->tRFC;
|
|
reg = (reg & ~0x1ff0000) | (val32 << 16);
|
|
val32 = (u32) (ctrl->tREFI * 9) / 1024;
|
|
reg = (reg & ~0xfe000000) | (val32 << 25);
|
|
printram("REFI [%x] = %x\n", 0x400 * channel + 0x4298,
|
|
reg);
|
|
MCHBAR32(0x400 * channel + 0x4298) = reg;
|
|
|
|
MCHBAR32(0x400 * channel + 0x4294) |= 0xff;
|
|
|
|
// SRFTP
|
|
reg = 0;
|
|
val32 = tDLLK;
|
|
reg = (reg & ~0xfff) | val32;
|
|
val32 = ctrl->tXSOffset;
|
|
reg = (reg & ~0xf000) | (val32 << 12);
|
|
val32 = tDLLK - ctrl->tXSOffset;
|
|
reg = (reg & ~0x3ff0000) | (val32 << 16);
|
|
val32 = ctrl->tMOD - 8;
|
|
reg = (reg & ~0xf0000000) | (val32 << 28);
|
|
printram("SRFTP [%x] = %x\n", 0x400 * channel + 0x42a4,
|
|
reg);
|
|
MCHBAR32(0x400 * channel + 0x42a4) = reg;
|
|
}
|
|
}
|
|
|
|
static void dram_dimm_mapping(ramctr_timing *ctrl)
|
|
{
|
|
u32 reg, val32;
|
|
int channel;
|
|
dimm_info *info = &ctrl->info;
|
|
|
|
FOR_ALL_CHANNELS {
|
|
dimm_attr *dimmA = 0;
|
|
dimm_attr *dimmB = 0;
|
|
reg = 0;
|
|
val32 = 0;
|
|
if (info->dimm[channel][0].size_mb >=
|
|
info->dimm[channel][1].size_mb) {
|
|
// dimm 0 is bigger, set it to dimmA
|
|
dimmA = &info->dimm[channel][0];
|
|
dimmB = &info->dimm[channel][1];
|
|
reg |= (0 << 16);
|
|
} else {
|
|
// dimm 1 is bigger, set it to dimmA
|
|
dimmA = &info->dimm[channel][1];
|
|
dimmB = &info->dimm[channel][0];
|
|
reg |= (1 << 16);
|
|
}
|
|
// dimmA
|
|
if (dimmA && (dimmA->ranks > 0)) {
|
|
val32 = dimmA->size_mb / 256;
|
|
reg = (reg & ~0xff) | val32;
|
|
val32 = dimmA->ranks - 1;
|
|
reg = (reg & ~0x20000) | (val32 << 17);
|
|
val32 = (dimmA->width / 8) - 1;
|
|
reg = (reg & ~0x80000) | (val32 << 19);
|
|
}
|
|
// dimmB
|
|
if (dimmB && (dimmB->ranks > 0)) {
|
|
val32 = dimmB->size_mb / 256;
|
|
reg = (reg & ~0xff00) | (val32 << 8);
|
|
val32 = dimmB->ranks - 1;
|
|
reg = (reg & ~0x40000) | (val32 << 18);
|
|
val32 = (dimmB->width / 8) - 1;
|
|
reg = (reg & ~0x100000) | (val32 << 20);
|
|
}
|
|
reg = (reg & ~0x200000) | (1 << 21); // rank interleave
|
|
reg = (reg & ~0x400000) | (1 << 22); // enhanced interleave
|
|
|
|
// Save MAD-DIMM register
|
|
if ((dimmA && (dimmA->ranks > 0))
|
|
|| (dimmB && (dimmB->ranks > 0))) {
|
|
ctrl->mad_dimm[channel] = reg;
|
|
} else {
|
|
ctrl->mad_dimm[channel] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void dram_dimm_set_mapping(ramctr_timing * ctrl)
|
|
{
|
|
int channel;
|
|
FOR_ALL_CHANNELS {
|
|
MCHBAR32(0x5004 + channel * 4) = ctrl->mad_dimm[channel];
|
|
}
|
|
}
|
|
|
|
static void dram_zones(ramctr_timing * ctrl, int training)
|
|
{
|
|
u32 reg, ch0size, ch1size;
|
|
u8 val;
|
|
reg = 0;
|
|
val = 0;
|
|
if (training) {
|
|
ch0size = ctrl->channel_size_mb[0] ? 256 : 0;
|
|
ch1size = ctrl->channel_size_mb[1] ? 256 : 0;
|
|
} else {
|
|
ch0size = ctrl->channel_size_mb[0];
|
|
ch1size = ctrl->channel_size_mb[1];
|
|
}
|
|
|
|
if (ch0size >= ch1size) {
|
|
reg = MCHBAR32(0x5014);
|
|
val = ch1size / 256;
|
|
reg = (reg & ~0xff000000) | val << 24;
|
|
reg = (reg & ~0xff0000) | (2 * val) << 16;
|
|
MCHBAR32(0x5014) = reg;
|
|
MCHBAR32(0x5000) = 0x24;
|
|
} else {
|
|
reg = MCHBAR32(0x5014);
|
|
val = ch0size / 256;
|
|
reg = (reg & ~0xff000000) | val << 24;
|
|
reg = (reg & ~0xff0000) | (2 * val) << 16;
|
|
MCHBAR32(0x5014) = reg;
|
|
MCHBAR32(0x5000) = 0x21;
|
|
}
|
|
}
|
|
|
|
static void dram_memorymap(ramctr_timing * ctrl, int me_uma_size)
|
|
{
|
|
u32 reg, val, reclaim;
|
|
u32 tom, gfxstolen, gttsize;
|
|
size_t tsegsize, mmiosize, toludbase, touudbase, gfxstolenbase, gttbase,
|
|
tsegbase, mestolenbase;
|
|
size_t tsegbasedelta, remapbase, remaplimit;
|
|
uint16_t ggc;
|
|
|
|
mmiosize = get_mmio_size();
|
|
|
|
ggc = pci_read_config16(NORTHBRIDGE, GGC);
|
|
if (!(ggc & 2)) {
|
|
gfxstolen = ((ggc >> 3) & 0x1f) * 32;
|
|
gttsize = ((ggc >> 8) & 0x3);
|
|
} else {
|
|
gfxstolen = 0;
|
|
gttsize = 0;
|
|
}
|
|
|
|
tsegsize = CONFIG_SMM_TSEG_SIZE >> 20;
|
|
|
|
tom = ctrl->channel_size_mb[0] + ctrl->channel_size_mb[1];
|
|
|
|
mestolenbase = tom - me_uma_size;
|
|
|
|
toludbase = MIN(4096 - mmiosize + gfxstolen + gttsize + tsegsize,
|
|
tom - me_uma_size);
|
|
gfxstolenbase = toludbase - gfxstolen;
|
|
gttbase = gfxstolenbase - gttsize;
|
|
|
|
tsegbase = gttbase - tsegsize;
|
|
|
|
// Round tsegbase down to nearest address aligned to tsegsize
|
|
tsegbasedelta = tsegbase & (tsegsize - 1);
|
|
tsegbase &= ~(tsegsize - 1);
|
|
|
|
gttbase -= tsegbasedelta;
|
|
gfxstolenbase -= tsegbasedelta;
|
|
toludbase -= tsegbasedelta;
|
|
|
|
// Test if it is possible to reclaim a hole in the RAM addressing
|
|
if (tom - me_uma_size > toludbase) {
|
|
// Reclaim is possible
|
|
reclaim = 1;
|
|
remapbase = MAX(4096, tom - me_uma_size);
|
|
remaplimit =
|
|
remapbase + MIN(4096, tom - me_uma_size) - toludbase - 1;
|
|
touudbase = remaplimit + 1;
|
|
} else {
|
|
// Reclaim not possible
|
|
reclaim = 0;
|
|
touudbase = tom - me_uma_size;
|
|
}
|
|
|
|
// Update memory map in pci-e configuration space
|
|
printk(BIOS_DEBUG, "Update PCI-E configuration space:\n");
|
|
|
|
// TOM (top of memory)
|
|
reg = pcie_read_config32(PCI_DEV(0, 0, 0), 0xa0);
|
|
val = tom & 0xfff;
|
|
reg = (reg & ~0xfff00000) | (val << 20);
|
|
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0xa0, reg);
|
|
pcie_write_config32(PCI_DEV(0, 0, 0), 0xa0, reg);
|
|
|
|
reg = pcie_read_config32(PCI_DEV(0, 0, 0), 0xa4);
|
|
val = tom & 0xfffff000;
|
|
reg = (reg & ~0x000fffff) | (val >> 12);
|
|
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0xa4, reg);
|
|
pcie_write_config32(PCI_DEV(0, 0, 0), 0xa4, reg);
|
|
|
|
// TOLUD (top of low used dram)
|
|
reg = pcie_read_config32(PCI_DEV(0, 0, 0), 0xbc);
|
|
val = toludbase & 0xfff;
|
|
reg = (reg & ~0xfff00000) | (val << 20);
|
|
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0xbc, reg);
|
|
pcie_write_config32(PCI_DEV(0, 0, 0), 0xbc, reg);
|
|
|
|
// TOUUD LSB (top of upper usable dram)
|
|
reg = pcie_read_config32(PCI_DEV(0, 0, 0), 0xa8);
|
|
val = touudbase & 0xfff;
|
|
reg = (reg & ~0xfff00000) | (val << 20);
|
|
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0xa8, reg);
|
|
pcie_write_config32(PCI_DEV(0, 0, 0), 0xa8, reg);
|
|
|
|
// TOUUD MSB
|
|
reg = pcie_read_config32(PCI_DEV(0, 0, 0), 0xac);
|
|
val = touudbase & 0xfffff000;
|
|
reg = (reg & ~0x000fffff) | (val >> 12);
|
|
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0xac, reg);
|
|
pcie_write_config32(PCI_DEV(0, 0, 0), 0xac, reg);
|
|
|
|
if (reclaim) {
|
|
// REMAP BASE
|
|
pcie_write_config32(PCI_DEV(0, 0, 0), 0x90, remapbase << 20);
|
|
pcie_write_config32(PCI_DEV(0, 0, 0), 0x94, remapbase >> 12);
|
|
|
|
// REMAP LIMIT
|
|
pcie_write_config32(PCI_DEV(0, 0, 0), 0x98, remaplimit << 20);
|
|
pcie_write_config32(PCI_DEV(0, 0, 0), 0x9c, remaplimit >> 12);
|
|
}
|
|
// TSEG
|
|
reg = pcie_read_config32(PCI_DEV(0, 0, 0), 0xb8);
|
|
val = tsegbase & 0xfff;
|
|
reg = (reg & ~0xfff00000) | (val << 20);
|
|
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0xb8, reg);
|
|
pcie_write_config32(PCI_DEV(0, 0, 0), 0xb8, reg);
|
|
|
|
// GFX stolen memory
|
|
reg = pcie_read_config32(PCI_DEV(0, 0, 0), 0xb0);
|
|
val = gfxstolenbase & 0xfff;
|
|
reg = (reg & ~0xfff00000) | (val << 20);
|
|
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0xb0, reg);
|
|
pcie_write_config32(PCI_DEV(0, 0, 0), 0xb0, reg);
|
|
|
|
// GTT stolen memory
|
|
reg = pcie_read_config32(PCI_DEV(0, 0, 0), 0xb4);
|
|
val = gttbase & 0xfff;
|
|
reg = (reg & ~0xfff00000) | (val << 20);
|
|
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0xb4, reg);
|
|
pcie_write_config32(PCI_DEV(0, 0, 0), 0xb4, reg);
|
|
|
|
if (me_uma_size) {
|
|
reg = pcie_read_config32(PCI_DEV(0, 0, 0), 0x7c);
|
|
val = (0x80000 - me_uma_size) & 0xfffff000;
|
|
reg = (reg & ~0x000fffff) | (val >> 12);
|
|
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0x7c, reg);
|
|
pcie_write_config32(PCI_DEV(0, 0, 0), 0x7c, reg);
|
|
|
|
// ME base
|
|
reg = pcie_read_config32(PCI_DEV(0, 0, 0), 0x70);
|
|
val = mestolenbase & 0xfff;
|
|
reg = (reg & ~0xfff00000) | (val << 20);
|
|
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0x70, reg);
|
|
pcie_write_config32(PCI_DEV(0, 0, 0), 0x70, reg);
|
|
|
|
reg = pcie_read_config32(PCI_DEV(0, 0, 0), 0x74);
|
|
val = mestolenbase & 0xfffff000;
|
|
reg = (reg & ~0x000fffff) | (val >> 12);
|
|
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0x74, reg);
|
|
pcie_write_config32(PCI_DEV(0, 0, 0), 0x74, reg);
|
|
|
|
// ME mask
|
|
reg = pcie_read_config32(PCI_DEV(0, 0, 0), 0x78);
|
|
val = (0x80000 - me_uma_size) & 0xfff;
|
|
reg = (reg & ~0xfff00000) | (val << 20);
|
|
reg = (reg & ~0x400) | (1 << 10); // set lockbit on ME mem
|
|
|
|
reg = (reg & ~0x800) | (1 << 11); // set ME memory enable
|
|
printk(BIOS_DEBUG, "PCI(0, 0, 0)[%x] = %x\n", 0x78, reg);
|
|
pcie_write_config32(PCI_DEV(0, 0, 0), 0x78, reg);
|
|
}
|
|
}
|
|
|
|
static void dram_ioregs(ramctr_timing * ctrl)
|
|
{
|
|
u32 reg, comp2;
|
|
|
|
int channel;
|
|
|
|
// IO clock
|
|
FOR_ALL_CHANNELS {
|
|
MCHBAR32(0xc00 + 0x100 * channel) = ctrl->rankmap[channel];
|
|
}
|
|
|
|
// IO command
|
|
FOR_ALL_CHANNELS {
|
|
MCHBAR32(0x3200 + 0x100 * channel) = ctrl->rankmap[channel];
|
|
}
|
|
|
|
// IO control
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
program_timings(ctrl, channel);
|
|
}
|
|
|
|
// Rcomp
|
|
printram("RCOMP...");
|
|
reg = 0;
|
|
while (reg == 0) {
|
|
reg = MCHBAR32(0x5084) & 0x10000;
|
|
}
|
|
printram("done\n");
|
|
|
|
// Set comp2
|
|
comp2 = get_COMP2(ctrl->tCK);
|
|
MCHBAR32(0x3714) = comp2;
|
|
printram("COMP2 done\n");
|
|
|
|
// Set comp1
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
reg = MCHBAR32(0x1810 + channel * 0x100); //ch0
|
|
reg = (reg & ~0xe00) | (1 << 9); //odt
|
|
reg = (reg & ~0xe00000) | (1 << 21); //clk drive up
|
|
reg = (reg & ~0x38000000) | (1 << 27); //ctl drive up
|
|
MCHBAR32(0x1810 + channel * 0x100) = reg;
|
|
}
|
|
printram("COMP1 done\n");
|
|
|
|
printram("FORCE RCOMP and wait 20us...");
|
|
MCHBAR32(0x5f08) |= 0x100;
|
|
udelay(20);
|
|
printram("done\n");
|
|
}
|
|
|
|
static void wait_428c(int channel)
|
|
{
|
|
while (1) {
|
|
if (read32(DEFAULT_MCHBAR + 0x428c + (channel << 10)) & 0x50)
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void write_reset(ramctr_timing * ctrl)
|
|
{
|
|
int channel, slotrank;
|
|
|
|
/* choose a populated channel. */
|
|
channel = (ctrl->rankmap[0]) ? 0 : 1;
|
|
|
|
wait_428c(channel);
|
|
|
|
/* choose a populated rank. */
|
|
slotrank = (ctrl->rankmap[channel] & 1) ? 0 : 2;
|
|
|
|
/* DRAM command ZQCS */
|
|
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x0f003);
|
|
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel, 0x80c01);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
|
|
(slotrank << 24) | 0x60000);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0x400001);
|
|
wait_428c(channel);
|
|
}
|
|
|
|
static void dram_jedecreset(ramctr_timing * ctrl)
|
|
{
|
|
u32 reg, addr;
|
|
int channel;
|
|
|
|
while (!(MCHBAR32(0x5084) & 0x10000));
|
|
do {
|
|
reg = MCHBAR32(0x428c);
|
|
} while ((reg & 0x14) == 0);
|
|
|
|
// Set state of memory controller
|
|
reg = 0x112;
|
|
MCHBAR32(0x5030) = reg;
|
|
MCHBAR32(0x4ea0) = 0;
|
|
reg |= 2; //ddr reset
|
|
MCHBAR32(0x5030) = reg;
|
|
|
|
// Assert dimm reset signal
|
|
reg = MCHBAR32(0x5030);
|
|
reg &= ~0x2;
|
|
MCHBAR32(0x5030) = reg;
|
|
|
|
// Wait 200us
|
|
