switch-coreboot/util/dtc/flattree.c
Myles Watson 5227098e16 This patch removes the logic for multiple links. It would put siblings that
were bridges as separate links.  There isn't a board in v3 that needs multiple
links yet.

Signed-off-by: Myles Watson <mylesgw@gmail.com>
Acked-by: Marc Jones <marcj303@gmail.com>


git-svn-id: svn://coreboot.org/repository/coreboot-v3@1079 f3766cd6-281f-0410-b1cd-43a5c92072e9
2008-12-19 02:40:54 +00:00

1952 lines
47 KiB
C

/*
* (C) Copyright David Gibson <dwg@au1.ibm.com>, IBM Corporation. 2005.
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA
*/
#include "dtc.h"
#include "flat_dt.h"
#define FTF_FULLPATH 0x1
#define FTF_VARALIGN 0x2
#define FTF_NAMEPROPS 0x4
#define FTF_BOOTCPUID 0x8
#define FTF_STRTABSIZE 0x10
static struct version_info {
int version;
int last_comp_version;
int hdr_size;
int flags;
} version_table[] = {
{1, 1, BPH_V1_SIZE,
FTF_FULLPATH|FTF_VARALIGN|FTF_NAMEPROPS},
{2, 1, BPH_V2_SIZE,
FTF_FULLPATH|FTF_VARALIGN|FTF_NAMEPROPS|FTF_BOOTCPUID},
{3, 1, BPH_V3_SIZE,
FTF_FULLPATH|FTF_VARALIGN|FTF_NAMEPROPS|FTF_BOOTCPUID|FTF_STRTABSIZE},
{0x10, 0x10, BPH_V3_SIZE,
FTF_BOOTCPUID|FTF_STRTABSIZE},
};
struct emitter {
void (*cell)(void *, cell_t);
void (*string)(void *, char *, int);
void (*align)(void *, int);
void (*data)(void *, struct property *);
void (*beginnode)(void *, char *);
void (*endnode)(void *, char *);
void (*property)(void *, char *);
void(*special)(FILE *f, struct node *);
};
char *
clean(char *name, int instantiate){
char *cleanname = strdup(name), *cp;
for(cp = cleanname; *cp; cp++)
switch(*cp) {
case '#':
*cp = 'H';
break;
case '@':
/* if we are declaring it, this is an instance. If not, this is a struct type */
if (instantiate)
*cp = '_';
else
*cp = 0;
break;
case '-':
case ',':
*cp = '_';
break;
}
return cleanname;
}
char *
topath(struct property *p){
struct data d = p->val;
int i = 0;
char *pathname, *cp;
pathname = malloc(d.len + 1);
for(cp = pathname, i = 0; i < d.len; i++, cp++) {
switch(d.val[i]){
case '@':
*cp = 0;
break;
case ',':
*cp = '/';
break;
default:
*cp = d.val[i];
break;
}
}
*cp++ = 0;
return pathname;
}
char *toname(char *path, char *suffix){
char *ret = malloc(strlen(path) + strlen(suffix) + 1), *cp, *src;
for(cp = ret, src = path; *src; cp++, src++){
if (*src == '/')
*cp = '_';
else
*cp = *src;
}
*cp = 0;
cp = ret;
if (suffix)
strcat(cp, suffix);
return cp;
}
static void bin_emit_cell(void *e, cell_t val)
{
struct data *dtbuf = e;
*dtbuf = data_append_cell(*dtbuf, val);
}
static void bin_emit_string(void *e, char *str, int len)
{
struct data *dtbuf = e;
if (len == 0)
len = strlen(str);
*dtbuf = data_append_data(*dtbuf, str, len);
*dtbuf = data_append_byte(*dtbuf, '\0');
}
static void bin_emit_align(void *e, int a)
{
struct data *dtbuf = e;
*dtbuf = data_append_align(*dtbuf, a);
}
static void bin_emit_data(void *e, struct property *p)
{
struct data d = p->val;
struct data *dtbuf = e;
*dtbuf = data_append_data(*dtbuf, d.val, d.len);
}
static void bin_emit_beginnode(void *e, char *label)
{
bin_emit_cell(e, OF_DT_BEGIN_NODE);
}
static void bin_emit_endnode(void *e, char *label)
{
bin_emit_cell(e, OF_DT_END_NODE);
}
static void bin_emit_property(void *e, char *label)
{
bin_emit_cell(e, OF_DT_PROP);
}
static struct emitter bin_emitter = {
.cell = bin_emit_cell,
.string = bin_emit_string,
.align = bin_emit_align,
.data = bin_emit_data,
.beginnode = bin_emit_beginnode,
.endnode = bin_emit_endnode,
.property = bin_emit_property,
};
static void emit_label(FILE *f, char *prefix, char *label)
{
fprintf(f, "\t.globl\t%s_%s\n", prefix, label);
fprintf(f, "%s_%s:\n", prefix, label);
fprintf(f, "_%s_%s:\n", prefix, label);
}
static void asm_emit_cell(void *e, cell_t val)
{
FILE *f = e;
fprintf(f, "\t.long\t0x%x\n", val);
}
static void asm_emit_string(void *e, char *str, int len)
{
FILE *f = e;
char c = 0;
if (len != 0) {
/* XXX: ewww */
c = str[len];
str[len] = '\0';
}
fprintf(f, "\t.string\t\"%s\"\n", str);
if (len != 0) {
str[len] = c;
}
}
static void asm_emit_align(void *e, int a)
{
FILE *f = e;
fprintf(f, "\t.balign\t%d\n", a);
}
static void asm_emit_data(void *e, struct property *p)
{
struct data d = p->val;
FILE *f = e;
int off = 0;
while ((d.len - off) >= sizeof(u32)) {
fprintf(f, "\t.long\t0x%x\n",
be32_to_cpu(*((u32 *)(d.val+off))));
off += sizeof(u32);
}
if ((d.len - off) >= sizeof(u16)) {
fprintf(f, "\t.short\t0x%hx\n",
be16_to_cpu(*((u16 *)(d.val+off))));
off += sizeof(u16);
}
if ((d.len - off) >= 1) {
fprintf(f, "\t.byte\t0x%hhx\n", d.val[off]);
off += 1;
}
assert(off == d.len);
}
static void asm_emit_beginnode(void *e, char *label)
{
FILE *f = e;
if (label) {
fprintf(f, "\t.globl\t%s\n", label);
fprintf(f, "%s:\n", label);
}
fprintf(f, "\t.long\tOF_DT_BEGIN_NODE\n");
}
static void asm_emit_endnode(void *e, char *label)
{
FILE *f = e;
fprintf(f, "\t.long\tOF_DT_END_NODE\n");
if (label) {
fprintf(f, "\t.globl\t%s_end\n", label);
fprintf(f, "%s_end:\n", label);
}
}
static void asm_emit_property(void *e, char *label)
{
FILE *f = e;
if (label) {
fprintf(f, "\t.globl\t%s\n", label);
fprintf(f, "%s:\n", label);
}
fprintf(f, "\t.long\tOF_DT_PROP\n");
}
static struct emitter asm_emitter = {
.cell = asm_emit_cell,
.string = asm_emit_string,
.align = asm_emit_align,
.data = asm_emit_data,
.beginnode = asm_emit_beginnode,
.endnode = asm_emit_endnode,
.property = asm_emit_property,
};
int unique = 0;
static void C_emit_cell(void *e, cell_t val)
{
FILE *f = e;
fprintf(f, "\tu32\tc%d = 0x%x;\n", unique++, val);
}
static void C_emit_string(void *e, char *str, int len)
{
FILE *f = e;
char c = 0;
if (len != 0) {
/* XXX: ewww */
c = str[len];
str[len] = '\0';
}
fprintf(f, "\tunsigned char *c%d = \t\"%s\";\n", unique++, str);
if (len != 0) {
str[len] = c;
}
}
static void C_emit_align(void *e, int a)
{
FILE *f = e;
fprintf(f, "\tALIGN(x)\t%d\n", a);
}
static void C_emit_data(void *e, struct property *p)
{
struct data d = p->val;
FILE *f = e;
int off = 0;
while ((d.len - off) >= sizeof(u32)) {
fprintf(f, "\tu32 d%d = \t0x%x;\n",unique++,
be32_to_cpu(*((u32 *)(d.val+off))));
off += sizeof(u32);
}
if ((d.len - off) >= sizeof(u16)) {
fprintf(f, "\tu16 d%d = \t0x%hx;\n", unique++,
be16_to_cpu(*((u16 *)(d.val+off))));
off += sizeof(u16);
}
if ((d.len - off) >= 1) {
fprintf(f, "\tu8 d%d = \t0x%hhx;\n", unique++, d.val[off]);
off += 1;
}
assert(off == d.len);
}
static void C_emit_beginnode(void *e, char *label)
{
FILE *f = e;
if (label) {
fprintf(f, "struct\t%s {\n", label);
}
fprintf(f, "\tu32\tn%d = OF_DT_BEGIN_NODE;\n", unique++);
}
static void C_emit_endnode(void *e, char *label)
{
FILE *f = e;
fprintf(f, "\tu32\ten%d = OF_DT_END_NODE;\n", unique++);
if (label) {
fprintf(f, "\t\t%s;\n", label);
}
}
static void C_emit_struct_start(void *e, char *prefix, char *label)
{
FILE *f = e;
if (label) {
fprintf(f, "struct\t%s {\n", label);
}
}
static void C_emit_struct_end(void *e, char *prefix, char *label)
{
FILE *f = e;
if (label) {
fprintf(f, "}; /*%s*/\n", label);
}
}
static void C_emit_property(void *e, char *label)
{
FILE *f = e;
if (label) {
fprintf(f, "\tstruct p%d\t%s{\n", unique++, label);
}
fprintf(f, "\tu32 p%d = \tOF_DT_PROP;\n", unique++);
}
static struct emitter C_emitter = {
.cell = C_emit_cell,
.string = C_emit_string,
.align = C_emit_align,
.data = C_emit_data,
.beginnode = C_emit_beginnode,
.endnode = C_emit_endnode,
.property = C_emit_property,
};
/* coreboot static.c */
static void coreboot_emit_cell(void *e, cell_t val)
{
FILE *f = e;
fprintf(f, "\tu32\tc%d = 0x%x;\n", unique++, val);
}
static void coreboot_emit_string(void *e, char *str, int len)
{
FILE *f = e;
char c = 0;
if (len != 0) {
/* XXX: ewww */
c = str[len];
str[len] = '\0';
}
fprintf(f, "\tunsigned char *c%d = \t\"%s\";\n", unique++, str);
if (len != 0) {
str[len] = c;
}
}
static void coreboot_emit_align(void *e, int a)
{
FILE *f = e;
fprintf(f, "\tALIGN(x)\t%d\n", a);
}
static void coreboot_emit_data(void *e, struct property *p)
{
struct data d = p->val;
FILE *f = e;
int i;
char *cleanname;
int vallen = d.len > 4 ? 4 : d.len;
/* nothing to do? */
if (d.len == 0)
return;
cleanname = clean(p->name, 1);
if (d.type == 'S') {
// Standard property (scalar)
fprintf(f, "\t.%s = ", cleanname);
fprintf(f, "0x%lx,\n", strtoul((char *)d.val, 0, 0));
} else if (d.type == 'C') {
// 'Cell' property (array of 4-byte elements)
fprintf(f, "\t.%s = {\n", cleanname);
int i;
for (i = 0; (i < d.len) && (0 != *(u32 *)(d.val+i)); i = i+4) {
fprintf(f, "\t\t[%d] = 0x%08X,\n",i/4,*(u32 *)(d.val+i));
}
fprintf(f, "\t\t[%d] = 0x0,\n",i/4); // Make sure to end our array with a zero element
fprintf(f, "\t},\n");
} else if (d.type == 'B') {
fprintf(f, "\tUNIMPLEMENTED: FIXME\n");
}
free(cleanname);
#if 0
/* sorry, but right now, u32 is all you get */
fprintf(f, "0");
for(i = 0; i < vallen; i++)
fprintf(f, "|(0x%02x<<%d)", d.val[i], (3-i)*8);
fprintf(f, ",\n");
#endif
}
static void coreboot_emit_beginnode(void *e, char *label)
{
FILE *f = e;
if (label) {
fprintf(f, "struct\t%s {\n", label);
}
}
static void coreboot_emit_endnode(void *e, char *label)
{
FILE *f = e;
if (label) {
fprintf(f, "}; /*%s*/\n", label);
}
}
#ifdef COREBOOT_OUTPUT
static void coreboot_emit_struct_start(void *e, char *prefix, char *label)
{
FILE *f = e;
if (label) {
fprintf(f, "struct\t%s {\n", label);
}
}
static void coreboot_emit_struct_end(void *e, char *prefix, char *label)
{
FILE *f = e;
if (label) {
fprintf(f, "}; /*%s*/\n", label);
}
}
#endif
static void coreboot_emit_property(void *e, char *label)
{
FILE *f = e;
if (label) {
fprintf(f, "\tstruct p%d\t%s{\n", unique++, label);
}
fprintf(f, "\tu32 p%d = \tOF_DT_PROP;\n", unique++);
}
/* Is the node a bridge?
* If it has children, yes.
* OR if it has a config, if the config has
* the 'bridge' property, yes.