udelay(200);
|
|
|
|
// Deassert dimm reset signal
|
|
MCHBAR32(0x5030) |= 2;
|
|
|
|
// Wait 500us
|
|
udelay(500);
|
|
|
|
// Enable DCLK
|
|
MCHBAR32(0x5030) |= 4;
|
|
|
|
// XXX Wait 20ns
|
|
udelay(1);
|
|
|
|
FOR_ALL_CHANNELS {
|
|
// Set valid rank CKE
|
|
reg = 0;
|
|
reg = (reg & ~0xf) | ctrl->rankmap[channel];
|
|
addr = 0x400 * channel + 0x42a0;
|
|
MCHBAR32(addr) = reg;
|
|
|
|
// Wait 10ns for ranks to settle
|
|
//udelay(0.01);
|
|
|
|
reg = (reg & ~0xf0) | (ctrl->rankmap[channel] << 4);
|
|
MCHBAR32(addr) = reg;
|
|
|
|
// Write reset using a NOP
|
|
write_reset(ctrl);
|
|
}
|
|
}
|
|
|
|
static odtmap get_ODT(ramctr_timing *ctrl, u8 rank, int channel)
|
|
{
|
|
/* Get ODT based on rankmap: */
|
|
int dimms_per_ch = (ctrl->rankmap[channel] & 1)
|
|
+ ((ctrl->rankmap[channel] >> 2) & 1);
|
|
|
|
if (dimms_per_ch == 1) {
|
|
return (const odtmap){60, 60};
|
|
} else {
|
|
return (const odtmap){120, 30};
|
|
}
|
|
}
|
|
|
|
static void write_mrreg(ramctr_timing *ctrl, int channel, int slotrank,
|
|
int reg, u32 val)
|
|
{
|
|
wait_428c(channel);
|
|
|
|
if (ctrl->rank_mirror[channel][slotrank]) {
|
|
/* DDR3 Rank1 Address mirror
|
|
* swap the following pins:
|
|
* A3<->A4, A5<->A6, A7<->A8, BA0<->BA1 */
|
|
reg = ((reg >> 1) & 1) | ((reg << 1) & 2);
|
|
val = (val & ~0x1f8) | ((val >> 1) & 0xa8)
|
|
| ((val & 0xa8) << 1);
|
|
}
|
|
|
|
/* DRAM command MRS */
|
|
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x0f000);
|
|
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel, 0x41001);
|
|
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
|
|
(slotrank << 24) | (reg << 20) | val | 0x60000);
|
|
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
|
|
|
|
/* DRAM command MRS */
|
|
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f000);
|
|
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel, 0x41001);
|
|
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
|
|
(slotrank << 24) | (reg << 20) | val | 0x60000);
|
|
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
|
|
|
|
/* DRAM command MRS */
|
|
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel, 0x0f000);
|
|
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
|
|
0x1001 | (ctrl->tMOD << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
|
|
(slotrank << 24) | (reg << 20) | val | 0x60000);
|
|
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0);
|
|
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0x80001);
|
|
}
|
|
|
|
static u32 make_mr0(ramctr_timing * ctrl, u8 rank)
|
|
{
|
|
u16 mr0reg, mch_cas, mch_wr;
|
|
static const u8 mch_wr_t[12] = { 1, 2, 3, 4, 0, 5, 0, 6, 0, 7, 0, 0 };
|
|
|
|
/* DLL Reset - self clearing - set after CLK frequency has been changed */
|
|
mr0reg = 0x100;
|
|
|
|
// Convert CAS to MCH register friendly
|
|
if (ctrl->CAS < 12) {
|
|
mch_cas = (u16) ((ctrl->CAS - 4) << 1);
|
|
} else {
|
|
mch_cas = (u16) (ctrl->CAS - 12);
|
|
mch_cas = ((mch_cas << 1) | 0x1);
|
|
}
|
|
|
|
// Convert tWR to MCH register friendly
|
|
mch_wr = mch_wr_t[ctrl->tWR - 5];
|
|
|
|
mr0reg = (mr0reg & ~0x4) | (mch_cas & 0x1);
|
|
mr0reg = (mr0reg & ~0x70) | ((mch_cas & 0xe) << 3);
|
|
mr0reg = (mr0reg & ~0xe00) | (mch_wr << 9);
|
|
|
|
// Precharge PD - Fast (desktop) 0x1 or slow (mobile) 0x0 - mostly power-saving feature
|
|
mr0reg = (mr0reg & ~0x1000) | (!ctrl->mobile << 12);
|
|
return mr0reg;
|
|
}
|
|
|
|
static void dram_mr0(ramctr_timing *ctrl, u8 rank, int channel)
|
|
{
|
|
write_mrreg(ctrl, channel, rank, 0,
|
|
make_mr0(ctrl, rank));
|
|
}
|
|
|
|
static u32 encode_odt(u32 odt)
|
|
{
|
|
switch (odt) {
|
|
case 30:
|
|
return (1 << 9) | (1 << 2); // RZQ/8, RZQ/4
|
|
case 60:
|
|
return (1 << 2); // RZQ/4
|
|
case 120:
|
|
return (1 << 6); // RZQ/2
|
|
default:
|
|
case 0:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static u32 make_mr1(ramctr_timing *ctrl, u8 rank, int channel)
|
|
{
|
|
odtmap odt;
|
|
u32 mr1reg;
|
|
|
|
odt = get_ODT(ctrl, rank, channel);
|
|
mr1reg = 0x2;
|
|
|
|
mr1reg |= encode_odt(odt.rttnom);
|
|
|
|
return mr1reg;
|
|
}
|
|
|
|
static void dram_mr1(ramctr_timing *ctrl, u8 rank, int channel)
|
|
{
|
|
u16 mr1reg;
|
|
|
|
mr1reg = make_mr1(ctrl, rank, channel);
|
|
|
|
write_mrreg(ctrl, channel, rank, 1, mr1reg);
|
|
}
|
|
|
|
static void dram_mr2(ramctr_timing *ctrl, u8 rank, int channel)
|
|
{
|
|
u16 pasr, cwl, mr2reg;
|
|
odtmap odt;
|
|
int srt;
|
|
|
|
pasr = 0;
|
|
cwl = ctrl->CWL - 5;
|
|
odt = get_ODT(ctrl, rank, channel);
|
|
|
|
srt = ctrl->extended_temperature_range && !ctrl->auto_self_refresh;
|
|
|
|
mr2reg = 0;
|
|
mr2reg = (mr2reg & ~0x7) | pasr;
|
|
mr2reg = (mr2reg & ~0x38) | (cwl << 3);
|
|
mr2reg = (mr2reg & ~0x40) | (ctrl->auto_self_refresh << 6);
|
|
mr2reg = (mr2reg & ~0x80) | (srt << 7);
|
|
mr2reg |= (odt.rttwr / 60) << 9;
|
|
|
|
write_mrreg(ctrl, channel, rank, 2, mr2reg);
|
|
}
|
|
|
|
static void dram_mr3(ramctr_timing *ctrl, u8 rank, int channel)
|
|
{
|
|
write_mrreg(ctrl, channel, rank, 3, 0);
|
|
}
|
|
|
|
static void dram_mrscommands(ramctr_timing * ctrl)
|
|
{
|
|
u8 slotrank;
|
|
u32 reg, addr;
|
|
int channel;
|
|
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
FOR_ALL_POPULATED_RANKS {
|
|
// MR2
|
|
dram_mr2(ctrl, slotrank, channel);
|
|
|
|
// MR3
|
|
dram_mr3(ctrl, slotrank, channel);
|
|
|
|
// MR1
|
|
dram_mr1(ctrl, slotrank, channel);
|
|
|
|
// MR0
|
|
dram_mr0(ctrl, slotrank, channel);
|
|
}
|
|
}
|
|
|
|
/* DRAM command NOP */
|
|
write32(DEFAULT_MCHBAR + 0x4e20, 0x7);
|
|
write32(DEFAULT_MCHBAR + 0x4e30, 0xf1001);
|
|
write32(DEFAULT_MCHBAR + 0x4e00, 0x60002);
|
|
write32(DEFAULT_MCHBAR + 0x4e10, 0);
|
|
|
|
/* DRAM command ZQCL */
|
|
write32(DEFAULT_MCHBAR + 0x4e24, 0x1f003);
|
|
write32(DEFAULT_MCHBAR + 0x4e34, 0x1901001);
|
|
write32(DEFAULT_MCHBAR + 0x4e04, 0x60400);
|
|
write32(DEFAULT_MCHBAR + 0x4e14, 0x288);
|
|
|
|
/* execute command queue on all channels ? */
|
|
write32(DEFAULT_MCHBAR + 0x4e84, 0x40004);
|
|
|
|
// Drain
|
|
FOR_ALL_CHANNELS {
|
|
// Wait for ref drained
|
|
wait_428c(channel);
|
|
}
|
|
|
|
// Refresh enable
|
|
MCHBAR32(0x5030) |= 8;
|
|
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
addr = 0x400 * channel + 0x4020;
|
|
reg = MCHBAR32(addr);
|
|
reg &= ~0x200000;
|
|
MCHBAR32(addr) = reg;
|
|
|
|
wait_428c(channel);
|
|
|
|
slotrank = (ctrl->rankmap[channel] & 1) ? 0 : 2;
|
|
|
|
// Drain
|
|
wait_428c(channel);
|
|
|
|
/* DRAM command ZQCS */
|
|
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x0f003);
|
|
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel, 0x659001);
|
|
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
|
|
(slotrank << 24) | 0x60000);
|
|
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x3e0);
|
|
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0x1);
|
|
|
|
// Drain
|
|
wait_428c(channel);
|
|
}
|
|
}
|
|
|
|
const u32 lane_registers[] = {
|
|
0x0000, 0x0200, 0x0400, 0x0600,
|
|
0x1000, 0x1200, 0x1400, 0x1600,
|
|
0x0800
|
|
};
|
|
|
|
static void program_timings(ramctr_timing * ctrl, int channel)
|
|
{
|
|
u32 reg32, reg_4024, reg_c14, reg_c18, reg_4028;
|
|
int lane;
|
|
int slotrank, slot;
|
|
int full_shift = 0;
|
|
u16 slot320c[NUM_SLOTS];
|
|
|
|
FOR_ALL_POPULATED_RANKS {
|
|
if (full_shift < -ctrl->timings[channel][slotrank].val_320c)
|
|
full_shift = -ctrl->timings[channel][slotrank].val_320c;
|
|
}
|
|
|
|
for (slot = 0; slot < NUM_SLOTS; slot++)
|
|
switch ((ctrl->rankmap[channel] >> (2 * slot)) & 3) {
|
|
case 0:
|
|
default:
|
|
slot320c[slot] = 0x7f;
|
|
break;
|
|
case 1:
|
|
slot320c[slot] =
|
|
ctrl->timings[channel][2 * slot + 0].val_320c +
|
|
full_shift;
|
|
break;
|
|
case 2:
|
|
slot320c[slot] =
|
|
ctrl->timings[channel][2 * slot + 1].val_320c +
|
|
full_shift;
|
|
break;
|
|
case 3:
|
|
slot320c[slot] =
|
|
(ctrl->timings[channel][2 * slot].val_320c +
|
|
ctrl->timings[channel][2 * slot +
|
|
1].val_320c) / 2 +
|
|
full_shift;
|
|
break;
|
|
}
|
|
|
|
/* enable CMD XOVER */
|
|
reg32 = get_XOVER_CMD(ctrl->rankmap[channel]);
|
|
reg32 |= ((slot320c[0] & 0x3f) << 6) | ((slot320c[0] & 0x40) << 9);
|
|
reg32 |= (slot320c[1] & 0x7f) << 18;
|
|
reg32 |= (full_shift & 0x3f) | ((full_shift & 0x40) << 6);
|
|
|
|
MCHBAR32(0x320c + 0x100 * channel) = reg32;
|
|
|
|
/* enable CLK XOVER */
|
|
reg_c14 = get_XOVER_CLK(ctrl->rankmap[channel]);
|
|
reg_c18 = 0;
|
|
|
|
FOR_ALL_POPULATED_RANKS {
|
|
int shift =
|
|
ctrl->timings[channel][slotrank].val_320c + full_shift;
|
|
int offset_val_c14;
|
|
if (shift < 0)
|
|
shift = 0;
|
|
offset_val_c14 = ctrl->reg_c14_offset + shift;
|
|
/* set CLK phase shift */
|
|
reg_c14 |= (offset_val_c14 & 0x3f) << (6 * slotrank);
|
|
reg_c18 |= ((offset_val_c14 >> 6) & 1) << slotrank;
|
|
}
|
|
|
|
MCHBAR32(0xc14 + channel * 0x100) = reg_c14;
|
|
MCHBAR32(0xc18 + channel * 0x100) = reg_c18;
|
|
|
|
reg_4028 = MCHBAR32(0x4028 + 0x400 * channel);
|
|
reg_4028 &= 0xffff0000;
|
|
|
|
reg_4024 = 0;
|
|
|
|
FOR_ALL_POPULATED_RANKS {
|
|
int post_timA_min_high = 7, post_timA_max_high = 0;
|
|
int pre_timA_min_high = 7, pre_timA_max_high = 0;
|
|
int shift_402x = 0;
|
|
int shift =
|
|
ctrl->timings[channel][slotrank].val_320c + full_shift;
|
|
|
|
if (shift < 0)
|
|
shift = 0;
|
|
|
|
FOR_ALL_LANES {
|
|
if (post_timA_min_high >
|
|
((ctrl->timings[channel][slotrank].lanes[lane].
|
|
timA + shift) >> 6))
|
|
post_timA_min_high =
|
|
((ctrl->timings[channel][slotrank].
|
|
lanes[lane].timA + shift) >> 6);
|
|
if (pre_timA_min_high >
|
|
(ctrl->timings[channel][slotrank].lanes[lane].
|
|
timA >> 6))
|
|
pre_timA_min_high =
|
|
(ctrl->timings[channel][slotrank].
|
|
lanes[lane].timA >> 6);
|
|
if (post_timA_max_high <
|
|
((ctrl->timings[channel][slotrank].lanes[lane].
|
|
timA + shift) >> 6))
|
|
post_timA_max_high =
|
|
((ctrl->timings[channel][slotrank].
|
|
lanes[lane].timA + shift) >> 6);
|
|
if (pre_timA_max_high <
|
|
(ctrl->timings[channel][slotrank].lanes[lane].
|
|
timA >> 6))
|
|
pre_timA_max_high =
|
|
(ctrl->timings[channel][slotrank].
|
|
lanes[lane].timA >> 6);
|
|
}
|
|
|
|
if (pre_timA_max_high - pre_timA_min_high <
|
|
post_timA_max_high - post_timA_min_high)
|
|
shift_402x = +1;
|
|
else if (pre_timA_max_high - pre_timA_min_high >
|
|
post_timA_max_high - post_timA_min_high)
|
|
shift_402x = -1;
|
|
|
|
reg_4028 |=
|
|
(ctrl->timings[channel][slotrank].val_4028 + shift_402x -
|
|
post_timA_min_high) << (4 * slotrank);
|
|
reg_4024 |=
|
|
(ctrl->timings[channel][slotrank].val_4024 +
|
|
shift_402x) << (8 * slotrank);
|
|
|
|
FOR_ALL_LANES {
|
|
MCHBAR32(lane_registers[lane] + 0x10 + 0x100 * channel +
|
|
4 * slotrank)
|
|
=
|
|
(((ctrl->timings[channel][slotrank].lanes[lane].
|
|
timA + shift) & 0x3f)
|
|
|
|
|
((ctrl->timings[channel][slotrank].lanes[lane].
|
|
rising + shift) << 8)
|
|
|
|
|
(((ctrl->timings[channel][slotrank].lanes[lane].
|
|
timA + shift -
|
|
(post_timA_min_high << 6)) & 0x1c0) << 10)
|
|
| ((ctrl->timings[channel][slotrank].lanes[lane].
|
|
falling + shift) << 20));
|
|
|
|
MCHBAR32(lane_registers[lane] + 0x20 + 0x100 * channel +
|
|
4 * slotrank)
|
|
=
|
|
(((ctrl->timings[channel][slotrank].lanes[lane].
|
|
timC + shift) & 0x3f)
|
|
|
|
|
(((ctrl->timings[channel][slotrank].lanes[lane].
|
|
timB + shift) & 0x3f) << 8)
|
|
|
|
|
(((ctrl->timings[channel][slotrank].lanes[lane].
|
|
timB + shift) & 0x1c0) << 9)
|
|
|
|
|
(((ctrl->timings[channel][slotrank].lanes[lane].
|
|
timC + shift) & 0x40) << 13));
|
|
}
|
|
}
|
|
MCHBAR32(0x4024 + 0x400 * channel) = reg_4024;
|
|
MCHBAR32(0x4028 + 0x400 * channel) = reg_4028;
|
|
}
|
|
|
|
static void test_timA(ramctr_timing * ctrl, int channel, int slotrank)
|
|
{
|
|
wait_428c(channel);
|
|
|
|
/* DRAM command MRS
|
|
* write MR3 MPR enable
|
|
* in this mode only RD and RDA are allowed
|
|
* all reads return a predefined pattern */
|
|
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f000);
|
|
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
|
|
(0xc01 | (ctrl->tMOD << 16)));
|
|
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
|
|
(slotrank << 24) | 0x360004);
|
|
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
|
|
|
|
/* DRAM command RD */
|
|
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f105);
|
|
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel, 0x4040c01);
|
|
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel, (slotrank << 24));
|
|
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
|
|
|
|
/* DRAM command RD */
|
|
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel, 0x1f105);
|
|
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
|
|
0x100f | ((ctrl->CAS + 36) << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
|
|
(slotrank << 24) | 0x60000);
|
|
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0);
|
|
|
|
/* DRAM command MRS
|
|
* write MR3 MPR disable */
|
|
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel, 0x1f000);
|
|
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
|
|
(0xc01 | (ctrl->tMOD << 16)));
|
|
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
|
|
(slotrank << 24) | 0x360000);
|
|
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0xc0001);
|
|
|
|
wait_428c(channel);
|
|
}
|
|
|
|
static int does_lane_work(ramctr_timing * ctrl, int channel, int slotrank,
|
|
int lane)
|
|
{
|
|
u32 timA = ctrl->timings[channel][slotrank].lanes[lane].timA;
|
|
return ((read32
|
|
(DEFAULT_MCHBAR + lane_registers[lane] + channel * 0x100 + 4 +
|
|
((timA / 32) & 1) * 4)
|
|
>> (timA % 32)) & 1);
|
|
}
|
|
|
|
struct run {
|
|
int middle;
|
|
int end;
|
|
int start;
|
|
int all;
|
|
int length;
|
|
};
|
|
|
|
static struct run get_longest_zero_run(int *seq, int sz)
|
|
{
|
|
int i, ls;
|
|
int bl = 0, bs = 0;
|
|
struct run ret;
|
|
|
|
ls = 0;
|
|
for (i = 0; i < 2 * sz; i++)
|
|
if (seq[i % sz]) {
|
|
if (i - ls > bl) {
|
|
bl = i - ls;
|
|
bs = ls;
|
|
}
|
|
ls = i + 1;
|
|
}
|
|
if (bl == 0) {
|
|
ret.middle = sz / 2;
|
|
ret.start = 0;
|
|
ret.end = sz;
|
|
ret.all = 1;
|
|
return ret;
|
|
}
|
|
|
|
ret.start = bs % sz;
|
|
ret.end = (bs + bl - 1) % sz;
|
|
ret.middle = (bs + (bl - 1) / 2) % sz;
|
|
ret.length = bl;
|
|
ret.all = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void discover_timA_coarse(ramctr_timing * ctrl, int channel,
|
|
int slotrank, int *upperA)
|
|
{
|
|
int timA;
|
|
int statistics[NUM_LANES][128];
|
|
int lane;
|
|
|
|
for (timA = 0; timA < 128; timA++) {
|
|
FOR_ALL_LANES {
|
|
ctrl->timings[channel][slotrank].lanes[lane].timA = timA;
|
|
}
|
|
program_timings(ctrl, channel);
|
|
|
|
test_timA(ctrl, channel, slotrank);
|
|
|
|
FOR_ALL_LANES {
|
|
statistics[lane][timA] =
|
|
!does_lane_work(ctrl, channel, slotrank, lane);
|
|
printram("Astat: %d, %d, %d: %x, %x\n",
|
|
channel, slotrank, lane, timA,
|
|
statistics[lane][timA]);
|
|
}
|
|
}
|
|
FOR_ALL_LANES {
|
|
struct run rn = get_longest_zero_run(statistics[lane], 128);
|
|
ctrl->timings[channel][slotrank].lanes[lane].timA = rn.middle;
|
|
upperA[lane] = rn.end;
|
|
if (upperA[lane] < rn.middle)
|
|
upperA[lane] += 128;
|
|
printram("Aval: %d, %d, %d: %x\n", channel, slotrank,
|
|
lane, ctrl->timings[channel][slotrank].lanes[lane].timA);
|
|
printram("Aend: %d, %d, %d: %x\n", channel, slotrank,
|
|
lane, upperA[lane]);
|
|
}
|
|
}
|
|
|
|
static void discover_timA_fine(ramctr_timing * ctrl, int channel, int slotrank,
|
|
int *upperA)
|
|
{
|
|
int timA_delta;
|
|
int statistics[NUM_LANES][51];
|
|
int lane, i;
|
|
|
|
memset(statistics, 0, sizeof(statistics));
|
|
|
|
for (timA_delta = -25; timA_delta <= 25; timA_delta++) {
|
|
FOR_ALL_LANES ctrl->timings[channel][slotrank].lanes[lane].
|
|
timA = upperA[lane] + timA_delta + 0x40;
|
|
program_timings(ctrl, channel);
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
test_timA(ctrl, channel, slotrank);
|
|
FOR_ALL_LANES {
|
|
statistics[lane][timA_delta + 25] +=
|
|
does_lane_work(ctrl, channel, slotrank,
|
|
lane);
|
|
}
|
|
}
|
|
}
|
|
FOR_ALL_LANES {
|
|
int last_zero, first_all;
|
|
|
|
for (last_zero = -25; last_zero <= 25; last_zero++)
|
|
if (statistics[lane][last_zero + 25])
|
|
break;
|
|
last_zero--;
|
|
for (first_all = -25; first_all <= 25; first_all++)
|
|
if (statistics[lane][first_all + 25] == 100)
|
|
break;
|
|
|
|
printram("lane %d: %d, %d\n", lane, last_zero,
|
|
first_all);
|
|
|
|
ctrl->timings[channel][slotrank].lanes[lane].timA =
|
|
(last_zero + first_all) / 2 + upperA[lane];
|
|
printram("Aval: %d, %d, %d: %x\n", channel, slotrank,
|
|
lane, ctrl->timings[channel][slotrank].lanes[lane].timA);
|
|
}
|
|
}
|
|
|
|
static int discover_402x(ramctr_timing *ctrl, int channel, int slotrank,
|
|
int *upperA)
|
|
{
|
|
int works[NUM_LANES];
|
|
int lane;
|
|
while (1) {
|
|
int all_works = 1, some_works = 0;
|
|
program_timings(ctrl, channel);
|
|
test_timA(ctrl, channel, slotrank);
|
|
FOR_ALL_LANES {
|
|
works[lane] =
|
|
!does_lane_work(ctrl, channel, slotrank, lane);
|
|
if (works[lane])
|
|
some_works = 1;
|
|
else
|
|
all_works = 0;
|
|
}
|
|
if (all_works)
|
|
return 0;
|
|
if (!some_works) {
|
|
if (ctrl->timings[channel][slotrank].val_4024 < 2) {
|
|
printk(BIOS_EMERG, "402x discovery failed (1): %d, %d\n",
|
|
channel, slotrank);
|
|
return MAKE_ERR;
|
|
}
|
|
ctrl->timings[channel][slotrank].val_4024 -= 2;
|
|
printram("4024 -= 2;\n");
|
|
continue;
|
|
}
|
|
ctrl->timings[channel][slotrank].val_4028 += 2;
|
|
printram("4028 += 2;\n");
|
|
if (ctrl->timings[channel][slotrank].val_4028 >= 0x10) {
|
|
printk(BIOS_EMERG, "402x discovery failed (2): %d, %d\n",
|
|
channel, slotrank);
|
|
return MAKE_ERR;
|
|
}
|
|
FOR_ALL_LANES if (works[lane]) {
|
|
ctrl->timings[channel][slotrank].lanes[lane].timA +=
|
|
128;
|
|
upperA[lane] += 128;
|
|
printram("increment %d, %d, %d\n", channel,
|
|
slotrank, lane);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
struct timA_minmax {
|
|
int timA_min_high, timA_max_high;
|
|
};
|
|
|
|
static void pre_timA_change(ramctr_timing * ctrl, int channel, int slotrank,
|
|
struct timA_minmax *mnmx)
|
|
{
|
|
int lane;
|
|
mnmx->timA_min_high = 7;
|
|
mnmx->timA_max_high = 0;
|
|
|
|
FOR_ALL_LANES {
|
|
if (mnmx->timA_min_high >
|
|
(ctrl->timings[channel][slotrank].lanes[lane].timA >> 6))
|
|
mnmx->timA_min_high =
|
|
(ctrl->timings[channel][slotrank].lanes[lane].
|
|
timA >> 6);
|
|
if (mnmx->timA_max_high <
|
|
(ctrl->timings[channel][slotrank].lanes[lane].timA >> 6))
|
|
mnmx->timA_max_high =
|
|
(ctrl->timings[channel][slotrank].lanes[lane].
|
|
timA >> 6);
|
|
}
|
|
}
|
|
|
|
static void post_timA_change(ramctr_timing * ctrl, int channel, int slotrank,
|
|
struct timA_minmax *mnmx)
|
|
{
|
|
struct timA_minmax post;
|
|
int shift_402x = 0;
|
|
|
|
/* Get changed maxima. */
|
|
pre_timA_change(ctrl, channel, slotrank, &post);
|
|
|
|
if (mnmx->timA_max_high - mnmx->timA_min_high <
|
|
post.timA_max_high - post.timA_min_high)
|
|
shift_402x = +1;
|
|
else if (mnmx->timA_max_high - mnmx->timA_min_high >
|
|
post.timA_max_high - post.timA_min_high)
|
|
shift_402x = -1;
|
|
else
|
|
shift_402x = 0;
|
|
|
|
ctrl->timings[channel][slotrank].val_4028 += shift_402x;
|
|
ctrl->timings[channel][slotrank].val_4024 += shift_402x;
|
|
printram("4024 += %d;\n", shift_402x);
|
|
printram("4028 += %d;\n", shift_402x);
|
|
}
|
|
|
|
/* Compensate the skew between DQS and DQs.
|
|
* To ease PCB design a small skew between Data Strobe signals and
|
|
* Data Signals is allowed.
|
|
* The controller has to measure and compensate this skew for every byte-lane.
|
|
* By delaying either all DQs signals or DQS signal, a full phase
|
|
* shift can be introduced.
|
|
* It is assumed that one byte-lane's DQs signals have the same routing delay.
|
|
*
|
|
* To measure the actual skew, the DRAM is placed in "read leveling" mode.
|
|
* In read leveling mode the DRAM-chip outputs an alternating periodic pattern.
|
|
* The memory controller iterates over all possible values to do a full phase shift
|
|
* and issues read commands.
|
|
* With DQS and DQs in phase the data read is expected to alternate on every byte:
|
|
* 0xFF 0x00 0xFF ...
|
|
* Once the controller has detected this pattern a bit in the result register is
|
|
* set for the current phase shift.
|
|
*/
|
|
static int read_training(ramctr_timing * ctrl)
|
|
{
|
|
int channel, slotrank, lane;
|
|
int err;
|
|
|
|
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
|
|
int all_high, some_high;
|
|
int upperA[NUM_LANES];
|
|
struct timA_minmax mnmx;
|
|
|
|
wait_428c(channel);
|
|
|
|
/* DRAM command PREA */
|
|
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f002);
|
|
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
|
|
0xc01 | (ctrl->tRP << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
|
|
(slotrank << 24) | 0x60400);
|
|
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
|
|
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 1);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x3400, (slotrank << 2) | 0x8001);
|
|
|
|
ctrl->timings[channel][slotrank].val_4028 = 4;
|
|
ctrl->timings[channel][slotrank].val_4024 = 55;
|
|
program_timings(ctrl, channel);
|
|
|
|
discover_timA_coarse(ctrl, channel, slotrank, upperA);
|
|
|
|
all_high = 1;
|
|
some_high = 0;
|
|
FOR_ALL_LANES {
|
|
if (ctrl->timings[channel][slotrank].lanes[lane].
|
|
timA >= 0x40)
|
|
some_high = 1;
|
|
else
|
|
all_high = 0;
|
|
}
|
|
|
|
if (all_high) {
|
|
ctrl->timings[channel][slotrank].val_4028--;
|
|
printram("4028--;\n");
|
|
FOR_ALL_LANES {
|
|
ctrl->timings[channel][slotrank].lanes[lane].
|
|
timA -= 0x40;
|
|
upperA[lane] -= 0x40;
|
|
|
|
}
|
|
} else if (some_high) {
|
|
ctrl->timings[channel][slotrank].val_4024++;
|
|
ctrl->timings[channel][slotrank].val_4028++;
|
|
printram("4024++;\n");
|
|
printram("4028++;\n");
|
|
}
|
|
|
|
program_timings(ctrl, channel);
|
|
|
|
pre_timA_change(ctrl, channel, slotrank, &mnmx);
|
|
|
|
err = discover_402x(ctrl, channel, slotrank, upperA);
|
|
if (err)
|
|
return err;
|
|
|
|
post_timA_change(ctrl, channel, slotrank, &mnmx);
|
|
pre_timA_change(ctrl, channel, slotrank, &mnmx);
|
|
|
|
discover_timA_fine(ctrl, channel, slotrank, upperA);
|
|
|
|
post_timA_change(ctrl, channel, slotrank, &mnmx);
|
|
pre_timA_change(ctrl, channel, slotrank, &mnmx);
|
|
|
|
FOR_ALL_LANES {
|
|
ctrl->timings[channel][slotrank].lanes[lane].timA -= mnmx.timA_min_high * 0x40;
|
|
}
|
|
ctrl->timings[channel][slotrank].val_4028 -= mnmx.timA_min_high;
|
|
printram("4028 -= %d;\n", mnmx.timA_min_high);
|
|
|
|
post_timA_change(ctrl, channel, slotrank, &mnmx);
|
|
|
|
printram("4/8: %d, %d, %x, %x\n", channel, slotrank,
|
|
ctrl->timings[channel][slotrank].val_4024,
|
|
ctrl->timings[channel][slotrank].val_4028);
|
|
|
|
printram("final results:\n");
|
|
FOR_ALL_LANES
|
|
printram("Aval: %d, %d, %d: %x\n", channel, slotrank,
|
|
lane,
|
|
ctrl->timings[channel][slotrank].lanes[lane].timA);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x3400, 0);
|
|
|
|
toggle_io_reset();
|
|
}
|
|
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
program_timings(ctrl, channel);
|
|
}
|
|
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
|
|
write32(DEFAULT_MCHBAR + 0x4080 + 0x400 * channel
|
|
+ 4 * lane, 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void test_timC(ramctr_timing * ctrl, int channel, int slotrank)
|
|
{
|
|
int lane;
|
|
|
|
FOR_ALL_LANES {
|
|
write32(DEFAULT_MCHBAR + 0x4340 + 0x400 * channel + 4 * lane, 0);
|
|
read32(DEFAULT_MCHBAR + 0x4140 + 0x400 * channel + 4 * lane);
|
|
}
|
|
|
|
wait_428c(channel);
|
|
|
|
/* DRAM command ACT */
|
|
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f006);
|
|
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
|
|
(max((ctrl->tFAW >> 2) + 1, ctrl->tRRD) << 10)
|
|
| 4 | (ctrl->tRCD << 16));
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
|
|
(slotrank << 24) | (6 << 16));
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x244);
|
|
|
|
/* DRAM command NOP */
|
|
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f207);
|
|
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel, 0x8041001);
|
|
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
|
|
(slotrank << 24) | 8);
|
|
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0x3e0);
|
|
|
|
/* DRAM command WR */
|
|
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel, 0x1f201);
|
|
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel, 0x80411f4);
|
|
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel, (slotrank << 24));
|
|
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0x242);
|
|
|
|
/* DRAM command NOP */
|
|
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel, 0x1f207);
|
|
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
|
|
0x8000c01 | ((ctrl->CWL + ctrl->tWTR + 5) << 16));
|
|
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
|
|
(slotrank << 24) | 8);
|
|
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0x3e0);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0xc0001);
|
|
|
|
wait_428c(channel);
|
|
|
|
/* DRAM command PREA */
|
|
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f002);
|
|
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
|
|
0xc01 | (ctrl->tRP << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
|
|
(slotrank << 24) | 0x60400);
|
|
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x240);
|
|
|
|
/* DRAM command ACT */
|
|
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f006);
|
|
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
|
|
(max(ctrl->tRRD, (ctrl->tFAW >> 2) + 1) << 10)
|
|
| 8 | (ctrl->CAS << 16));
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
|
|
(slotrank << 24) | 0x60000);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0x244);
|
|
|
|
/* DRAM command RD */
|
|
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel, 0x1f105);
|
|
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
|
|
0x40011f4 | (max(ctrl->tRTP, 8) << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel, (slotrank << 24));
|
|
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0x242);
|
|
|
|
/* DRAM command PREA */
|
|
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel, 0x1f002);
|
|
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
|
|
0xc01 | (ctrl->tRP << 16));
|
|
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
|
|
(slotrank << 24) | 0x60400);
|
|
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0x240);
|
|
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0xc0001);
|
|
wait_428c(channel);
|
|
}
|
|
|
|
static int discover_timC(ramctr_timing *ctrl, int channel, int slotrank)
|
|
{
|
|
int timC;
|
|
int statistics[NUM_LANES][MAX_TIMC + 1];
|
|
int lane;
|
|
|
|
wait_428c(channel);
|
|
|
|
/* DRAM command PREA */
|
|
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f002);
|
|
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
|
|
0xc01 | (ctrl->tRP << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
|
|
(slotrank << 24) | 0x60400);
|
|
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x240);
|
|
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 1);
|
|
|
|
for (timC = 0; timC <= MAX_TIMC; timC++) {
|
|
FOR_ALL_LANES ctrl->timings[channel][slotrank].lanes[lane].