*/
static int is_bridge(struct node *tree)
{
int bridge = 0;
struct property *prop;
/* simple test: does it have children? If so, it's a bridge */
if (tree->children)
return 1;
if (tree->config){
for_each_config(tree, prop) {
if (streq(prop->name, "bridge")){
bridge = 1;
}
}
}
return bridge;
}
static void coreboot_emit_special(FILE *e, struct node *tree)
{
FILE *f = e;
struct property *prop;
int ops_set = 0;
int is_root = 0;
char *configname;
char *path;
int enabled = 1;
int linkcount = 0;
fprintf(f, "struct device dev_%s = {\n", tree->label);
/* special case -- the root has a distinguished path */
if (! strncmp(tree->label, "root", 4)){
is_root = 1;
fprintf(f, "\t.path = { .type = DEVICE_PATH_ROOT },\n");
}
/* special case -- cpus don't have an @ */
if (tree->name && !strncmp(tree->name, "cpus", 4)){
fprintf(f, "\t.path = {.type=DEVICE_PATH_CPU},\n");
}
/* from the node names (tree->name) we derive the path */
path = index(tree->name, '@');
if (path && path[1]) {
path++;
if (!strncmp(tree->name, "bus", 3)){
fprintf(f, "\t.path = {.type=DEVICE_PATH_PCI_BUS,{.pci_bus={ .bus = 0x%s }}},\n",
path);
}
if (!strncmp(tree->name, "apic", 4)){
fprintf(f, "\t.path = {.type=DEVICE_PATH_APIC,{.apic={ 0x%s }}},\n",
path);
}
if (!strncmp(tree->name, "domain", 6)){
fprintf(f, "\t.path = {.type=DEVICE_PATH_PCI_DOMAIN,{.pci_domain={ .domain = 0x%s }}},\n",
path);
}
if (!strncmp(tree->name, "pci", 3)){
/* it's in two parts */
char *devfn = strdup(path);
char *dev = devfn;
char *fn;
fn = index(devfn, ',');
/* if there is no fn we assume 0 */
/* the Rules are unclear on this point */
if (fn)
*fn++ = 0;
else
fn = "0";
fprintf(f, "\t.path = {.type=DEVICE_PATH_PCI,{.pci={ .devfn = PCI_DEVFN(0x%s, 0x%s)}}},\n",
dev, fn);
}
if (!strncmp(tree->name, "ioport", 6)){
fprintf(f, "\t.path = {.type=DEVICE_PATH_IOPORT,{.ioport={.iobase=0x%s}}},\n",
path);
}
}
if (tree->config){
configname = clean(tree->label, 0);
printf("\t.device_configuration = &%s,\n", configname);
/* The config property list for a device is derived from the
* device dts, e.g. northbridge/intel/i440bx/dts, not the
* mainboard dts.
* Almost all of these properties are specific to the device.
* Some, such as the device id, are part of the common
* device struct. Check the config properties and
* pull out those properties that are for the common
* (a.k.a. generic) device struct.
*/
/* get the properties out that are generic device props */
for_each_config(tree, prop) {
if (streq(prop->name, "constructor")){
fprintf(f, "\t.ops = &%s,\n", prop->val.val);
}
if (streq(prop->name, "device_operations")){
fprintf(f, "\t.ops = &%s,\n", prop->val.val);
}
if (streq(prop->name, "ops_pci_bus")){
fprintf(f, "\t.ops_pci_bus = &%s,\n", clean((char *)prop->val.val, 0));
ops_set = 1;
}
}
}
/* Process the properties specified in the mainboard dts.
* Some of these properties require special initialization
* (e.g. the path); some are flags, i.e. if the property exists
* then a variable is set to 1 (e.g. on_mainboard);
* and some are just set directly into the code (e.g. ops_pci).
*/
/* If it's in the tree, it's on the mainboard. */
fprintf(f, "\t.on_mainboard = 1,\n");
for_each_property(tree, prop) {
/* to do: check the value, maybe. Kinda pointless though. */
if (streq(prop->name, "subsystem_vendor")){
fprintf(f, "\t.subsystem_vendor = %s,\n", prop->val.val);
}
if (streq(prop->name, "subsystem_device")){
fprintf(f, "\t.subsystem_device = %s,\n", prop->val.val);
}
if (streq(prop->name, "enabled")){
enabled = 1;
}
if (streq(prop->name, "disabled")){
enabled = 0;
}
if (streq(prop->name, "rom_address")){
fprintf(f, "\t.rom_address = %s,\n", prop->val.val);
}
if (streq(prop->name, "config")){
fprintf(f, "\t.device_configuration = &%s,\n", clean(tree->label, 1));
}
if (streq(prop->name, "ops")){
fprintf(f, "\t.ops = &%s,\n", clean((char *)prop->val.val, 0));
ops_set = 1;
}
if (streq(prop->name, "ops_pci")){
fprintf(f, "\t.ops_pci = &%s,\n", clean((char *)prop->val.val, 0));
ops_set = 1;
}
if (streq(prop->name, "ops_pci_bus")){
fprintf(f, "\t.ops_pci_bus = &%s,\n", clean((char *)prop->val.val, 0));
ops_set = 1;
}
if (streq(prop->name, "ops_smbus_bus")){
fprintf(f, "\t.ops_smbus_bus = &%s,\n", clean((char *)prop->val.val, 0));
ops_set = 1;
}
}
if (tree->next_sibling)
fprintf(f, "\t.sibling = &dev_%s,\n", tree->next_sibling->label);
/* If we are a bridge, and we have not been linked, then set up our links.
* There is a good chance we could expand the for loop to contain this first bit of code.
* OTOH, the compiler can do it for us, and the initial conditions are clearer this way.
*/
if (is_bridge(tree)){
struct node *siblings;
fprintf(f,"\t.link = {\n");
fprintf(f,"\t\t[%d] = {\n", linkcount);
fprintf(f,"\t\t\t.dev = &dev_%s,\n", tree->label);
fprintf(f,"\t\t\t.link = %d,\n", linkcount);
if (tree->children)
fprintf(f,"\t\t\t.children = &dev_%s\n", tree->children->label);
fprintf(f,"\t\t},\n");
/* now we need to handle our siblings. */
linkcount++;
fprintf(f,"\t},\n");
}
fprintf(f,"\t.links = %d,\n", linkcount);
/* fill in the 'bus I am on' entry */
/* being 'linked' on a bus overrides the parent link */
if (tree->linked)
fprintf(f, "\t.bus = &dev_%s.link[%d],\n", tree->linknode->label, tree->whichlink);
else if (tree->parent)
fprintf(f, "\t.bus = &dev_%s.link[0],\n", tree->parent->label);
else /* this is a very unusual case: the root */
fprintf(f, "\t.bus = &dev_%s.link[0],\n", tree->label);
if (tree->next)
fprintf(f, "\t.next = &dev_%s,\n", tree->next->label);
if ((! ops_set) && is_root)
fprintf(f, "\t.ops = &default_dev_ops_root,\n");
fprintf(f, "\t.dtsname = \"%s\",\n", tree->label);
fprintf(f, "\t.enabled = %d\n", enabled);