|
|
timC = timC;
|
|
program_timings(ctrl, channel);
|
|
|
|
test_timC(ctrl, channel, slotrank);
|
|
|
|
FOR_ALL_LANES {
|
|
statistics[lane][timC] =
|
|
read32(DEFAULT_MCHBAR + 0x4340 + 4 * lane +
|
|
0x400 * channel);
|
|
printram("Cstat: %d, %d, %d, %x, %x\n",
|
|
channel, slotrank, lane, timC,
|
|
statistics[lane][timC]);
|
|
}
|
|
}
|
|
FOR_ALL_LANES {
|
|
struct run rn =
|
|
get_longest_zero_run(statistics[lane], MAX_TIMC + 1);
|
|
ctrl->timings[channel][slotrank].lanes[lane].timC = rn.middle;
|
|
if (rn.all) {
|
|
printk(BIOS_EMERG, "timC discovery failed: %d, %d, %d\n",
|
|
channel, slotrank, lane);
|
|
return MAKE_ERR;
|
|
}
|
|
printram("Cval: %d, %d, %d: %x\n", channel, slotrank,
|
|
lane, ctrl->timings[channel][slotrank].lanes[lane].timC);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int get_precedening_channels(ramctr_timing * ctrl, int target_channel)
|
|
{
|
|
int channel, ret = 0;
|
|
FOR_ALL_POPULATED_CHANNELS if (channel < target_channel)
|
|
ret++;
|
|
return ret;
|
|
}
|
|
|
|
static void fill_pattern0(ramctr_timing * ctrl, int channel, u32 a, u32 b)
|
|
{
|
|
unsigned j;
|
|
unsigned channel_offset =
|
|
get_precedening_channels(ctrl, channel) * 0x40;
|
|
for (j = 0; j < 16; j++)
|
|
write32((void *)(0x04000000 + channel_offset + 4 * j), j & 2 ? b : a);
|
|
sfence();
|
|
}
|
|
|
|
static int num_of_channels(const ramctr_timing * ctrl)
|
|
{
|
|
int ret = 0;
|
|
int channel;
|
|
FOR_ALL_POPULATED_CHANNELS ret++;
|
|
return ret;
|
|
}
|
|
|
|
static void fill_pattern1(ramctr_timing * ctrl, int channel)
|
|
{
|
|
unsigned j;
|
|
unsigned channel_offset =
|
|
get_precedening_channels(ctrl, channel) * 0x40;
|
|
unsigned channel_step = 0x40 * num_of_channels(ctrl);
|
|
for (j = 0; j < 16; j++)
|
|
write32((void *)(0x04000000 + channel_offset + j * 4), 0xffffffff);
|
|
for (j = 0; j < 16; j++)
|
|
write32((void *)(0x04000000 + channel_offset + channel_step + j * 4), 0);
|
|
sfence();
|
|
}
|
|
|
|
static void precharge(ramctr_timing * ctrl)
|
|
{
|
|
int channel, slotrank, lane;
|
|
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
|
|
ctrl->timings[channel][slotrank].lanes[lane].falling =
|
|
16;
|
|
ctrl->timings[channel][slotrank].lanes[lane].rising =
|
|
16;
|
|
}
|
|
|
|
program_timings(ctrl, channel);
|
|
|
|
FOR_ALL_POPULATED_RANKS {
|
|
wait_428c(channel);
|
|
|
|
/* DRAM command MRS
|
|
* write MR3 MPR enable
|
|
* in this mode only RD and RDA are allowed
|
|
* all reads return a predefined pattern */
|
|
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel,
|
|
0x1f000);
|
|
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
|
|
0xc01 | (ctrl->tMOD << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
|
|
(slotrank << 24) | 0x360004);
|
|
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
|
|
|
|
/* DRAM command RD */
|
|
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel,
|
|
0x1f105);
|
|
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
|
|
0x4041003);
|
|
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
|
|
(slotrank << 24) | 0);
|
|
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
|
|
|
|
/* DRAM command RD */
|
|
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel,
|
|
0x1f105);
|
|
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
|
|
0x1001 | ((ctrl->CAS + 8) << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
|
|
(slotrank << 24) | 0x60000);
|
|
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0);
|
|
|
|
/* DRAM command MRS
|
|
* write MR3 MPR disable */
|
|
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel,
|
|
0x1f000);
|
|
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
|
|
0xc01 | (ctrl->tMOD << 16));
|
|
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
|
|
(slotrank << 24) | 0x360000);
|
|
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0);
|
|
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel,
|
|
0xc0001);
|
|
|
|
wait_428c(channel);
|
|
}
|
|
|
|
FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
|
|
ctrl->timings[channel][slotrank].lanes[lane].falling =
|
|
48;
|
|
ctrl->timings[channel][slotrank].lanes[lane].rising =
|
|
48;
|
|
}
|
|
|
|
program_timings(ctrl, channel);
|
|
|
|
FOR_ALL_POPULATED_RANKS {
|
|
wait_428c(channel);
|
|
/* DRAM command MRS
|
|
* write MR3 MPR enable
|
|
* in this mode only RD and RDA are allowed
|
|
* all reads return a predefined pattern */
|
|
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel,
|
|
0x1f000);
|
|
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
|
|
0xc01 | (ctrl->tMOD << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
|
|
(slotrank << 24) | 0x360004);
|
|
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
|
|
|
|
/* DRAM command RD */
|
|
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel,
|
|
0x1f105);
|
|
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
|
|
0x4041003);
|
|
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
|
|
(slotrank << 24) | 0);
|
|
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
|
|
|
|
/* DRAM command RD */
|
|
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel,
|
|
0x1f105);
|
|
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
|
|
0x1001 | ((ctrl->CAS + 8) << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
|
|
(slotrank << 24) | 0x60000);
|
|
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0);
|
|
|
|
/* DRAM command MRS
|
|
* write MR3 MPR disable */
|
|
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel,
|
|
0x1f000);
|
|
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
|
|
0xc01 | (ctrl->tMOD << 16));
|
|
|
|
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
|
|
(slotrank << 24) | 0x360000);
|
|
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel,
|
|
0xc0001);
|
|
wait_428c(channel);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void test_timB(ramctr_timing * ctrl, int channel, int slotrank)
|
|
{
|
|
/* enable DQs on this slotrank */
|
|
write_mrreg(ctrl, channel, slotrank, 1,
|
|
0x80 | make_mr1(ctrl, slotrank, channel));
|
|
|
|
wait_428c(channel);
|
|
/* DRAM command NOP */
|
|
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f207);
|
|
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
|
|
0x8000c01 | ((ctrl->CWL + ctrl->tWLO) << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
|
|
8 | (slotrank << 24));
|
|
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
|
|
|
|
/* DRAM command NOP */
|
|
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f107);
|
|
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
|
|
0x4000c01 | ((ctrl->CAS + 38) << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
|
|
(slotrank << 24) | 4);
|
|
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x400 * channel + 0x4284, 0x40001);
|
|
wait_428c(channel);
|
|
|
|
/* disable DQs on this slotrank */
|
|
write_mrreg(ctrl, channel, slotrank, 1,
|
|
0x1080 | make_mr1(ctrl, slotrank, channel));
|
|
}
|
|
|
|
static int discover_timB(ramctr_timing *ctrl, int channel, int slotrank)
|
|
{
|
|
int timB;
|
|
int statistics[NUM_LANES][128];
|
|
int lane;
|
|
|
|
write32(DEFAULT_MCHBAR + 0x3400, 0x108052 | (slotrank << 2));
|
|
|
|
for (timB = 0; timB < 128; timB++) {
|
|
FOR_ALL_LANES {
|
|
ctrl->timings[channel][slotrank].lanes[lane].timB = timB;
|
|
}
|
|
program_timings(ctrl, channel);
|
|
|
|
test_timB(ctrl, channel, slotrank);
|
|
|
|
FOR_ALL_LANES {
|
|
statistics[lane][timB] =
|
|
!((read32
|
|
(DEFAULT_MCHBAR + lane_registers[lane] +
|
|
channel * 0x100 + 4 + ((timB / 32) & 1) * 4)
|
|
>> (timB % 32)) & 1);
|
|
printram("Bstat: %d, %d, %d: %x, %x\n",
|
|
channel, slotrank, lane, timB,
|
|
statistics[lane][timB]);
|
|
}
|
|
}
|
|
FOR_ALL_LANES {
|
|
struct run rn = get_longest_zero_run(statistics[lane], 128);
|
|
/* timC is a direct function of timB's 6 LSBs.
|
|
* Some tests increments the value of timB by a small value,
|
|
* which might cause the 6bit value to overflow, if it's close
|
|
* to 0x3F. Increment the value by a small offset if it's likely
|
|
* to overflow, to make sure it won't overflow while running
|
|
* tests and bricks the system due to a non matching timC.
|
|
*
|
|
* TODO: find out why some tests (edge write discovery)
|
|
* increment timB. */
|
|
if ((rn.start & 0x3F) == 0x3E)
|
|
rn.start += 2;
|
|
else if ((rn.start & 0x3F) == 0x3F)
|
|
rn.start += 1;
|
|
ctrl->timings[channel][slotrank].lanes[lane].timB = rn.start;
|
|
if (rn.all) {
|
|
printk(BIOS_EMERG, "timB discovery failed: %d, %d, %d\n",
|
|
channel, slotrank, lane);
|
|
return MAKE_ERR;
|
|
}
|
|
printram("Bval: %d, %d, %d: %x\n", channel, slotrank,
|
|
lane, ctrl->timings[channel][slotrank].lanes[lane].timB);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int get_timB_high_adjust(u64 val)
|
|
{
|
|
int i;
|
|
|
|
/* good */
|
|
if (val == 0xffffffffffffffffLL)
|
|
return 0;
|
|
|
|
if (val >= 0xf000000000000000LL) {
|
|
/* needs negative adjustment */
|
|
for (i = 0; i < 8; i++)
|
|
if (val << (8 * (7 - i) + 4))
|
|
return -i;
|
|
} else {
|
|
/* needs positive adjustment */
|
|
for (i = 0; i < 8; i++)
|
|
if (val >> (8 * (7 - i) + 4))
|
|
return i;
|
|
}
|
|
return 8;
|
|
}
|
|
|
|
static void adjust_high_timB(ramctr_timing * ctrl)
|
|
{
|
|
int channel, slotrank, lane, old;
|
|
write32(DEFAULT_MCHBAR + 0x3400, 0x200);
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
fill_pattern1(ctrl, channel);
|
|
write32(DEFAULT_MCHBAR + 0x4288 + (channel << 10), 1);
|
|
}
|
|
FOR_ALL_POPULATED_CHANNELS FOR_ALL_POPULATED_RANKS {
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4288 + 0x400 * channel, 0x10001);
|
|
|
|
wait_428c(channel);
|
|
|
|
/* DRAM command ACT */
|
|
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f006);
|
|
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
|
|
0xc01 | (ctrl->tRCD << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
|
|
(slotrank << 24) | 0x60000);
|
|
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
|
|
|
|
/* DRAM command NOP */
|
|
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f207);
|
|
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel, 0x8040c01);
|
|
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
|
|
(slotrank << 24) | 0x8);
|
|
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0x3e0);
|
|
|
|
/* DRAM command WR */
|
|
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel, 0x1f201);
|
|
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel, 0x8041003);
|
|
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
|
|
(slotrank << 24));
|
|
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0x3e2);
|
|
|
|
/* DRAM command NOP */
|
|
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel, 0x1f207);
|
|
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
|
|
0x8000c01 | ((ctrl->CWL + ctrl->tWTR + 5) << 16));
|
|
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
|
|
(slotrank << 24) | 0x8);
|
|
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0x3e0);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0xc0001);
|
|
|
|
wait_428c(channel);
|
|
|
|
/* DRAM command PREA */
|
|
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f002);
|
|
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
|
|
0xc01 | ((ctrl->tRP) << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
|
|
(slotrank << 24) | 0x60400);
|
|
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x240);
|
|
|
|
/* DRAM command ACT */
|
|
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f006);
|
|
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
|
|
0xc01 | ((ctrl->tRCD) << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
|
|
(slotrank << 24) | 0x60000);
|
|
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
|
|
|
|
/* DRAM command RD */
|
|
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel, 0x3f105);
|
|
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
|
|
0x4000c01 |
|
|
((ctrl->tRP +
|
|
ctrl->timings[channel][slotrank].val_4024 +
|
|
ctrl->timings[channel][slotrank].val_4028) << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
|
|
(slotrank << 24) | 0x60008);
|
|
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0x80001);
|
|
wait_428c(channel);
|
|
FOR_ALL_LANES {
|
|
u64 res =
|
|
read32(DEFAULT_MCHBAR + lane_registers[lane] +
|
|
0x100 * channel + 4);
|
|
res |=
|
|
((u64) read32(DEFAULT_MCHBAR + lane_registers[lane] +
|
|
0x100 * channel + 8)) << 32;
|
|
old = ctrl->timings[channel][slotrank].lanes[lane].timB;
|
|
ctrl->timings[channel][slotrank].lanes[lane].timB +=
|
|
get_timB_high_adjust(res) * 64;
|
|
|
|
printram("High adjust %d:%016llx\n", lane, res);
|
|
printram("Bval+: %d, %d, %d, %x -> %x\n", channel,
|
|
slotrank, lane, old,
|
|
ctrl->timings[channel][slotrank].lanes[lane].
|
|
timB);
|
|
}
|
|
}
|
|
write32(DEFAULT_MCHBAR + 0x3400, 0);
|
|
}
|
|
|
|
static void write_op(ramctr_timing * ctrl, int channel)
|
|
{
|
|
int slotrank;
|
|
|
|
wait_428c(channel);
|
|
|
|
/* choose an existing rank. */
|
|
slotrank = !(ctrl->rankmap[channel] & 1) ? 2 : 0;
|
|
|
|
/* DRAM command ACT */
|
|
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x0f003);
|
|
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel, 0x41001);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
|
|
(slotrank << 24) | 0x60000);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x3e0);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 1);
|
|
wait_428c(channel);
|
|
}
|
|
|
|
/* Compensate the skew between CMD/ADDR/CLK and DQ/DQS lanes.
|
|
* DDR3 adopted the fly-by topology. The data and strobes signals reach
|
|
* the chips at different times with respect to command, address and
|
|
* clock signals.
|
|
* By delaying either all DQ/DQs or all CMD/ADDR/CLK signals, a full phase
|
|
* shift can be introduced.
|
|
* It is assumed that the CLK/ADDR/CMD signals have the same routing delay.
|
|
*
|
|
* To find the required phase shift the DRAM is placed in "write leveling" mode.
|
|
* In this mode the DRAM-chip samples the CLK on every DQS edge and feeds back the
|
|
* sampled value on the data lanes (DQs).