fprintf(f, "};\n");
}
static struct emitter coreboot_emitter = {
.cell = coreboot_emit_cell,
.string = coreboot_emit_string,
.align = coreboot_emit_align,
.data = coreboot_emit_data,
.beginnode = coreboot_emit_beginnode,
.endnode = coreboot_emit_endnode,
.property = coreboot_emit_property,
.special = coreboot_emit_special,
};
static int stringtable_insert(struct data *d, char *str)
{
int i;
/* FIXME: do this more efficiently? */
for (i = 0; i < d->len; i++) {
if (streq(str, d->val + i))
return i;
}
*d = data_append_data(*d, str, strlen(str)+1);
return i;
}
/* we're going to overload the name node for testing. This may be the wrong thing long-term */
static void flatten_tree_emit_includes(struct node *tree, struct emitter *emit,
void *etarget, struct data *strbuf,
struct version_info *vi)
{
char *pathname;
struct property *prop;
struct node *child;
FILE *f = etarget;
for_each_property(tree, prop) {
if (streq(prop->name, "config")) {
pathname = topath(prop);
fprintf(f, "#include <%s/config.h>\n", pathname);
free(pathname);
}
}
for_each_child(tree, child) {
flatten_tree_emit_includes(child, emit, etarget, strbuf, vi);
}
}
static void flatten_tree_emit_device_operations(struct node *tree, struct emitter *emit,
void *etarget, struct data *strbuf,
struct version_info *vi)
{
struct property *prop;
struct node *child;
/* find any/all properties with the name constructor */
for_each_config(tree, prop) {
if (streq(prop->name, "constructor")){
fprintf(stderr, "LEFT OVER CONSTRUCTOR -- FIX ME\n");
printf("\t&%s,\n", prop->val.val);
}
}
for_each_property(tree, prop) {
if (streq(prop->name, "constructor")){
printf("\t&%s,\n", prop->val.val);
fprintf(stderr, "LEFT OVER CONSTRUCTOR -- FIX ME\n");
}
}
for_each_config(tree, prop) {
if (streq(prop->name, "device_operations")){
printf("\t&%s,\n", prop->val.val);
}
}
for_each_property(tree, prop) {
if (streq(prop->name, "device_operations")){
printf("\t&%s,\n", prop->val.val);
}
}
for_each_child(tree, child) {
flatten_tree_emit_device_operations(child, emit, etarget, strbuf, vi);
}
}
char *emitted_names[256];
int emitted_names_count = 0;
static void flatten_tree_emit_structdecls(struct node *tree, struct emitter *emit,
void *etarget, struct data *strbuf,
struct version_info *vi)
{
char *treename;
struct property *prop;
struct node *child;
int seen_name_prop = 0;
FILE *f = etarget;
int doconfig = 0;
int already_done = 0;
if (tree->config){
int i;
// treename = clean(tree->label, 0);
treename = toname(tree->config->label, "_config");
for(i = 0; i < emitted_names_count; i++)
if (!strcmp(treename, emitted_names[i]))
already_done++;
if (! already_done) {
emitted_names[emitted_names_count++] = treename;
doconfig = 1;
}
}
if (doconfig) {
emit->beginnode(etarget, treename);
#if 0
if (vi->flags & FTF_FULLPATH)
emit->string(etarget, tree->fullpath, 0);
else
emit->string(etarget, tree->name, 0);
#endif
for_each_config(tree, prop) {
char *cleanname;
if (streq(prop->name, "name"))
seen_name_prop = 1;
if (streq(prop->name, "constructor")) /* this is special */
continue;
if (streq(prop->name, "device_operations")) /* this is special */
continue;
cleanname = clean(prop->name, 0);
if (prop->val.type == 'S') {
// Standard property, scalar
fprintf(f, "\tu32 %s;\n", cleanname);
} else if (prop->val.type == 'C') {
// 'Cell' property (array of 4-byte elements)
fprintf(f, "\tu32 %s[%d];\n", cleanname,prop->val.len/4+1);
} else if (prop->val.type == 'B') {
// Byte property
fprintf(f, "\tUNIMPLEMENTED: FIXME\n");
}
free(cleanname);
}
#if 0
if ((vi->flags & FTF_NAMEPROPS) && !seen_name_prop) {
fprintf(f, "\tu8 %s[%d];\n", prop->name, prop->val.len);
}
#endif
emit->endnode(etarget, treename);
}
for_each_config(tree, prop) {
if (! streq(prop->name, "constructor")) /* this is special */
continue;
fprintf(f, "extern struct device_operations %s;\n", prop->val.val);
}
for_each_config(tree, prop) {
if (! streq(prop->name, "device_operations")) /* this is special */
continue;
fprintf(f, "extern struct device_operations %s;\n", prop->val.val);
}
for_each_property(tree, prop) {
if (! streq(prop->name, "constructor")) /* this is special */
continue;
fprintf(f, "extern struct device_operations %s;\n", prop->val.val);
}
for_each_property(tree, prop) {
if (! streq(prop->name, "device_operations")) /* this is special */
continue;
fprintf(f, "extern struct device_operations %s;\n", prop->val.val);
}
for_each_property(tree, prop) {
if (! streq(prop->name, "ops")) /* this is special */
continue;
fprintf(f, "extern struct device_operations %s;\n", prop->val.val);
}
for_each_child(tree, child) {
flatten_tree_emit_structdecls(child, emit, etarget, strbuf, vi);
}
}
int structunique = 0;
static void flatten_tree_emit_structinits(struct node *tree, struct emitter *emit,
void *etarget, struct data *strbuf,
struct version_info *vi)
{
char *treename, *treelabel, *structname;
struct property *configprop, *dtsprop;
struct node *child;
int seen_name_prop = 0;
FILE *f = etarget;
/* here is the real action. What we have to do, given a -> config entry, is this:
* foreach property(tree->config)
* search for the property in this node's property list
* if found, then emit that with its initialization
* else emit the one from the config
* if there is a property in the list not in the config -> error
* later on, get smart, and remove properties as they are found.
* for now, be stupid.
*/
if (tree->config){
treelabel = clean(tree->label, 0);
structname = toname(tree->config->label, "_config");
/* beginnode does not work here.
* the design of this code is wrong and must be fixed.
* the operator should take the node itself, not a string.
*/
printf("struct %s %s = {\n", structname, treelabel);
for_each_config(tree, configprop) {
char *cleanname;
int found = 0;
if (streq(configprop->name, "constructor")) /* this is special */
continue;
if (streq(configprop->name, "device_operations")) /* this is special */
continue;
for_each_property(tree, dtsprop) {
if (streq(dtsprop->name,configprop->name)){
emit->data(etarget, dtsprop);
found = 1;
}
}
if (! found)
emit->data(etarget, configprop);
}
emit->endnode(etarget, treelabel);
}
/* now emit the device for this node, with sibling and child pointers etc. */
emit->special(f, tree);
for_each_child(tree, child) {
flatten_tree_emit_structinits(child, emit, etarget, strbuf, vi);
}
}
static void flatten_tree(struct node *tree, struct emitter *emit,
void *etarget, struct data *strbuf,
struct version_info *vi)
{
struct property *prop, *config;
struct node *child;
int seen_name_prop = 0;
emit->beginnode(etarget, tree->label);
if (vi->flags & FTF_FULLPATH)
emit->string(etarget, tree->fullpath, 0);
else
emit->string(etarget, tree->name, 0);
emit->align(etarget, sizeof(cell_t));
for_each_property(tree, prop) {
int nameoff;
if (streq(prop->name, "name"))
seen_name_prop = 1;
nameoff = stringtable_insert(strbuf, prop->name);
emit->property(etarget, prop->label);
emit->cell(etarget, prop->val.len);
emit->cell(etarget, nameoff);
if ((vi->flags & FTF_VARALIGN) && (prop->val.len >= 8))
emit->align(etarget, 8);
emit->data(etarget, prop);
emit->align(etarget, sizeof(cell_t));
}
if ((vi->flags & FTF_NAMEPROPS) && !seen_name_prop) {
emit->property(etarget, NULL);
emit->cell(etarget, tree->basenamelen+1);
emit->cell(etarget, stringtable_insert(strbuf, "name"));
if ((vi->flags & FTF_VARALIGN) && ((tree->basenamelen+1) >= 8))
emit->align(etarget, 8);
emit->string(etarget, tree->name, tree->basenamelen);
emit->align(etarget, sizeof(cell_t));
}
for_each_child(tree, child) {
flatten_tree(child, emit, etarget, strbuf, vi);
}
for_each_config(tree, prop) {
int nameoff;
if (streq(prop->name, "name"))
seen_name_prop = 1;
nameoff = stringtable_insert(strbuf, prop->name);
emit->property(etarget, prop->label);
emit->cell(etarget, prop->val.len);
emit->cell(etarget, nameoff);
if ((vi->flags & FTF_VARALIGN) && (prop->val.len >= 8))
emit->align(etarget, 8);
emit->data(etarget, prop);
emit->align(etarget, sizeof(cell_t));
}
emit->endnode(etarget, tree->label);
}
static struct data flatten_reserve_list(struct reserve_info *reservelist,
struct version_info *vi)
{
struct reserve_info *re;
struct data d = empty_data;
for (re = reservelist; re; re = re->next) {
d = data_append_re(d, &re->re);
}
return d;
}
static void make_bph(struct boot_param_header *bph,
struct version_info *vi,
int reservesize, int dtsize, int strsize,
int boot_cpuid_phys)
{
int reserve_off;
reservesize += sizeof(struct reserve_entry);
memset(bph, 0xff, sizeof(*bph));
bph->magic = cpu_to_be32(OF_DT_HEADER);
bph->version = cpu_to_be32(vi->version);
bph->last_comp_version = cpu_to_be32(vi->last_comp_version);
/* Reserve map should be doubleword aligned */
reserve_off = DALIGN(vi->hdr_size, 8);
bph->off_mem_rsvmap = cpu_to_be32(reserve_off);
bph->off_dt_struct = cpu_to_be32(reserve_off + reservesize);
bph->off_dt_strings = cpu_to_be32(reserve_off + reservesize
+ dtsize);
bph->totalsize = cpu_to_be32(reserve_off + reservesize
+ dtsize + strsize);
if (vi->flags & FTF_BOOTCPUID)
bph->boot_cpuid_phys = cpu_to_be32(boot_cpuid_phys);
if (vi->flags & FTF_STRTABSIZE)
bph->size_dt_strings = cpu_to_be32(strsize);
}
void dt_to_blob(FILE *f, struct boot_info *bi, int version,
int boot_cpuid_phys)
{
struct version_info *vi = NULL;
int i;
struct data dtbuf = empty_data;
struct data strbuf = empty_data;
struct data reservebuf;
struct boot_param_header bph;
struct reserve_entry termre = {.address = 0, .size = 0};
for (i = 0; i < ARRAY_SIZE(version_table); i++) {
if (version_table[i].version == version)
vi = &version_table[i];
}
if (!vi)
die("Unknown device tree blob version %d\n", version);
dtbuf = empty_data;
strbuf = empty_data;
flatten_tree(bi->dt, &bin_emitter, &dtbuf, &strbuf, vi);
bin_emit_cell(&dtbuf, OF_DT_END);
reservebuf = flatten_reserve_list(bi->reservelist, vi);
/* Make header */
make_bph(&bph, vi, reservebuf.len, dtbuf.len, strbuf.len,
boot_cpuid_phys);
fwrite(&bph, vi->hdr_size, 1, f);
/* Align the reserve map to an 8 byte boundary */
for (i = vi->hdr_size; i < be32_to_cpu(bph.off_mem_rsvmap); i++)
fputc(0, f);
/*
* Reserve map entries.
* Each entry is an (address, size) pair of u64 values.
* Always supply a zero-sized temination entry.
*/
fwrite(reservebuf.val, reservebuf.len, 1, f);
fwrite(&termre, sizeof(termre), 1, f);
fwrite(dtbuf.val, dtbuf.len, 1, f);
fwrite(strbuf.val, strbuf.len, 1, f);
if (ferror(f))
die("Error writing device tree blob: %s\n", strerror(errno));
data_free(dtbuf);
data_free(strbuf);
}
static void dump_stringtable_asm(FILE *f, struct data strbuf)
{
unsigned char *p;
int len;
p = strbuf.val;
while (p < (strbuf.val + strbuf.len)) {
len = strlen((char *)p);
fprintf(f, "\t.string \"%s\"\n", p);
p += len+1;
}
}
void dt_to_asm(FILE *f, struct boot_info *bi, int version, int boot_cpuid_phys)
{
struct version_info *vi = NULL;
int i;
struct data strbuf = empty_data;
struct reserve_info *re;
char *symprefix = "dt";
for (i = 0; i < ARRAY_SIZE(version_table); i++) {
if (version_table[i].version == version)
vi = &version_table[i];
}
if (!vi)
die("Unknown device tree blob version %d\n", version);
fprintf(f, "/* autogenerated by dtc, do not edit */\n\n");
fprintf(f, "#define OF_DT_HEADER 0x%x\n", OF_DT_HEADER);
fprintf(f, "#define OF_DT_BEGIN_NODE 0x%x\n", OF_DT_BEGIN_NODE);
fprintf(f, "#define OF_DT_END_NODE 0x%x\n", OF_DT_END_NODE);
fprintf(f, "#define OF_DT_PROP 0x%x\n", OF_DT_PROP);
fprintf(f, "#define OF_DT_END 0x%x\n", OF_DT_END);
fprintf(f, "\n");
emit_label(f, symprefix, "blob_start");
emit_label(f, symprefix, "header");
fprintf(f, "\t.long\tOF_DT_HEADER /* magic */\n");
fprintf(f, "\t.long\t_%s_blob_end - _%s_blob_start /* totalsize */\n",
symprefix, symprefix);
fprintf(f, "\t.long\t_%s_struct_start - _%s_blob_start /* off_dt_struct */\n",
symprefix, symprefix);
fprintf(f, "\t.long\t_%s_strings_start - _%s_blob_start /* off_dt_strings */\n",
symprefix, symprefix);
fprintf(f, "\t.long\t_%s_reserve_map - _%s_blob_start /* off_dt_strings */\n",
symprefix, symprefix);
fprintf(f, "\t.long\t%d /* version */\n", vi->version);
fprintf(f, "\t.long\t%d /* last_comp_version */\n",
vi->last_comp_version);
if (vi->flags & FTF_BOOTCPUID)
fprintf(f, "\t.long\t%i\t/*boot_cpuid_phys*/\n",
boot_cpuid_phys);
if (vi->flags & FTF_STRTABSIZE)
fprintf(f, "\t.long\t_%s_strings_end - _%s_strings_start\t/* size_dt_strings */\n",
symprefix, symprefix);
/*
* Reserve map entries.