|
|
*/
|
|
static int write_training(ramctr_timing * ctrl)
|
|
{
|
|
int channel, slotrank, lane;
|
|
int err;
|
|
|
|
FOR_ALL_POPULATED_CHANNELS
|
|
write32(DEFAULT_MCHBAR + 0x4008 + 0x400 * channel,
|
|
read32(DEFAULT_MCHBAR + 0x4008 +
|
|
0x400 * channel) | 0x8000000);
|
|
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
write_op(ctrl, channel);
|
|
write32(DEFAULT_MCHBAR + 0x4020 + 0x400 * channel,
|
|
read32(DEFAULT_MCHBAR + 0x4020 +
|
|
0x400 * channel) | 0x200000);
|
|
}
|
|
|
|
/* refresh disable */
|
|
write32(DEFAULT_MCHBAR + 0x5030, read32(DEFAULT_MCHBAR + 0x5030) & ~8);
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
write_op(ctrl, channel);
|
|
}
|
|
|
|
/* enable write leveling on all ranks
|
|
* disable all DQ outputs
|
|
* only NOP is allowed in this mode */
|
|
FOR_ALL_CHANNELS
|
|
FOR_ALL_POPULATED_RANKS
|
|
write_mrreg(ctrl, channel, slotrank, 1,
|
|
make_mr1(ctrl, slotrank, channel) | 0x1080);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x3400, 0x108052);
|
|
|
|
toggle_io_reset();
|
|
|
|
/* set any valid value for timB, it gets corrected later */
|
|
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
|
|
err = discover_timB(ctrl, channel, slotrank);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* disable write leveling on all ranks */
|
|
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS
|
|
write_mrreg(ctrl, channel,
|
|
slotrank, 1, make_mr1(ctrl, slotrank, channel));
|
|
|
|
write32(DEFAULT_MCHBAR + 0x3400, 0);
|
|
|
|
FOR_ALL_POPULATED_CHANNELS
|
|
wait_428c(channel);
|
|
|
|
/* refresh enable */
|
|
write32(DEFAULT_MCHBAR + 0x5030, read32(DEFAULT_MCHBAR + 0x5030) | 8);
|
|
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
write32(DEFAULT_MCHBAR + 0x4020 + 0x400 * channel,
|
|
~0x00200000 & read32(DEFAULT_MCHBAR + 0x4020 +
|
|
0x400 * channel));
|
|
read32(DEFAULT_MCHBAR + 0x428c + 0x400 * channel);
|
|
wait_428c(channel);
|
|
|
|
/* DRAM command ZQCS */
|
|
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x0f003);
|
|
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel, 0x659001);
|
|
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel, 0x60000);
|
|
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x3e0);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 1);
|
|
wait_428c(channel);
|
|
}
|
|
|
|
toggle_io_reset();
|
|
|
|
printram("CPE\n");
|
|
precharge(ctrl);
|
|
printram("CPF\n");
|
|
|
|
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
|
|
read32(DEFAULT_MCHBAR + 0x4080 + 0x400 * channel + 4 * lane);
|
|
write32(DEFAULT_MCHBAR + 0x4080 + 0x400 * channel + 4 * lane,
|
|
0);
|
|
}
|
|
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
fill_pattern0(ctrl, channel, 0xaaaaaaaa, 0x55555555);
|
|
write32(DEFAULT_MCHBAR + 0x4288 + (channel << 10), 0);
|
|
}
|
|
|
|
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
|
|
err = discover_timC(ctrl, channel, slotrank);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
FOR_ALL_POPULATED_CHANNELS
|
|
program_timings(ctrl, channel);
|
|
|
|
/* measure and adjust timB timings */
|
|
adjust_high_timB(ctrl);
|
|
|
|
FOR_ALL_POPULATED_CHANNELS
|
|
program_timings(ctrl, channel);
|
|
|
|
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
|
|
read32(DEFAULT_MCHBAR + 0x4080 + 0x400 * channel + 4 * lane);
|
|
write32(DEFAULT_MCHBAR + 0x4080 + 0x400 * channel + 4 * lane,
|
|
0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int test_320c(ramctr_timing * ctrl, int channel, int slotrank)
|
|
{
|
|
struct ram_rank_timings saved_rt = ctrl->timings[channel][slotrank];
|
|
int timC_delta;
|
|
int lanes_ok = 0;
|
|
int ctr = 0;
|
|
int lane;
|
|
|
|
for (timC_delta = -5; timC_delta <= 5; timC_delta++) {
|
|
FOR_ALL_LANES {
|
|
ctrl->timings[channel][slotrank].lanes[lane].timC =
|
|
saved_rt.lanes[lane].timC + timC_delta;
|
|
}
|
|
program_timings(ctrl, channel);
|
|
FOR_ALL_LANES {
|
|
write32(DEFAULT_MCHBAR + 4 * lane + 0x4f40, 0);
|
|
}
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4288 + 0x400 * channel, 0x1f);
|
|
|
|
wait_428c(channel);
|
|
/* DRAM command ACT */
|
|
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f006);
|
|
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
|
|
((max(ctrl->tRRD, (ctrl->tFAW >> 2) + 1)) << 10)
|
|
| 8 | (ctrl->tRCD << 16));
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
|
|
(slotrank << 24) | ctr | 0x60000);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x244);
|
|
/* DRAM command WR */
|
|
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f201);
|
|
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
|
|
0x8001020 | ((ctrl->CWL + ctrl->tWTR + 8) << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
|
|
(slotrank << 24));
|
|
write32(DEFAULT_MCHBAR + 0x4244 + 0x400 * channel, 0x389abcd);
|
|
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0x20e42);
|
|
|
|
/* DRAM command RD */
|
|
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel, 0x1f105);
|
|
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
|
|
0x4001020 | (max(ctrl->tRTP, 8) << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
|
|
(slotrank << 24));
|
|
write32(DEFAULT_MCHBAR + 0x4248 + 0x400 * channel, 0x389abcd);
|
|
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0x20e42);
|
|
|
|
/* DRAM command PRE */
|
|
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel, 0x1f002);
|
|
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel, 0xf1001);
|
|
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
|
|
(slotrank << 24) | 0x60400);
|
|
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0x240);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0xc0001);
|
|
wait_428c(channel);
|
|
FOR_ALL_LANES {
|
|
u32 r32 =
|
|
read32(DEFAULT_MCHBAR + 0x4340 + 4 * lane +
|
|
0x400 * channel);
|
|
|
|
if (r32 == 0)
|
|
lanes_ok |= 1 << lane;
|
|
}
|
|
ctr++;
|
|
if (lanes_ok == ((1 << NUM_LANES) - 1))
|
|
break;
|
|
}
|
|
|
|
ctrl->timings[channel][slotrank] = saved_rt;
|
|
|
|
printram("3lanes: %x\n", lanes_ok);
|
|
return lanes_ok != ((1 << NUM_LANES) - 1);
|
|
}
|
|
|
|
#include "raminit_patterns.h"
|
|
|
|
static void fill_pattern5(ramctr_timing * ctrl, int channel, int patno)
|
|
{
|
|
unsigned i, j;
|
|
unsigned channel_offset =
|
|
get_precedening_channels(ctrl, channel) * 0x40;
|
|
unsigned channel_step = 0x40 * num_of_channels(ctrl);
|
|
|
|
if (patno) {
|
|
u8 base8 = 0x80 >> ((patno - 1) % 8);
|
|
u32 base = base8 | (base8 << 8) | (base8 << 16) | (base8 << 24);
|
|
for (i = 0; i < 32; i++) {
|
|
for (j = 0; j < 16; j++) {
|
|
u32 val = use_base[patno - 1][i] & (1 << (j / 2)) ? base : 0;
|
|
if (invert[patno - 1][i] & (1 << (j / 2)))
|
|
val = ~val;
|
|
write32((void *)(0x04000000 + channel_offset + i * channel_step +
|
|
j * 4), val);
|
|
}
|
|
}
|
|
|
|
} else {
|
|
for (i = 0; i < sizeof(pattern) / sizeof(pattern[0]); i++) {
|
|
for (j = 0; j < 16; j++)
|
|
write32((void *)(0x04000000 + channel_offset + i * channel_step +
|
|
j * 4), pattern[i][j]);
|
|
}
|
|
sfence();
|
|
}
|
|
}
|
|
|
|
static void reprogram_320c(ramctr_timing * ctrl)
|
|
{
|
|
int channel, slotrank;
|
|
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
wait_428c(channel);
|
|
|
|
/* choose an existing rank. */
|
|
slotrank = !(ctrl->rankmap[channel] & 1) ? 2 : 0;
|
|
|
|
/* DRAM command ZQCS */
|
|
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x0f003);
|
|
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel, 0x41001);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
|
|
(slotrank << 24) | 0x60000);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x3e0);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 1);
|
|
wait_428c(channel);
|
|
write32(DEFAULT_MCHBAR + 0x4020 + 0x400 * channel,
|
|
read32(DEFAULT_MCHBAR + 0x4020 +
|
|
0x400 * channel) | 0x200000);
|
|
}
|
|
|
|
/* refresh disable */
|
|
write32(DEFAULT_MCHBAR + 0x5030, read32(DEFAULT_MCHBAR + 0x5030) & ~8);
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
wait_428c(channel);
|
|
|
|
/* choose an existing rank. */
|
|
slotrank = !(ctrl->rankmap[channel] & 1) ? 2 : 0;
|
|
|
|
/* DRAM command ZQCS */
|
|
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x0f003);
|
|
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel, 0x41001);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
|
|
(slotrank << 24) | 0x60000);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x3e0);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 1);
|
|
wait_428c(channel);
|
|
}
|
|
|
|
/* jedec reset */
|
|
dram_jedecreset(ctrl);
|
|
/* mrs commands. */
|
|
dram_mrscommands(ctrl);
|
|
|
|
toggle_io_reset();
|
|
}
|
|
|
|
#define MIN_C320C_LEN 13
|
|
|
|
static int try_cmd_stretch(ramctr_timing *ctrl, int channel, int cmd_stretch)
|
|
{
|
|
struct ram_rank_timings saved_timings[NUM_CHANNELS][NUM_SLOTRANKS];
|
|
int slotrank;
|
|
int c320c;
|
|
int stat[NUM_SLOTRANKS][256];
|
|
int delta = 0;
|
|
|
|
printram("Trying cmd_stretch %d on channel %d\n", cmd_stretch, channel);
|
|
|
|
FOR_ALL_POPULATED_RANKS {
|
|
saved_timings[channel][slotrank] =
|
|
ctrl->timings[channel][slotrank];
|
|
}
|
|
|
|
ctrl->cmd_stretch[channel] = cmd_stretch;
|
|
|
|
MCHBAR32(0x4004 + 0x400 * channel) =
|
|
ctrl->tRRD
|
|
| (ctrl->tRTP << 4)
|
|
| (ctrl->tCKE << 8)
|
|
| (ctrl->tWTR << 12)
|
|
| (ctrl->tFAW << 16)
|
|
| (ctrl->tWR << 24)
|
|
| (ctrl->cmd_stretch[channel] << 30);
|
|
|
|
if (ctrl->cmd_stretch[channel] == 2)
|
|
delta = 2;
|
|
else if (ctrl->cmd_stretch[channel] == 0)
|
|
delta = 4;
|
|
|
|
FOR_ALL_POPULATED_RANKS {
|
|
ctrl->timings[channel][slotrank].val_4024 -= delta;
|
|
}
|
|
|
|
for (c320c = -127; c320c <= 127; c320c++) {
|
|
FOR_ALL_POPULATED_RANKS {
|
|
ctrl->timings[channel][slotrank].val_320c = c320c;
|
|
}
|
|
program_timings(ctrl, channel);
|
|
reprogram_320c(ctrl);
|
|
FOR_ALL_POPULATED_RANKS {
|
|
stat[slotrank][c320c + 127] =
|
|
test_320c(ctrl, channel, slotrank);
|
|
printram("3stat: %d, %d, %d: %x\n",
|
|
channel, slotrank, c320c,
|
|
stat[slotrank][c320c + 127]);
|
|
}
|
|
}
|
|
FOR_ALL_POPULATED_RANKS {
|
|
struct run rn =
|
|
get_longest_zero_run(stat[slotrank], 255);
|
|
ctrl->timings[channel][slotrank].val_320c =
|
|
rn.middle - 127;
|
|
printram("3val: %d, %d: %d\n", channel,
|
|
slotrank,
|
|
ctrl->timings[channel][slotrank].val_320c);
|
|
if (rn.all || rn.length < MIN_C320C_LEN) {
|
|
FOR_ALL_POPULATED_RANKS {
|
|
ctrl->timings[channel][slotrank] =
|
|
saved_timings[channel][slotrank];
|
|
}
|
|
return MAKE_ERR;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Adjust CMD phase shift and try multiple command rates.
|
|
* A command rate of 2T doubles the time needed for address and
|
|
* command decode. */
|
|
static int command_training(ramctr_timing *ctrl)
|
|
{
|
|
int channel;
|
|
int err;
|
|
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
fill_pattern5(ctrl, channel, 0);
|
|
write32(DEFAULT_MCHBAR + 0x4288 + 0x400 * channel, 0x1f);
|
|
}
|
|
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
/* try command rate 1T and 2T */
|
|
err = try_cmd_stretch(ctrl, channel, 0);
|
|
if (err) {
|
|
err = try_cmd_stretch(ctrl, channel, 2);
|
|
if (err) {
|
|
printk(BIOS_EMERG, "c320c discovery failed\n");
|
|
return err;
|
|
}
|
|
printram("Using CMD rate 2T on channel %u\n", channel);
|
|
} else
|
|
printram("Using CMD rate 1T on channel %u\n", channel);
|
|
}
|
|
|
|
FOR_ALL_POPULATED_CHANNELS
|
|
program_timings(ctrl, channel);
|
|
|
|
reprogram_320c(ctrl);
|
|
return 0;
|
|
}
|
|
|
|
static int discover_edges_real(ramctr_timing *ctrl, int channel, int slotrank,
|
|
int *edges)
|
|
{
|
|
int edge;
|
|
int statistics[NUM_LANES][MAX_EDGE_TIMING + 1];
|
|
int lane;
|
|
|
|
for (edge = 0; edge <= MAX_EDGE_TIMING; edge++) {
|
|
FOR_ALL_LANES {
|
|
ctrl->timings[channel][slotrank].lanes[lane].rising =
|
|
edge;
|
|
ctrl->timings[channel][slotrank].lanes[lane].falling =
|
|
edge;
|
|
}
|
|
program_timings(ctrl, channel);
|
|
|
|
FOR_ALL_LANES {
|
|
write32(DEFAULT_MCHBAR + 0x4340 + 0x400 * channel +
|
|
4 * lane, 0);
|
|
read32(DEFAULT_MCHBAR + 0x400 * channel + 4 * lane +
|
|
0x4140);
|
|
}
|
|
|
|
wait_428c(channel);
|
|
/* DRAM command MRS
|
|
* write MR3 MPR enable
|
|
* in this mode only RD and RDA are allowed
|
|
* all reads return a predefined pattern */
|
|
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f000);
|
|
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
|
|
(0xc01 | (ctrl->tMOD << 16)));
|
|
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
|
|
(slotrank << 24) | 0x360004);
|
|
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
|
|
|
|
/* DRAM command RD */
|
|
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f105);
|
|
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel, 0x40411f4);
|
|
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
|
|
(slotrank << 24));
|
|
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
|
|
|
|
/* DRAM command RD */
|
|
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel, 0x1f105);
|
|
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
|
|
0x1001 | ((ctrl->CAS + 8) << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
|
|
(slotrank << 24) | 0x60000);
|
|
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0);
|
|
|
|
/* DRAM command MRS
|
|
* MR3 disable MPR */
|
|
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel, 0x1f000);
|
|
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
|
|
(0xc01 | (ctrl->tMOD << 16)));
|
|
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
|
|
(slotrank << 24) | 0x360000);
|
|
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel, 0xc0001);
|
|
|
|
wait_428c(channel);
|
|
|
|
FOR_ALL_LANES {
|
|
statistics[lane][edge] =
|
|
read32(DEFAULT_MCHBAR + 0x4340 + 0x400 * channel +
|
|
lane * 4);
|
|
}
|
|
}
|
|
FOR_ALL_LANES {
|
|
struct run rn =
|
|
get_longest_zero_run(statistics[lane], MAX_EDGE_TIMING + 1);
|
|
edges[lane] = rn.middle;
|
|
if (rn.all) {
|
|
printk(BIOS_EMERG, "edge discovery failed: %d, %d, %d\n",
|
|
channel, slotrank, lane);
|
|
return MAKE_ERR;
|
|
}
|
|
printram("eval %d, %d, %d: %02x\n", channel, slotrank,
|
|
lane, edges[lane]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int discover_edges(ramctr_timing *ctrl)
|
|
{
|
|
int falling_edges[NUM_CHANNELS][NUM_SLOTRANKS][NUM_LANES];
|
|
int rising_edges[NUM_CHANNELS][NUM_SLOTRANKS][NUM_LANES];
|
|
int channel, slotrank, lane;
|
|
int err;
|
|
|
|
write32(DEFAULT_MCHBAR + 0x3400, 0);
|
|
|
|
toggle_io_reset();
|
|
|
|
FOR_ALL_POPULATED_CHANNELS FOR_ALL_LANES {
|
|
write32(DEFAULT_MCHBAR + 4 * lane +
|
|
0x400 * channel + 0x4080, 0);
|
|
}
|
|
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
fill_pattern0(ctrl, channel, 0, 0);
|
|
write32(DEFAULT_MCHBAR + 0x4288 + (channel << 10), 0);
|
|
FOR_ALL_LANES {
|
|
read32(DEFAULT_MCHBAR + 0x400 * channel +
|
|
lane * 4 + 0x4140);
|
|
}
|
|
|
|
FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
|
|
ctrl->timings[channel][slotrank].lanes[lane].falling =
|
|
16;
|
|
ctrl->timings[channel][slotrank].lanes[lane].rising =
|
|
16;
|
|
}
|
|
|
|
program_timings(ctrl, channel);
|
|
|
|
FOR_ALL_POPULATED_RANKS {
|
|
wait_428c(channel);
|
|
|
|
/* DRAM command MRS
|
|
* MR3 enable MPR
|
|
* write MR3 MPR enable
|
|
* in this mode only RD and RDA are allowed
|
|
* all reads return a predefined pattern */
|
|
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel,
|
|
0x1f000);
|
|
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
|
|
0xc01 | (ctrl->tMOD << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
|
|
(slotrank << 24) | 0x360004);
|
|
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
|
|
|
|
/* DRAM command RD */
|
|
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel,
|
|
0x1f105);
|
|
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
|
|
0x4041003);
|
|
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
|
|
(slotrank << 24) | 0);
|
|
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
|
|
|
|
/* DRAM command RD */
|
|
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel,
|
|
0x1f105);
|
|
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
|
|
0x1001 | ((ctrl->CAS + 8) << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
|
|
(slotrank << 24) | 0x60000);
|
|
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0);
|
|
|
|
/* DRAM command MRS
|
|
* MR3 disable MPR */
|
|
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel,
|
|
0x1f000);
|
|
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
|
|
0xc01 | (ctrl->tMOD << 16));
|
|
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
|
|
(slotrank << 24) | 0x360000);
|
|
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0);
|
|
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel,
|
|
0xc0001);
|
|
|
|
wait_428c(channel);
|
|
}
|
|
|
|
/* XXX: check any measured value ? */
|
|
|
|
FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
|
|
ctrl->timings[channel][slotrank].lanes[lane].falling =
|
|
48;
|
|
ctrl->timings[channel][slotrank].lanes[lane].rising =
|
|
48;
|
|
}
|
|
|
|
program_timings(ctrl, channel);
|
|
|
|
FOR_ALL_POPULATED_RANKS {
|
|
wait_428c(channel);
|
|
|
|
/* DRAM command MRS
|
|
* MR3 enable MPR
|
|
* write MR3 MPR enable
|
|
* in this mode only RD and RDA are allowed
|
|
* all reads return a predefined pattern */
|
|
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel,
|
|
0x1f000);
|
|
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
|
|
0xc01 | (ctrl->tMOD << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
|
|
(slotrank << 24) | 0x360004);
|
|
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0);
|
|
|
|
/* DRAM command RD */
|
|
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel,
|
|
0x1f105);
|
|
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
|
|
0x4041003);
|
|
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
|
|
(slotrank << 24) | 0);
|
|
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel, 0);
|
|
|
|
/* DRAM command RD */
|
|
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel,
|
|
0x1f105);
|
|
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
|
|
0x1001 | ((ctrl->CAS + 8) << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
|
|
(slotrank << 24) | 0x60000);
|
|
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel, 0);
|
|
|
|
/* DRAM command MRS
|
|
* MR3 disable MPR */
|
|
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel,
|
|
0x1f000);
|
|
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
|
|
0xc01 | (ctrl->tMOD << 16));
|
|
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
|
|
(slotrank << 24) | 0x360000);
|
|
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel,
|
|
0xc0001);
|
|
wait_428c(channel);
|
|
}
|
|
|
|
/* XXX: check any measured value ? */
|
|
|
|
FOR_ALL_LANES {
|
|
write32(DEFAULT_MCHBAR + 0x4080 + 0x400 * channel +
|
|
lane * 4,
|
|
~read32(DEFAULT_MCHBAR + 0x4040 +
|
|
0x400 * channel + lane * 4) & 0xff);
|
|
}
|
|
|
|
fill_pattern0(ctrl, channel, 0, 0xffffffff);
|
|
write32(DEFAULT_MCHBAR + 0x4288 + (channel << 10), 0);
|
|
}
|
|
|
|
/* FIXME: under some conditions (older chipsets?) vendor BIOS sets both edges to the same value. */
|
|
write32(DEFAULT_MCHBAR + 0x4eb0, 0x300);
|
|
printram("discover falling edges:\n[%x] = %x\n", 0x4eb0, 0x300);
|
|
|
|
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
|
|
err = discover_edges_real(ctrl, channel, slotrank,
|
|
falling_edges[channel][slotrank]);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4eb0, 0x200);
|
|
printram("discover rising edges:\n[%x] = %x\n", 0x4eb0, 0x200);
|
|
|
|
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
|
|
err = discover_edges_real(ctrl, channel, slotrank,
|
|
rising_edges[channel][slotrank]);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4eb0, 0);
|
|
|
|
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
|
|
ctrl->timings[channel][slotrank].lanes[lane].falling =
|
|
falling_edges[channel][slotrank][lane];
|
|
ctrl->timings[channel][slotrank].lanes[lane].rising =
|
|
rising_edges[channel][slotrank][lane];
|
|
}
|
|
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
program_timings(ctrl, channel);
|
|
}
|
|
|
|
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
|
|
write32(DEFAULT_MCHBAR + 0x4080 + 0x400 * channel + 4 * lane,
|
|
0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int discover_edges_write_real(ramctr_timing *ctrl, int channel,
|
|
int slotrank, int *edges)
|
|
{
|
|
int edge;
|
|
u32 raw_statistics[MAX_EDGE_TIMING + 1];
|
|
int statistics[MAX_EDGE_TIMING + 1];
|
|
const int reg3000b24[] = { 0, 0xc, 0x2c };
|
|
int lane, i;
|
|
int lower[NUM_LANES];
|
|
int upper[NUM_LANES];
|
|
int pat;
|
|
|
|
FOR_ALL_LANES {
|
|
lower[lane] = 0;
|
|
upper[lane] = MAX_EDGE_TIMING;
|
|
}
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
write32(DEFAULT_MCHBAR + 0x3000 + 0x100 * channel,
|
|
reg3000b24[i] << 24);
|
|
printram("[%x] = 0x%08x\n",
|
|
0x3000 + 0x100 * channel, reg3000b24[i] << 24);
|
|
for (pat = 0; pat < NUM_PATTERNS; pat++) {
|
|
fill_pattern5(ctrl, channel, pat);
|
|
write32(DEFAULT_MCHBAR + 0x4288 + 0x400 * channel, 0x1f);
|
|
printram("using pattern %d\n", pat);
|
|
for (edge = 0; edge <= MAX_EDGE_TIMING; edge++) {
|
|
FOR_ALL_LANES {
|
|
ctrl->timings[channel][slotrank].lanes[lane].
|
|
rising = edge;
|
|
ctrl->timings[channel][slotrank].lanes[lane].
|
|
falling = edge;
|
|
}
|
|
program_timings(ctrl, channel);
|
|
|
|
FOR_ALL_LANES {
|
|
write32(DEFAULT_MCHBAR + 0x4340 +
|
|
0x400 * channel + 4 * lane, 0);
|
|
read32(DEFAULT_MCHBAR + 0x400 * channel +
|
|
4 * lane + 0x4140);
|
|
}
|
|
wait_428c(channel);
|
|
|
|
/* DRAM command ACT */
|
|
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel,
|
|
0x1f006);
|
|
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
|
|
0x4 | (ctrl->tRCD << 16)
|
|
| (max(ctrl->tRRD, (ctrl->tFAW >> 2) + 1) <<
|
|
10));
|
|
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
|
|
(slotrank << 24) | 0x60000);
|
|
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel,
|
|
0x240);
|
|
|
|
/* DRAM command WR */
|
|
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel,
|
|
0x1f201);
|
|
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
|
|
0x8005020 | ((ctrl->tWTR + ctrl->CWL + 8) <<
|
|
16));
|
|
write32(DEFAULT_MCHBAR + 0x4204 + 0x400 * channel,
|
|
(slotrank << 24));
|
|
write32(DEFAULT_MCHBAR + 0x4214 + 0x400 * channel,
|
|
0x242);
|
|
|
|
/* DRAM command RD */
|
|
write32(DEFAULT_MCHBAR + 0x4228 + 0x400 * channel,
|
|
0x1f105);
|
|
write32(DEFAULT_MCHBAR + 0x4238 + 0x400 * channel,
|
|
0x4005020 | (max(ctrl->tRTP, 8) << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4208 + 0x400 * channel,
|
|
(slotrank << 24));
|
|
write32(DEFAULT_MCHBAR + 0x4218 + 0x400 * channel,
|
|
0x242);
|
|
|
|
/* DRAM command PRE */
|
|
write32(DEFAULT_MCHBAR + 0x422c + 0x400 * channel,
|
|
0x1f002);
|
|
write32(DEFAULT_MCHBAR + 0x423c + 0x400 * channel,
|
|
0xc01 | (ctrl->tRP << 16));
|
|
write32(DEFAULT_MCHBAR + 0x420c + 0x400 * channel,
|
|
(slotrank << 24) | 0x60400);
|
|
write32(DEFAULT_MCHBAR + 0x421c + 0x400 * channel, 0);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4284 + 0x400 * channel,
|
|
0xc0001);
|
|
wait_428c(channel);
|
|
FOR_ALL_LANES {
|
|
read32(DEFAULT_MCHBAR + 0x4340 +
|
|
0x400 * channel + lane * 4);
|
|
}
|
|
|
|
raw_statistics[edge] =
|
|
MCHBAR32(0x436c + 0x400 * channel);
|
|
}
|
|
FOR_ALL_LANES {
|
|
struct run rn;
|
|
for (edge = 0; edge <= MAX_EDGE_TIMING; edge++)
|
|
statistics[edge] =
|
|
! !(raw_statistics[edge] & (1 << lane));
|
|
rn = get_longest_zero_run(statistics,
|
|
MAX_EDGE_TIMING + 1);
|
|
printram("edges: %d, %d, %d: 0x%02x-0x%02x-0x%02x, 0x%02x-0x%02x\n",
|
|
channel, slotrank, i, rn.start, rn.middle,
|
|
rn.end, rn.start + ctrl->edge_offset[i],
|
|
rn.end - ctrl->edge_offset[i]);
|
|
lower[lane] =
|
|
max(rn.start + ctrl->edge_offset[i], lower[lane]);