* Align the reserve map to a doubleword boundary.
* Each entry is an (address, size) pair of u64 values.
* Always supply a zero-sized temination entry.
*/
asm_emit_align(f, 8);
emit_label(f, symprefix, "reserve_map");
fprintf(f, "/* Memory reserve map from source file */\n");
/*
* Use .long on high and low halfs of u64s to avoid .quad
* as it appears .quad isn't available in some assemblers.
*/
for (re = bi->reservelist; re; re = re->next) {
fprintf(f, "\t.long\t0x%08x\n\t.long\t0x%08x\n",
(unsigned int)(re->re.address >> 32),
(unsigned int)(re->re.address & 0xffffffff));
fprintf(f, "\t.long\t0x%08x\n\t.long\t0x%08x\n",
(unsigned int)(re->re.size >> 32),
(unsigned int)(re->re.size & 0xffffffff));
}
fprintf(f, "\t.long\t0, 0\n\t.long\t0, 0\n");
emit_label(f, symprefix, "struct_start");
flatten_tree(bi->dt, &asm_emitter, f, &strbuf, vi);
fprintf(f, "\t.long\tOF_DT_END\n");
emit_label(f, symprefix, "struct_end");
emit_label(f, symprefix, "strings_start");
dump_stringtable_asm(f, strbuf);
emit_label(f, symprefix, "strings_end");
emit_label(f, symprefix, "blob_end");
data_free(strbuf);
}
static void dump_stringtable_C(FILE *f, struct data strbuf)
{
unsigned char *p;
int len;
p = strbuf.val;
fprintf(f, "\tchar *stringtable[] = {\n");
while (p < (strbuf.val + strbuf.len)) {
len = strlen((char *)p);
fprintf(f, "\t\"%s\"\n", p);
p += len+1;
}
fprintf(f, "\t};\n");
}
void dt_to_C(FILE *f, struct boot_info *bi, int version, int boot_cpuid_phys)
{
struct version_info *vi = NULL;
int i;
struct data strbuf = empty_data;
struct reserve_info *re;
char *symprefix = "dt";
for (i = 0; i < ARRAY_SIZE(version_table); i++) {
if (version_table[i].version == version)
vi = &version_table[i];
}
if (!vi)
die("Unknown device tree blob version %d\n", version);
fprintf(f, "/* autogenerated by dtc, do not edit */\n\n");
fprintf(f, "#define OF_DT_HEADER 0x%x\n", OF_DT_HEADER);
fprintf(f, "#define OF_DT_BEGIN_NODE 0x%x\n", OF_DT_BEGIN_NODE);
fprintf(f, "#define OF_DT_END_NODE 0x%x\n", OF_DT_END_NODE);
fprintf(f, "#define OF_DT_PROP 0x%x\n", OF_DT_PROP);
fprintf(f, "#define OF_DT_END 0x%x\n", OF_DT_END);
fprintf(f, "\n");
C_emit_struct_start(f, symprefix, "blob");
fprintf(f, "\tu32\tmagic = OF_DT_HEADER;\n");
fprintf(f, "\tu32\ttotalsize = sizeof(struct blob);\n");
fprintf(f, "\tu32\toffdt = offsetof(struct blob, dt);\n");
fprintf(f, "\tu32\toffstrings = offsetof(struct blob, strings);\n");
fprintf(f, "\tu32\toffreserve = offsetof(struct blob, reserve);\n");
fprintf(f, "\tu32\tversion = %d;\n", vi->version);
fprintf(f, "\tu32\tlast_comp_version = %d;\n",
vi->last_comp_version);
if (vi->flags & FTF_BOOTCPUID)
fprintf(f, "\tu32\tboot_cpuid_phys = 0x%x;\n",
boot_cpuid_phys);
if (vi->flags & FTF_STRTABSIZE)
fprintf(f, "\tu32\tsize_%s_strings_end = sizeof(dt.strings);\n",
symprefix);
/*
* Reserve map entries.
* Align the reserve map to a doubleword boundary.
* Each entry is an (address, size) pair of u64 values.
* Always supply a zero-sized temination entry.
*/
C_emit_align(f, 8);
fprintf(f, "\t/* Memory reserve map from source file */\n");
/*
* Use .long on high and low halfs of u64s to avoid .quad
* as it appears .quad isn't available in some assemblers.
*/
fprintf(f, "\tu64 reservemap[] = {\n");
for (re = bi->reservelist; re; re = re->next) {
fprintf(f, "\tu64\t0x%lx\n", (long unsigned int)re->re.address);
fprintf(f, "\tu64\t0x%lx\n", (long unsigned int)re->re.size);
}
fprintf(f, "\t0, 0\n");
fprintf(f, "\t};\n");
C_emit_struct_start(f, symprefix, "dt_blob");
flatten_tree(bi->dt, &C_emitter, f, &strbuf, vi);
fprintf(f, "\tu32\tend = OF_DT_END;\n");
C_emit_struct_end(f, symprefix, "dt_blob");
dump_stringtable_C(f, strbuf);
C_emit_struct_end(f, symprefix, "blob");
data_free(strbuf);
}
/*Set up the clean label */
void
labeltree(struct node *tree)
{
struct node *child;
char *tmp1;
char *tmp2;
tree->label = clean(tree->name, 1);
if (tree->parent && tree->label) {
tmp1 = strdup(tree->parent->label);
if (strlen(tmp1)) {
tmp2 = tree->label;
tree->label = malloc(strlen(tmp1) + strlen(tmp2) + 2);
strcpy(tree->label, tmp1);
strcat(tree->label, "_");
strcat(tree->label, tmp2);
free(tmp2);
}
free(tmp1);
}
if (tree->next_sibling)
labeltree(tree->next_sibling);
for_each_child(tree, child) {
labeltree(child);
}
}
/* the root, weirdly enough, is last on the 'next' chain. yuck. */
void fix_next(struct node *root){
extern struct node *first_node;
struct node *next2last=NULL, *next;
for(next = first_node; next; next = next->next)
if (next->next == root)
next2last = next;
next2last->next = NULL;
root->next = first_node;
first_node = root;
}
void dt_to_coreboot(FILE *f, struct boot_info *bi, int version, int boot_cpuid_phys)
{
struct property *prop;
struct version_info *vi = NULL;
int i;
struct data strbuf = empty_data;
char *symprefix = "dt";
extern char *code;
struct node *next;
extern struct node *first_node;
int found_mainboard_vendor = 0, found_mainboard_name = 0, found_mainboard_subsys = 0;
labeltree(bi->dt);
for (i = 0; i < ARRAY_SIZE(version_table); i++) {
if (version_table[i].version == version)
vi = &version_table[i];
}
if (!vi)
die("Unknown device tree blob version %d\n", version);
/* the root is special -- the parser gives it no name. We fix that here.
* fix in parser?