|
|
upper[lane] =
|
|
min(rn.end - ctrl->edge_offset[i], upper[lane]);
|
|
edges[lane] = (lower[lane] + upper[lane]) / 2;
|
|
if (rn.all || (lower[lane] > upper[lane])) {
|
|
printk(BIOS_EMERG, "edge write discovery failed: %d, %d, %d\n",
|
|
channel, slotrank, lane);
|
|
return MAKE_ERR;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
write32(DEFAULT_MCHBAR + 0x3000, 0);
|
|
printram("CPA\n");
|
|
return 0;
|
|
}
|
|
|
|
static int discover_edges_write(ramctr_timing *ctrl)
|
|
{
|
|
int falling_edges[NUM_CHANNELS][NUM_SLOTRANKS][NUM_LANES];
|
|
int rising_edges[NUM_CHANNELS][NUM_SLOTRANKS][NUM_LANES];
|
|
int channel, slotrank, lane;
|
|
int err;
|
|
|
|
/* FIXME: under some conditions (older chipsets?) vendor BIOS sets both edges to the same value. */
|
|
write32(DEFAULT_MCHBAR + 0x4eb0, 0x300);
|
|
printram("discover falling edges write:\n[%x] = %x\n", 0x4eb0, 0x300);
|
|
|
|
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
|
|
err = discover_edges_write_real(ctrl, channel, slotrank,
|
|
falling_edges[channel][slotrank]);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4eb0, 0x200);
|
|
printram("discover rising edges write:\n[%x] = %x\n", 0x4eb0, 0x200);
|
|
|
|
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
|
|
err = discover_edges_write_real(ctrl, channel, slotrank,
|
|
rising_edges[channel][slotrank]);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4eb0, 0);
|
|
|
|
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
|
|
ctrl->timings[channel][slotrank].lanes[lane].falling =
|
|
falling_edges[channel][slotrank][lane];
|
|
ctrl->timings[channel][slotrank].lanes[lane].rising =
|
|
rising_edges[channel][slotrank][lane];
|
|
}
|
|
|
|
FOR_ALL_POPULATED_CHANNELS
|
|
program_timings(ctrl, channel);
|
|
|
|
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
|
|
write32(DEFAULT_MCHBAR + 0x4080 + 0x400 * channel + 4 * lane,
|
|
0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void test_timC_write(ramctr_timing *ctrl, int channel, int slotrank)
|
|
{
|
|
wait_428c(channel);
|
|
/* DRAM command ACT */
|
|
write32(DEFAULT_MCHBAR + 0x4220 + 0x400 * channel, 0x1f006);
|
|
write32(DEFAULT_MCHBAR + 0x4230 + 0x400 * channel,
|
|
(max((ctrl->tFAW >> 2) + 1, ctrl->tRRD)
|
|
<< 10) | (ctrl->tRCD << 16) | 4);
|
|
write32(DEFAULT_MCHBAR + 0x4200 + 0x400 * channel,
|
|
(slotrank << 24) | 0x60000);
|
|
write32(DEFAULT_MCHBAR + 0x4210 + 0x400 * channel, 0x244);
|
|
|
|
/* DRAM command WR */
|
|
write32(DEFAULT_MCHBAR + 0x4224 + 0x400 * channel, 0x1f201);
|
|
write32(DEFAULT_MCHBAR + 0x4234 + 0x400 * channel,
|
|
0x80011e0 |
|
|
((ctrl->tWTR + ctrl->CWL + 8) << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4204 +
|
|
0x400 * channel, (slotrank << 24));
|
|
write32(DEFAULT_MCHBAR + 0x4214 +
|
|
0x400 * channel, 0x242);
|
|
|
|
/* DRAM command RD */
|
|
write32(DEFAULT_MCHBAR + 0x4228 +
|
|
0x400 * channel, 0x1f105);
|
|
write32(DEFAULT_MCHBAR + 0x4238 +
|
|
0x400 * channel,
|
|
0x40011e0 | (max(ctrl->tRTP, 8) << 16));
|
|
write32(DEFAULT_MCHBAR + 0x4208 +
|
|
0x400 * channel, (slotrank << 24));
|
|
write32(DEFAULT_MCHBAR + 0x4218 +
|
|
0x400 * channel, 0x242);
|
|
|
|
/* DRAM command PRE */
|
|
write32(DEFAULT_MCHBAR + 0x422c +
|
|
0x400 * channel, 0x1f002);
|
|
write32(DEFAULT_MCHBAR + 0x423c +
|
|
0x400 * channel,
|
|
0x1001 | (ctrl->tRP << 16));
|
|
write32(DEFAULT_MCHBAR + 0x420c +
|
|
0x400 * channel,
|
|
(slotrank << 24) | 0x60400);
|
|
write32(DEFAULT_MCHBAR + 0x421c +
|
|
0x400 * channel, 0);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4284 +
|
|
0x400 * channel, 0xc0001);
|
|
wait_428c(channel);
|
|
}
|
|
|
|
static int discover_timC_write(ramctr_timing *ctrl)
|
|
{
|
|
const u8 rege3c_b24[3] = { 0, 0xf, 0x2f };
|
|
int i, pat;
|
|
|
|
int lower[NUM_CHANNELS][NUM_SLOTRANKS][NUM_LANES];
|
|
int upper[NUM_CHANNELS][NUM_SLOTRANKS][NUM_LANES];
|
|
int channel, slotrank, lane;
|
|
|
|
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
|
|
lower[channel][slotrank][lane] = 0;
|
|
upper[channel][slotrank][lane] = MAX_TIMC;
|
|
}
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4ea8, 1);
|
|
printram("discover timC write:\n");
|
|
|
|
for (i = 0; i < 3; i++)
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
write32(DEFAULT_MCHBAR + 0xe3c + (channel * 0x100),
|
|
(rege3c_b24[i] << 24)
|
|
| (read32(DEFAULT_MCHBAR + 0xe3c + (channel * 0x100))
|
|
& ~0x3f000000));
|
|
udelay(2);
|
|
for (pat = 0; pat < NUM_PATTERNS; pat++) {
|
|
FOR_ALL_POPULATED_RANKS {
|
|
int timC;
|
|
u32 raw_statistics[MAX_TIMC + 1];
|
|
int statistics[MAX_TIMC + 1];
|
|
|
|
/* Make sure rn.start < rn.end */
|
|
statistics[MAX_TIMC] = 1;
|
|
|
|
fill_pattern5(ctrl, channel, pat);
|
|
write32(DEFAULT_MCHBAR + 0x4288 + 0x400 * channel, 0x1f);
|
|
for (timC = 0; timC < MAX_TIMC; timC++) {
|
|
FOR_ALL_LANES
|
|
ctrl->timings[channel][slotrank].lanes[lane].timC = timC;
|
|
program_timings(ctrl, channel);
|
|
|
|
test_timC_write (ctrl, channel, slotrank);
|
|
|
|
raw_statistics[timC] =
|
|
MCHBAR32(0x436c + 0x400 * channel);
|
|
}
|
|
FOR_ALL_LANES {
|
|
struct run rn;
|
|
for (timC = 0; timC < MAX_TIMC; timC++)
|
|
statistics[timC] =
|
|
!!(raw_statistics[timC] &
|
|
(1 << lane));
|
|
|
|
rn = get_longest_zero_run(statistics,
|
|
MAX_TIMC + 1);
|
|
if (rn.all) {
|
|
printk(BIOS_EMERG, "timC write discovery failed: %d, %d, %d\n",
|
|
channel, slotrank, lane);
|
|
return MAKE_ERR;
|
|
}
|
|
printram("timC: %d, %d, %d: 0x%02x-0x%02x-0x%02x, 0x%02x-0x%02x\n",
|
|
channel, slotrank, i, rn.start,
|
|
rn.middle, rn.end,
|
|
rn.start + ctrl->timC_offset[i],
|
|
rn.end - ctrl->timC_offset[i]);
|
|
lower[channel][slotrank][lane] =
|
|
max(rn.start + ctrl->timC_offset[i],
|
|
lower[channel][slotrank][lane]);
|
|
upper[channel][slotrank][lane] =
|
|
min(rn.end - ctrl->timC_offset[i],
|
|
upper[channel][slotrank][lane]);
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
FOR_ALL_CHANNELS {
|
|
write32(DEFAULT_MCHBAR + (channel * 0x100) + 0xe3c,
|
|
0 | (read32(DEFAULT_MCHBAR + (channel * 0x100) + 0xe3c) &
|
|
~0x3f000000));
|
|
udelay(2);
|
|
}
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4ea8, 0);
|
|
|
|
printram("CPB\n");
|
|
|
|
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
|
|
printram("timC %d, %d, %d: %x\n", channel,
|
|
slotrank, lane,
|
|
(lower[channel][slotrank][lane] +
|
|
upper[channel][slotrank][lane]) / 2);
|
|
ctrl->timings[channel][slotrank].lanes[lane].timC =
|
|
(lower[channel][slotrank][lane] +
|
|
upper[channel][slotrank][lane]) / 2;
|
|
}
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
program_timings(ctrl, channel);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void normalize_training(ramctr_timing * ctrl)
|
|
{
|
|
int channel, slotrank, lane;
|
|
int mat = 0;
|
|
|
|
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
|
|
int delta;
|
|
FOR_ALL_LANES mat =
|
|
max(ctrl->timings[channel][slotrank].lanes[lane].timA, mat);
|
|
delta = (mat >> 6) - ctrl->timings[channel][slotrank].val_4028;
|
|
ctrl->timings[channel][slotrank].val_4024 += delta;
|
|
ctrl->timings[channel][slotrank].val_4028 += delta;
|
|
}
|
|
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
program_timings(ctrl, channel);
|
|
}
|
|
}
|
|
|
|
static void write_controller_mr(ramctr_timing * ctrl)
|
|
{
|
|
int channel, slotrank;
|
|
|
|
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS {
|
|
write32(DEFAULT_MCHBAR + 0x0004 + (channel << 8) +
|
|
lane_registers[slotrank], make_mr0(ctrl, slotrank));
|
|
write32(DEFAULT_MCHBAR + 0x0008 + (channel << 8) +
|
|
lane_registers[slotrank],
|
|
make_mr1(ctrl, slotrank, channel));
|
|
}
|
|
}
|
|
|
|
static int channel_test(ramctr_timing *ctrl)
|
|
{
|
|
int channel, slotrank, lane;
|
|
|
|
slotrank = 0;
|
|
FOR_ALL_POPULATED_CHANNELS
|
|
if (read32(DEFAULT_MCHBAR + 0x42a0 + (channel << 10)) & 0xa000) {
|
|
printk(BIOS_EMERG, "Mini channel test failed (1): %d\n",
|
|
channel);
|
|
return MAKE_ERR;
|
|
}
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
fill_pattern0(ctrl, channel, 0x12345678, 0x98765432);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4288 + (channel << 10), 0);
|
|
}
|
|
|
|
for (slotrank = 0; slotrank < 4; slotrank++)
|
|
FOR_ALL_CHANNELS
|
|
if (ctrl->rankmap[channel] & (1 << slotrank)) {
|
|
FOR_ALL_LANES {
|
|
write32(DEFAULT_MCHBAR + (0x4f40 + 4 * lane), 0);
|
|
write32(DEFAULT_MCHBAR + (0x4d40 + 4 * lane), 0);
|
|
}
|
|
wait_428c(channel);
|
|
/* DRAM command ACT */
|
|
write32(DEFAULT_MCHBAR + 0x4220 + (channel << 10), 0x0001f006);
|
|
write32(DEFAULT_MCHBAR + 0x4230 + (channel << 10), 0x0028a004);
|
|
write32(DEFAULT_MCHBAR + 0x4200 + (channel << 10),
|
|
0x00060000 | (slotrank << 24));
|
|
write32(DEFAULT_MCHBAR + 0x4210 + (channel << 10), 0x00000244);
|
|
/* DRAM command WR */
|
|
write32(DEFAULT_MCHBAR + 0x4224 + (channel << 10), 0x0001f201);
|
|
write32(DEFAULT_MCHBAR + 0x4234 + (channel << 10), 0x08281064);
|
|
write32(DEFAULT_MCHBAR + 0x4204 + (channel << 10),
|
|
0x00000000 | (slotrank << 24));
|
|
write32(DEFAULT_MCHBAR + 0x4214 + (channel << 10), 0x00000242);
|
|
/* DRAM command RD */
|
|
write32(DEFAULT_MCHBAR + 0x4228 + (channel << 10), 0x0001f105);
|
|
write32(DEFAULT_MCHBAR + 0x4238 + (channel << 10), 0x04281064);
|
|
write32(DEFAULT_MCHBAR + 0x4208 + (channel << 10),
|
|
0x00000000 | (slotrank << 24));
|
|
write32(DEFAULT_MCHBAR + 0x4218 + (channel << 10), 0x00000242);
|
|
/* DRAM command PRE */
|
|
write32(DEFAULT_MCHBAR + 0x422c + (channel << 10), 0x0001f002);
|
|
write32(DEFAULT_MCHBAR + 0x423c + (channel << 10), 0x00280c01);
|
|
write32(DEFAULT_MCHBAR + 0x420c + (channel << 10),
|
|
0x00060400 | (slotrank << 24));
|
|
write32(DEFAULT_MCHBAR + 0x421c + (channel << 10), 0x00000240);
|
|
write32(DEFAULT_MCHBAR + 0x4284 + (channel << 10), 0x000c0001);
|
|
wait_428c(channel);
|
|
FOR_ALL_LANES
|
|
if (read32(DEFAULT_MCHBAR + 0x4340 + (channel << 10) + 4 * lane)) {
|
|
printk(BIOS_EMERG, "Mini channel test failed (2): %d, %d, %d\n",
|
|
channel, slotrank, lane);
|
|
return MAKE_ERR;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void set_scrambling_seed(ramctr_timing * ctrl)
|
|
{
|
|
int channel;
|
|
|
|
/* FIXME: we hardcode seeds. Do we need to use some PRNG for them?
|
|
I don't think so. */
|
|
static u32 seeds[NUM_CHANNELS][3] = {
|
|
{0x00009a36, 0xbafcfdcf, 0x46d1ab68},
|
|
{0x00028bfa, 0x53fe4b49, 0x19ed5483}
|
|
};
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
MCHBAR32(0x4020 + 0x400 * channel) &= ~0x10000000;
|
|
write32(DEFAULT_MCHBAR + 0x4034, seeds[channel][0]);
|
|
write32(DEFAULT_MCHBAR + 0x403c, seeds[channel][1]);
|
|
write32(DEFAULT_MCHBAR + 0x4038, seeds[channel][2]);
|
|
}
|
|
}
|
|
|
|
static void set_4f8c(void)
|
|
{
|
|
struct cpuid_result cpures;
|
|
u32 cpu;
|
|
|
|
cpures = cpuid(1);
|
|
cpu = (cpures.eax);
|
|
if (IS_SANDY_CPU(cpu) && (IS_SANDY_CPU_D0(cpu) || IS_SANDY_CPU_D1(cpu))) {
|
|
MCHBAR32(0x4f8c) = 0x141D1519;
|
|
} else {
|
|
MCHBAR32(0x4f8c) = 0x551D1519;
|
|
}
|
|
}
|
|
|
|
static void prepare_training(ramctr_timing * ctrl)
|
|
{
|
|
int channel;
|
|
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
// Always drive command bus
|
|
MCHBAR32(0x4004 + 0x400 * channel) |= 0x20000000;
|
|
}
|
|
|
|
udelay(1);
|
|
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
wait_428c(channel);
|
|
}
|
|
}
|
|
|
|
static void set_4008c(ramctr_timing * ctrl)
|
|
{
|
|
int channel, slotrank;
|
|
u32 reg;
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
u32 b20, b4_8_12;
|
|
int min_320c = 10000;
|
|
int max_320c = -10000;
|
|
|
|
FOR_ALL_POPULATED_RANKS {
|
|
max_320c = max(ctrl->timings[channel][slotrank].val_320c, max_320c);
|
|
min_320c = min(ctrl->timings[channel][slotrank].val_320c, min_320c);
|
|
}
|
|
|
|
if (max_320c - min_320c > 51)
|
|
b20 = 0;
|
|
else
|
|
b20 = ctrl->ref_card_offset[channel];
|
|
|
|
if (ctrl->reg_320c_range_threshold < max_320c - min_320c)
|
|
b4_8_12 = 0x3330;
|
|
else
|
|
b4_8_12 = 0x2220;
|
|
|
|
reg = read32(DEFAULT_MCHBAR + 0x400c + (channel << 10));
|
|
write32(DEFAULT_MCHBAR + 0x400c + (channel << 10),
|
|
(reg & 0xFFF0FFFF)
|
|
| (ctrl->ref_card_offset[channel] << 16)
|
|
| (ctrl->ref_card_offset[channel] << 18));
|
|
write32(DEFAULT_MCHBAR + 0x4008 + (channel << 10),
|
|
0x0a000000
|
|
| (b20 << 20)
|
|
| ((ctrl->ref_card_offset[channel] + 2) << 16)
|
|
| b4_8_12);
|
|
}
|
|
}
|
|
|
|
static void set_42a0(ramctr_timing * ctrl)
|
|
{
|
|
int channel;
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
write32(DEFAULT_MCHBAR + (0x42a0 + 0x400 * channel),
|
|
0x00001000 | ctrl->rankmap[channel]);
|
|
MCHBAR32(0x4004 + 0x400 * channel) &= ~0x20000000; // OK
|
|
}
|
|
}
|
|
|
|
static int encode_5d10(int ns)
|
|
{
|
|
return (ns + 499) / 500;
|
|
}
|
|
|
|
/* FIXME: values in this function should be hardware revision-dependent. */
|
|
static void final_registers(ramctr_timing * ctrl)
|
|
{
|
|
int channel;
|
|
int t1_cycles = 0, t1_ns = 0, t2_ns;
|
|
int t3_ns;
|
|
u32 r32;
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4cd4, 0x00000046);
|
|
|
|
write32(DEFAULT_MCHBAR + 0x400c, (read32(DEFAULT_MCHBAR + 0x400c) & 0xFFFFCFFF) | 0x1000); // OK
|
|
write32(DEFAULT_MCHBAR + 0x440c, (read32(DEFAULT_MCHBAR + 0x440c) & 0xFFFFCFFF) | 0x1000); // OK
|
|
write32(DEFAULT_MCHBAR + 0x4cb0, 0x00000740);
|
|
write32(DEFAULT_MCHBAR + 0x4380, 0x00000aaa); // OK
|
|
write32(DEFAULT_MCHBAR + 0x4780, 0x00000aaa); // OK
|
|
write32(DEFAULT_MCHBAR + 0x4f88, 0x5f7003ff); // OK
|
|
write32(DEFAULT_MCHBAR + 0x5064, 0x00073000 | ctrl->reg_5064b0); // OK
|
|
|
|
FOR_ALL_CHANNELS {
|
|
switch (ctrl->rankmap[channel]) {
|
|
/* Unpopulated channel. */
|
|
case 0:
|
|
write32(DEFAULT_MCHBAR + 0x4384 + channel * 0x400, 0);
|
|
break;
|
|
/* Only single-ranked dimms. */
|
|
case 1:
|
|
case 4:
|
|
case 5:
|
|
write32(DEFAULT_MCHBAR + 0x4384 + channel * 0x400, 0x373131);
|
|
break;
|
|
/* Dual-ranked dimms present. */
|
|
default:
|
|
write32(DEFAULT_MCHBAR + 0x4384 + channel * 0x400, 0x9b6ea1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
write32 (DEFAULT_MCHBAR + 0x5880, 0xca9171e5);
|
|
write32 (DEFAULT_MCHBAR + 0x5888,
|
|
(read32 (DEFAULT_MCHBAR + 0x5888) & ~0xffffff) | 0xe4d5d0);
|
|
write32 (DEFAULT_MCHBAR + 0x58a8, read32 (DEFAULT_MCHBAR + 0x58a8) & ~0x1f);
|
|
write32 (DEFAULT_MCHBAR + 0x4294,
|
|
(read32 (DEFAULT_MCHBAR + 0x4294) & ~0x30000)
|
|
| (1 << 16));
|
|
write32 (DEFAULT_MCHBAR + 0x4694,
|
|
(read32 (DEFAULT_MCHBAR + 0x4694) & ~0x30000)
|
|
| (1 << 16));
|
|
|
|
MCHBAR32(0x5030) |= 1; // OK
|
|
MCHBAR32(0x5030) |= 0x80; // OK
|
|
MCHBAR32(0x5f18) = 0xfa; // OK
|
|
|
|
/* Find a populated channel. */
|
|
FOR_ALL_POPULATED_CHANNELS
|
|
break;
|
|
|
|
t1_cycles = ((read32(DEFAULT_MCHBAR + 0x4290 + channel * 0x400) >> 8) & 0xff);
|
|
r32 = read32(DEFAULT_MCHBAR + 0x5064);
|
|
if (r32 & 0x20000)
|
|
t1_cycles += (r32 & 0xfff);
|
|
t1_cycles += (read32(DEFAULT_MCHBAR + channel * 0x400 + 0x42a4) & 0xfff);
|
|
t1_ns = t1_cycles * ctrl->tCK / 256 + 544;
|
|
if (!(r32 & 0x20000))
|
|
t1_ns += 500;
|
|
|
|
t2_ns = 10 * ((read32(DEFAULT_MCHBAR + 0x5f10) >> 8) & 0xfff);
|
|
if ( read32(DEFAULT_MCHBAR + 0x5f00) & 8 )
|
|
{
|
|
t3_ns = 10 * ((read32(DEFAULT_MCHBAR + 0x5f20) >> 8) & 0xfff);
|
|
t3_ns += 10 * (read32(DEFAULT_MCHBAR + 0x5f18) & 0xff);
|
|
}
|
|
else
|
|
{
|
|
t3_ns = 500;
|
|
}
|
|
printk(BIOS_DEBUG, "t123: %d, %d, %d\n",
|
|
t1_ns, t2_ns, t3_ns);
|
|
write32 (DEFAULT_MCHBAR + 0x5d10,
|
|
((encode_5d10(t1_ns) + encode_5d10(t2_ns)) << 16)
|
|
| (encode_5d10(t1_ns) << 8)
|
|
| ((encode_5d10(t3_ns) + encode_5d10(t2_ns) + encode_5d10(t1_ns)) << 24)
|
|
| (read32(DEFAULT_MCHBAR + 0x5d10) & 0xC0C0C0C0)
|
|
| 0xc);
|
|
}
|
|
|
|
static void save_timings(ramctr_timing *ctrl)
|
|
{
|
|
/* Save the MRC S3 restore data to cbmem */
|
|
store_current_mrc_cache(ctrl, sizeof(*ctrl));
|
|
}
|
|
|
|
static void restore_timings(ramctr_timing * ctrl)
|
|
{
|
|
int channel, slotrank, lane;
|
|
|
|
FOR_ALL_POPULATED_CHANNELS
|
|
MCHBAR32(0x4004 + 0x400 * channel) =
|
|
ctrl->tRRD
|
|
| (ctrl->tRTP << 4)
|
|
| (ctrl->tCKE << 8)
|
|
| (ctrl->tWTR << 12)
|
|
| (ctrl->tFAW << 16)
|
|
| (ctrl->tWR << 24)
|
|
| (ctrl->cmd_stretch[channel] << 30);
|
|
|
|
udelay(1);
|
|
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
wait_428c(channel);
|
|
}
|
|
|
|
FOR_ALL_CHANNELS FOR_ALL_POPULATED_RANKS FOR_ALL_LANES {
|
|
write32(DEFAULT_MCHBAR + 0x4080 + 0x400 * channel
|
|
+ 4 * lane, 0);
|
|
}
|
|
|
|
FOR_ALL_POPULATED_CHANNELS
|
|
write32(DEFAULT_MCHBAR + 0x4008 + 0x400 * channel,
|
|
read32(DEFAULT_MCHBAR + 0x4008 +
|
|
0x400 * channel) | 0x8000000);
|
|
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
udelay (1);
|
|
write32(DEFAULT_MCHBAR + 0x4020 + 0x400 * channel,
|
|
read32(DEFAULT_MCHBAR + 0x4020 +
|
|
0x400 * channel) | 0x200000);
|
|
}
|
|
|
|
printram("CPE\n");
|
|
|
|
write32(DEFAULT_MCHBAR + 0x3400, 0);
|
|
write32(DEFAULT_MCHBAR + 0x4eb0, 0);
|
|
|
|
printram("CP5b\n");
|
|
|
|
FOR_ALL_POPULATED_CHANNELS {
|
|
program_timings(ctrl, channel);
|
|
}
|
|
|
|
u32 reg, addr;
|
|
|
|
while (!(MCHBAR32(0x5084) & 0x10000));
|
|
do {
|
|
reg = MCHBAR32(0x428c);
|
|
} while ((reg & 0x14) == 0);
|
|
|
|
// Set state of memory controller
|
|
MCHBAR32(0x5030) = 0x116;
|
|
MCHBAR32(0x4ea0) = 0;
|
|
|
|
// Wait 500us
|
|
udelay(500);
|
|
|
|
FOR_ALL_CHANNELS {
|
|
// Set valid rank CKE
|
|
reg = 0;
|
|
reg = (reg & ~0xf) | ctrl->rankmap[channel];
|
|
addr = 0x400 * channel + 0x42a0;
|
|
MCHBAR32(addr) = reg;
|
|
|
|
// Wait 10ns for ranks to settle
|
|
//udelay(0.01);
|
|
|
|
reg = (reg & ~0xf0) | (ctrl->rankmap[channel] << 4);
|
|
MCHBAR32(addr) = reg;
|
|
|
|
// Write reset using a NOP
|
|
write_reset(ctrl);
|
|
}
|
|
|
|
/* mrs commands. */
|
|
dram_mrscommands(ctrl);
|
|
|
|
printram("CP5c\n");
|
|
|
|
write32(DEFAULT_MCHBAR + 0x3000, 0);
|
|
|
|
FOR_ALL_CHANNELS {
|
|
write32(DEFAULT_MCHBAR + (channel * 0x100) + 0xe3c,
|
|
0 | (read32(DEFAULT_MCHBAR + (channel * 0x100) + 0xe3c) &
|
|
~0x3f000000));
|
|
udelay(2);
|
|
}
|
|
|
|
write32(DEFAULT_MCHBAR + 0x4ea8, 0);
|
|
}
|
|
|
|
static int try_init_dram_ddr3(ramctr_timing *ctrl, int fast_boot,
|
|
int s3_resume, int me_uma_size)
|
|
{
|
|
int err;
|
|
|
|
printk(BIOS_DEBUG, "Starting RAM training (%d).\n", fast_boot);
|
|
|
|
if (!fast_boot) {
|
|
/* Find fastest common supported parameters */
|
|
dram_find_common_params(ctrl);
|
|
|
|
dram_dimm_mapping(ctrl);
|
|
}
|
|
|
|
/* Set MCU frequency */
|
|
dram_freq(ctrl);
|
|
|
|
if (!fast_boot) {
|
|
/* Calculate timings */
|
|
dram_timing(ctrl);
|
|
}
|
|
|
|
/* Set version register */
|
|
MCHBAR32(0x5034) = 0xC04EB002;
|
|
|
|
/* Enable crossover */
|
|
dram_xover(ctrl);
|
|
|
|
/* Set timing and refresh registers */
|
|
dram_timing_regs(ctrl);
|
|
|
|
/* Power mode preset */
|
|
MCHBAR32(0x4e80) = 0x5500;
|
|
|
|
/* Set scheduler parameters */
|
|
MCHBAR32(0x4c20) = 0x10100005;
|
|
|
|
/* Set CPU specific register */
|
|
set_4f8c();
|
|
|
|
/* Clear IO reset bit */
|
|
MCHBAR32(0x5030) &= ~0x20;
|
|
|
|
/* Set MAD-DIMM registers */
|
|
dram_dimm_set_mapping(ctrl);
|
|
printk(BIOS_DEBUG, "Done dimm mapping\n");
|
|
|
|
/* Zone config */
|
|
dram_zones(ctrl, 1);
|
|
|
|
/* Set memory map */
|
|
dram_memorymap(ctrl, me_uma_size);
|
|
printk(BIOS_DEBUG, "Done memory map\n");
|
|
|
|
/* Set IO registers */
|
|
dram_ioregs(ctrl);
|
|
printk(BIOS_DEBUG, "Done io registers\n");
|
|
|
|
udelay(1);
|
|
|
|
if (fast_boot) {
|
|
restore_timings(ctrl);
|
|
} else {
|
|
/* Do jedec ddr3 reset sequence */
|
|
dram_jedecreset(ctrl);
|
|
printk(BIOS_DEBUG, "Done jedec reset\n");
|
|
|
|
/* MRS commands */
|
|
dram_mrscommands(ctrl);
|
|
printk(BIOS_DEBUG, "Done MRS commands\n");
|
|
|
|
/* Prepare for memory training */
|
|
prepare_training(ctrl);
|
|
|
|
err = read_training(ctrl);
|
|
if (err)
|
|
return err;
|
|
|
|
err = write_training(ctrl);
|
|
if (err)
|
|
return err;
|
|
|
|
printram("CP5a\n");
|
|
|
|
err = discover_edges(ctrl);
|
|
if (err)
|
|
return err;
|
|
|
|
printram("CP5b\n");
|
|
|
|
err = command_training(ctrl);
|
|
if (err)
|
|
return err;
|
|
|
|
printram("CP5c\n");
|
|
|
|
err = discover_edges_write(ctrl);
|
|
if (err)
|
|
return err;
|
|
|
|
err = discover_timC_write(ctrl);
|
|
if (err)
|
|
return err;
|
|
|
|
normalize_training(ctrl);
|
|
}
|
|
|
|
set_4008c(ctrl);
|
|
|
|
write_controller_mr(ctrl);
|
|
|
|
if (!s3_resume) {
|
|
err = channel_test(ctrl);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void init_dram_ddr3(int mobile, int min_tck, int s3resume)
|
|
{
|
|
int me_uma_size;
|
|
int cbmem_was_inited;
|
|
ramctr_timing ctrl;
|
|
int fast_boot;
|
|
spd_raw_data spds[4];
|
|
struct mrc_data_container *mrc_cache;
|
|
ramctr_timing *ctrl_cached;
|
|
int err;
|
|
|
|
MCHBAR32(0x5f00) |= 1;
|
|
|
|
report_platform_info();
|
|
|
|
/* Wait for ME to be ready */
|
|
intel_early_me_init();
|
|
me_uma_size = intel_early_me_uma_size();
|
|
|
|
printk(BIOS_DEBUG, "Starting native Platform init\n");
|
|
|
|
u32 reg_5d10;
|
|
|
|
wait_txt_clear();
|
|
|
|
wrmsr(0x000002e6, (msr_t) { .lo = 0, .hi = 0 });
|
|
|
|
reg_5d10 = read32(DEFAULT_MCHBAR + 0x5d10); // !!! = 0x00000000
|
|
if ((pcie_read_config16(SOUTHBRIDGE, 0xa2) & 0xa0) == 0x20 /* 0x0004 */
|
|
&& reg_5d10 && !s3resume) {
|
|
write32(DEFAULT_MCHBAR + 0x5d10, 0);
|
|
/* Need reset. */
|
|
outb(0x6, 0xcf9);
|
|
|
|
halt();
|
|
}
|
|
|
|
memset(&ctrl, 0, sizeof(ctrl));
|
|
|
|
early_pch_init_native();
|
|
early_thermal_init();
|
|
|
|
/* try to find timings in MRC cache */
|
|
mrc_cache = find_current_mrc_cache();
|
|
if (!mrc_cache || (mrc_cache->mrc_data_size < sizeof(ctrl))) {
|
|
if (s3resume) {
|
|
/* Failed S3 resume, reset to come up cleanly */
|
|
outb(0x6, 0xcf9);
|
|
halt();
|
|
}
|
|
ctrl_cached = NULL;
|
|
} else {
|
|
ctrl_cached = (ramctr_timing *)mrc_cache->mrc_data;
|
|
}
|
|
|
|
|
|
if (!s3resume) {
|
|
memset(spds, 0, sizeof(spds));
|
|
mainboard_get_spd(spds);
|
|
}
|
|
|
|
/* verify MRC cache for fast boot */
|
|
if (!s3resume && ctrl_cached) {
|
|
/* check SPD CRC16 to make sure the DIMMs haven't been replaced */
|
|
fast_boot = verify_crc16_spds_ddr3(spds, ctrl_cached);
|
|
if (!fast_boot)
|
|
printk(BIOS_DEBUG, "Stored timings CRC16 mismatch.\n");
|
|
} else {
|
|
fast_boot = s3resume;
|
|
}
|
|
|
|
if (fast_boot) {
|
|
printk(BIOS_DEBUG, "Trying stored timings.\n");
|
|
memcpy(&ctrl, ctrl_cached, sizeof(ctrl));
|
|
|
|
err = try_init_dram_ddr3(&ctrl, fast_boot, s3resume, me_uma_size);
|
|
if (err) {
|
|
if (s3resume) {
|
|
/* Failed S3 resume, reset to come up cleanly */
|
|
outb(0x6, 0xcf9);
|
|
halt();
|
|
}
|
|
/* no need to erase bad mrc cache here, it gets overwritten on
|
|
* successful boot. */
|
|
printk(BIOS_ERR, "Stored timings are invalid !\n");
|
|
fast_boot = 0;
|
|
}
|
|
}
|
|
if (!fast_boot) {
|
|
ctrl.mobile = mobile;
|
|
ctrl.tCK = min_tck;
|
|
|
|
/* Get DDR3 SPD data */
|
|
dram_find_spds_ddr3(spds, &ctrl);
|
|
|
|
err = try_init_dram_ddr3(&ctrl, fast_boot, s3resume, me_uma_size);
|
|
}
|
|
|
|
if (err) {
|
|
/* fallback: disable failing channel */
|
|
printk(BIOS_ERR, "RAM training failed, trying fallback.\n");
|
|
printram("Disable failing channel.\n");
|
|
|
|
/* Reset DDR3 frequency */
|
|
dram_find_spds_ddr3(spds, &ctrl);
|
|
|
|
/* disable failing channel */
|
|
disable_channel(&ctrl, GET_ERR_CHANNEL(err));
|
|
|
|
err = try_init_dram_ddr3(&ctrl, fast_boot, s3resume, me_uma_size);
|
|
}
|
|
|
|
if (err)
|
|
die("raminit failed");
|
|
|
|
/* FIXME: should be hardware revision-dependent. */
|
|
write32(DEFAULT_MCHBAR + 0x5024, 0x00a030ce);
|
|
|
|
set_scrambling_seed(&ctrl);
|
|
|
|
set_42a0(&ctrl);
|
|
|
|
final_registers(&ctrl);
|
|
|
|
/* Zone config */
|
|
dram_zones(&ctrl, 0);
|
|
|
|
if (!fast_boot)
|
|
quick_ram_check();
|
|
|
|
intel_early_me_status();
|
|
intel_early_me_init_done(ME_INIT_STATUS_SUCCESS);
|
|
intel_early_me_status();
|
|
|
|
report_memory_config();
|
|
|
|
cbmem_was_inited = !cbmem_recovery(s3resume);
|
|
if (!fast_boot)
|
|
save_timings(&ctrl);
|
|
if (s3resume && !cbmem_was_inited) {
|
|
/* Failed S3 resume, reset to come up cleanly */
|
|
outb(0x6, 0xcf9);
|
|
halt();
|
|
}
|
|
|
|
fill_smbios17(&ctrl);
|
|
}
|
|
|
|
#define HOST_BRIDGE PCI_DEVFN(0, 0)
|
|
#define DEFAULT_TCK TCK_800MHZ
|
|
|
|
static unsigned int get_mem_min_tck(void)
|
|
{
|
|
u32 reg32;
|
|
u8 rev;
|
|
const struct device *dev;
|
|
const struct northbridge_intel_sandybridge_config *cfg = NULL;
|
|
|
|
dev = dev_find_slot(0, HOST_BRIDGE);
|
|
if (dev)
|
|
cfg = dev->chip_info;
|
|
|
|
/* If this is zero, it just means devicetree.cb didn't set it */
|
|
if (!cfg || cfg->max_mem_clock_mhz == 0) {
|
|
rev = pci_read_config8(PCI_DEV(0, 0, 0), PCI_DEVICE_ID);
|
|
|
|
if ((rev & BASE_REV_MASK) == BASE_REV_SNB) {
|
|
/* read Capabilities A Register DMFC bits */
|
|
reg32 = pci_read_config32(PCI_DEV(0, 0, 0), CAPID0_A);
|
|
reg32 &= 0x7;
|
|
|
|
switch (reg32) {
|
|
case 7: return TCK_533MHZ;
|
|
case 6: return TCK_666MHZ;
|
|
case 5: return TCK_800MHZ;
|
|
/* reserved: */
|
|
default:
|
|
break;
|
|
}
|
|
} else {
|
|
/* read Capabilities B Register DMFC bits */
|
|
reg32 = pci_read_config32(PCI_DEV(0, 0, 0), CAPID0_B);
|
|
reg32 = (reg32 >> 4) & 0x7;
|
|
|
|
switch (reg32) {
|
|
case 7: return TCK_533MHZ;
|
|
case 6: return TCK_666MHZ;
|
|
case 5: return TCK_800MHZ;
|
|
case 4: return TCK_933MHZ;
|
|
case 3: return TCK_1066MHZ;
|
|
case 2: return TCK_1200MHZ;
|
|
case 1: return TCK_1333MHZ;
|
|
/* reserved: */
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return DEFAULT_TCK;
|
|
} else {
|
|
if (cfg->max_mem_clock_mhz >= 1066)
|
|
return TCK_1066MHZ;
|
|
else if (cfg->max_mem_clock_mhz >= 933)
|
|
return TCK_933MHZ;
|
|
else if (cfg->max_mem_clock_mhz >= 800)
|
|
return TCK_800MHZ;
|
|
else if (cfg->max_mem_clock_mhz >= 666)
|
|
return TCK_666MHZ;
|
|
else if (cfg->max_mem_clock_mhz >= 533)
|
|
return TCK_533MHZ;
|
|
else
|
|
return TCK_400MHZ;
|
|
}
|
|
}
|
|
|
|
#define DEFAULT_PCI_MMIO_SIZE 2048
|
|
|
|
static unsigned int get_mmio_size(void)
|
|
{
|
|
const struct device *dev;
|
|
const struct northbridge_intel_sandybridge_config *cfg = NULL;
|
|
|
|
dev = dev_find_slot(0, HOST_BRIDGE);
|
|
if (dev)
|
|
cfg = dev->chip_info;
|
|
|
|
/* If this is zero, it just means devicetree.cb didn't set it */
|
|
if (!cfg || cfg->pci_mmio_size == 0)
|
|
return DEFAULT_PCI_MMIO_SIZE;
|
|
else
|
|
return cfg->pci_mmio_size;
|
|
}
|
|
|
|
void perform_raminit(int s3resume)
|
|
{
|
|
post_code(0x3a);
|
|
|
|
timestamp_add_now(TS_BEFORE_INITRAM);
|
|
|
|
init_dram_ddr3(1, get_mem_min_tck(), s3resume);
|
|
}
|