*/
bi->dt->name = bi->dt->label = "root";
/* steps: emit all structs. Then emit the initializers, with the pointers to other structs etc. */
fix_next(bi->dt);
fprintf(f, "#include <statictree.h>\n");
/* forward declarations */
for(next = first_node; next; next = next->next)
fprintf(f, "struct device dev_%s;\n", next->label);
/* special for the root. Emit the names for the mainboard vendor and part # */
for_each_property(bi->dt, prop) {
if (streq(prop->name, "mainboard_vendor")){
found_mainboard_vendor = 1;
fprintf(f, "const char *mainboard_vendor = \"%s\";\n", prop->val.val);
}
if (streq(prop->name, "mainboard_name")){
found_mainboard_name = 1;
fprintf(f, "const char *mainboard_name = \"%s\";\n", prop->val.val);
}
if (streq(prop->name, "mainboard_pci_subsystem_vendor")){
found_mainboard_subsys++;
fprintf(f, "const u16 mainboard_pci_subsystem_vendor = %s;\n", prop->val.val);
}
if (streq(prop->name, "mainboard_pci_subsystem_device")){
found_mainboard_subsys++;
fprintf(f, "const u16 mainboard_pci_subsystem_device = %s;\n", prop->val.val);
}
}
if (! found_mainboard_vendor){
die("There is no mainboard_vendor property in the root. Please add one."
"(and make sure there is a mainboard_name property too");
}
if (! found_mainboard_name){
die("There is no mainboard_name property in the root. "
"Please add one."
"(and make sure there is a mainboard_vendor property too");
}
switch (found_mainboard_subsys) {
case 0:
break;
case 1:
die("There is only one of mainboard_pci_subsystem_vendor and "
"mainboard_pci_subsystem_device properties in the root. "
"Please add the other one or remove the existing one.");
break;
case 2:
break;
}
/* emit the code, if any */
if (code)
fprintf(f, "%s\n", code);
flatten_tree_emit_structinits(bi->dt, &coreboot_emitter, f, &strbuf, vi);
fprintf(f, "struct device_operations *all_device_operations[] = {\n");
flatten_tree_emit_device_operations(bi->dt, &coreboot_emitter, f, &strbuf, vi);
fprintf(f, "\t0\n};\n");
data_free(strbuf);
/* */
}
void dt_to_corebooth(FILE *f, struct boot_info *bi, int version, int boot_cpuid_phys)
{
struct version_info *vi = NULL;
int i;
struct data strbuf = empty_data;
char *symprefix = "dt";
extern char *code;
struct node *next;
struct property *prop;
int found_mainboard_subsys = 0;
extern struct node *first_node;
labeltree(bi->dt);
for (i = 0; i < ARRAY_SIZE(version_table); i++) {
if (version_table[i].version == version)
vi = &version_table[i];
}
if (!vi)
die("Unknown device tree blob version %d\n", version);
/* the root is special -- the parser gives it no name. We fix that here.
* fix in parser?
*/
bi->dt->name = bi->dt->label = "root";
/* steps: emit all structs. Then emit the initializers, with the pointers to other structs etc. */
fix_next(bi->dt);
/* emit any includes that we need -- TODO: ONLY ONCE PER TYPE*/
fprintf(f, "#include <device/device.h>\n#include <device/pci.h>\n");
fprintf(f, "extern const char *mainboard_vendor, *mainboard_name;\n");
for_each_property(bi->dt, prop) {
if (streq(prop->name, "mainboard_pci_subsystem_vendor")){
found_mainboard_subsys++;
}
if (streq(prop->name, "mainboard_pci_subsystem_device")){
found_mainboard_subsys++;
}
}
switch (found_mainboard_subsys) {
case 0:
break;
case 1:
die("There is only one of mainboard_pci_subsystem_vendor and "
"mainboard_pci_subsystem_device properties in the root. "
"Please add the other one or remove the existing one.");
break;
case 2:
fprintf(f, "#define HAVE_MAINBOARD_PCI_SUBSYSTEM_ID\n");
fprintf(f, "extern const u16 mainboard_pci_subsystem_vendor;\n");
fprintf(f, "extern const u16 mainboard_pci_subsystem_device;\n");
break;
}
flatten_tree_emit_includes(bi->dt, &coreboot_emitter, f, &strbuf, vi);
flatten_tree_emit_structdecls(bi->dt, &coreboot_emitter, f, &strbuf, vi);
/* */
}
struct inbuf {
char *base, *limit, *ptr;
};
static void inbuf_init(struct inbuf *inb, void *base, void *limit)
{
inb->base = base;
inb->limit = limit;
inb->ptr = inb->base;
}
static void flat_read_chunk(struct inbuf *inb, void *p, int len)
{
if ((inb->ptr + len) > inb->limit)
die("Premature end of data parsing flat device tree\n");
memcpy(p, inb->ptr, len);
inb->ptr += len;
}
static u32 flat_read_word(struct inbuf *inb)
{
u32 val;
assert(((inb->ptr - inb->base) % sizeof(val)) == 0);
flat_read_chunk(inb, &val, sizeof(val));
return be32_to_cpu(val);
}
static void flat_realign(struct inbuf *inb, int align)
{
int off = inb->ptr - inb->base;
inb->ptr = inb->base + DALIGN(off, align);
if (inb->ptr > inb->limit)
die("Premature end of data parsing flat device tree\n");
}
static char *flat_read_string(struct inbuf *inb)
{
int len = 0;
char *p = inb->ptr;
char *str;
do {
if (p >= inb->limit)
die("Premature end of data parsing flat device tree\n");
len++;
} while ((*p++) != '\0');
str = strdup(inb->ptr);
inb->ptr += len;
flat_realign(inb, sizeof(u32));
return str;
}
static struct data flat_read_data(struct inbuf *inb, int len)
{
struct data d = empty_data;
if (len == 0)
return empty_data;
d = data_grow_for(d, len);
d.len = len;
flat_read_chunk(inb, d.val, len);
flat_realign(inb, sizeof(u32));
return d;
}
static char *flat_read_stringtable(struct inbuf *inb, int offset)
{
char *p;
p = inb->base + offset;
while (1) {
if (p >= inb->limit || p < inb->base)
die("String offset %d overruns string table\n",
offset);
if (*p == '\0')
break;
p++;
}
return strdup(inb->base + offset);
}
static struct property *flat_read_property(struct inbuf *dtbuf,
struct inbuf *strbuf, int flags)
{
u32 proplen, stroff;
char *name;
struct data val;
proplen = flat_read_word(dtbuf);
stroff = flat_read_word(dtbuf);
name = flat_read_stringtable(strbuf, stroff);
if ((flags & FTF_VARALIGN) && (proplen >= 8))
flat_realign(dtbuf, 8);
val = flat_read_data(dtbuf, proplen);
return build_property(name, val, NULL);
}
static struct reserve_info *flat_read_mem_reserve(struct inbuf *inb)
{
struct reserve_info *reservelist = NULL;
struct reserve_info *new;
char *p;
struct reserve_entry re;
/*
* Each entry is a pair of u64 (addr, size) values for 4 cell_t's.
* List terminates at an entry with size equal to zero.
*
* First pass, count entries.
*/
p = inb->ptr;
while (1) {
flat_read_chunk(inb, &re, sizeof(re));
re.address = be64_to_cpu(re.address);
re.size = be64_to_cpu(re.size);
if (re.size == 0)
break;
new = build_reserve_entry(re.address, re.size, NULL);
reservelist = add_reserve_entry(reservelist, new);
}
return reservelist;
}
static char *nodename_from_path(char *ppath, char *cpath)
{
char *lslash;
int plen;
lslash = strrchr(cpath, '/');
if (! lslash)
return NULL;
plen = lslash - cpath;
if (streq(cpath, "/") && streq(ppath, ""))
return "";
if ((plen == 0) && streq(ppath, "/"))
return strdup(lslash+1);
if (! strneq(ppath, cpath, plen))
return NULL;
return strdup(lslash+1);
}
static const char PROPCHAR[] = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789,._+*#?-";
static const char UNITCHAR[] = "0123456789abcdef,";
static int check_node_name(char *name)
{
char *atpos;
unsigned int basenamelen;
atpos = strrchr(name, '@');
if (atpos)
basenamelen = atpos - name;
else
basenamelen = strlen(name);
if (strspn(name, PROPCHAR) < basenamelen)
return -1;
if (atpos
&& ((basenamelen + 1 + strspn(atpos+1, UNITCHAR)) < strlen(name)))
return -1;
return basenamelen;
}
static struct node *unflatten_tree(struct inbuf *dtbuf,
struct inbuf *strbuf,
char *parent_path, int flags)
{
struct node *node;
u32 val;
node = build_node(NULL, NULL, NULL);
if (flags & FTF_FULLPATH) {
node->fullpath = flat_read_string(dtbuf);
node->name = nodename_from_path(parent_path, node->fullpath);
if (! node->name)
die("Path \"%s\" is not valid as a child of \"%s\"\n",
node->fullpath, parent_path);
} else {
node->name = flat_read_string(dtbuf);
node->fullpath = join_path(parent_path, node->name);
}
node->basenamelen = check_node_name(node->name);
if (node->basenamelen < 0) {
fprintf(stderr, "Warning \"%s\" has incorrect format\n", node->name);
}
do {
struct property *prop;
struct node *child;
val = flat_read_word(dtbuf);
switch (val) {
case OF_DT_PROP:
prop = flat_read_property(dtbuf, strbuf, flags);
add_property(node, prop);
break;
case OF_DT_BEGIN_NODE:
child = unflatten_tree(dtbuf,strbuf, node->fullpath,
flags);
add_child(node, child);
break;
case OF_DT_END_NODE:
break;
case OF_DT_END:
die("Premature OF_DT_END in device tree blob\n");
break;
default:
die("Invalid opcode word %08x in device tree blob\n",
val);
}
} while (val != OF_DT_END_NODE);
return node;
}
struct boot_info *dt_from_blob(FILE *f)
{
u32 magic, totalsize, version, size_str = 0;
u32 off_dt, off_str, off_mem_rsvmap;
int rc;
char *blob;
struct boot_param_header *bph;
char *p;
struct inbuf dtbuf, strbuf;
struct inbuf memresvbuf;
int sizeleft;
struct reserve_info *reservelist;
struct node *tree;
u32 val;
int flags = 0;
rc = fread(&magic, sizeof(magic), 1, f);
if (ferror(f))
die("Error reading DT blob magic number: %s\n",
strerror(errno));
if (rc < 1) {
if (feof(f))
die("EOF reading DT blob magic number\n");
else
die("Mysterious short read reading magic number\n");
}
magic = be32_to_cpu(magic);
if (magic != OF_DT_HEADER)
die("Blob has incorrect magic number\n");
rc = fread(&totalsize, sizeof(totalsize), 1, f);
if (ferror(f))
die("Error reading DT blob size: %s\n", strerror(errno));
if (rc < 1) {
if (feof(f))
die("EOF reading DT blob size\n");
else
die("Mysterious short read reading blob size\n");
}
totalsize = be32_to_cpu(totalsize);
if (totalsize < BPH_V1_SIZE)
die("DT blob size (%d) is too small\n", totalsize);
blob = xmalloc(totalsize);
bph = (struct boot_param_header *)blob;
bph->magic = cpu_to_be32(magic);
bph->totalsize = cpu_to_be32(totalsize);
sizeleft = totalsize - sizeof(magic) - sizeof(totalsize);
p = blob + sizeof(magic) + sizeof(totalsize);
while (sizeleft) {
if (feof(f))
die("EOF before reading %d bytes of DT blob\n",
totalsize);
rc = fread(p, 1, sizeleft, f);
if (ferror(f))
die("Error reading DT blob: %s\n",
strerror(errno));
sizeleft -= rc;
p += rc;
}
off_dt = be32_to_cpu(bph->off_dt_struct);
off_str = be32_to_cpu(bph->off_dt_strings);
off_mem_rsvmap = be32_to_cpu(bph->off_mem_rsvmap);
version = be32_to_cpu(bph->version);
fprintf(stderr, "\tmagic:\t\t\t0x%x\n", magic);
fprintf(stderr, "\ttotalsize:\t\t%d\n", totalsize);
fprintf(stderr, "\toff_dt_struct:\t\t0x%x\n", off_dt);
fprintf(stderr, "\toff_dt_strings:\t\t0x%x\n", off_str);
fprintf(stderr, "\toff_mem_rsvmap:\t\t0x%x\n", off_mem_rsvmap);
fprintf(stderr, "\tversion:\t\t0x%x\n", version );
fprintf(stderr, "\tlast_comp_version:\t0x%x\n",
be32_to_cpu(bph->last_comp_version));
if (off_mem_rsvmap >= totalsize)
die("Mem Reserve structure offset exceeds total size\n");
if (off_dt >= totalsize)
die("DT structure offset exceeds total size\n");
if (off_str > totalsize)
die("String table offset exceeds total size\n");
if (version >= 2)
fprintf(stderr, "\tboot_cpuid_phys:\t0x%x\n",
be32_to_cpu(bph->boot_cpuid_phys));
if (version >= 3) {
size_str = be32_to_cpu(bph->size_dt_strings);
fprintf(stderr, "\tsize_dt_strings:\t%d\n", size_str);
if (off_str+size_str > totalsize)
die("String table extends past total size\n");
}
if (version < 0x10) {
flags |= FTF_FULLPATH | FTF_NAMEPROPS | FTF_VARALIGN;
}
inbuf_init(&memresvbuf,
blob + off_mem_rsvmap, blob + totalsize);
inbuf_init(&dtbuf, blob + off_dt, blob + totalsize);
inbuf_init(&strbuf, blob + off_str, blob + totalsize);
if (version >= 3)
strbuf.limit = strbuf.base + size_str;
reservelist = flat_read_mem_reserve(&memresvbuf);
val = flat_read_word(&dtbuf);
if (val != OF_DT_BEGIN_NODE)
die("Device tree blob doesn't begin with OF_DT_BEGIN_NODE (begins with 0x%08x)\n", val);
tree = unflatten_tree(&dtbuf, &strbuf, "", flags);
val = flat_read_word(&dtbuf);
if (val != OF_DT_END)
die("Device tree blob doesn't end with OF_DT_END\n");
free(blob);
return build_boot_info(reservelist, tree);
}