switch-coreboot/device/pci_device.c
Ronald G. Minnich 5a90884bd4 last kontron commit.
This is a potentially good pointer to where someone can take this. 

While startup was working, BSP now explodes once the AP stops, while
BSP is doing startup IPI loop send #2. The code needs to be hardened; I 
think use of the shared variables would really make it much more solid. 
This would be a good undergrad student project if someone is looking for one.

Signed-off-by: Ronald G. Minnich <rminnich@gmail.com>
Acked-by: Stefan Reinauer <stepan@coresystems.de>


git-svn-id: svn://coreboot.org/repository/coreboot-v3@1145 f3766cd6-281f-0410-b1cd-43a5c92072e9
2009-03-11 16:17:37 +00:00

1420 lines
43 KiB
C

/*
* This file is part of the coreboot project.
*
* It was originally based on the Linux kernel (drivers/pci/pci.c).
*
* Modifications are:
* Copyright (C) 2003-2004 Linux Networx
* (Written by Eric Biederman <ebiederman@lnxi.com> for Linux Networx)
* Copyright (C) 2003-2006 Ronald G. Minnich <rminnich@gmail.com>
* Copyright (C) 2004-2005 Li-Ta Lo <ollie@lanl.gov>
* Copyright (C) 2005-2006 Tyan
* (Written by Yinghai Lu <yhlu@tyan.com> for Tyan)
* Copyright (C) 2005-2007 Stefan Reinauer <stepan@openbios.org>
* Copyright (C) 2008 Myles Watson <mylesgw@gmail.com>
*/
/*
* PCI Bus Services, see include/linux/pci.h for further explanation.
*
* Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
* David Mosberger-Tang
*
* Copyright 1997 -- 1999 Martin Mares <mj@atrey.karlin.mff.cuni.cz>
*/
#include <types.h>
#include <io.h>
#include <string.h>
#include <lib.h>
#include <console.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#ifndef CONFIG_NO_PCIX_SUPPORT
#include <device/pcix.h>
#endif
#ifndef CONFIG_NO_AGP_SUPPORT
#include <device/agp.h>
#endif
#ifdef CONFIG_HYPERTRANSPORT_SUPPORT
#include <device/hypertransport.h>
#endif
#ifndef CONFIG_NO_PCIE_SUPPORT
#include <device/pcie.h>
#endif
#ifndef CONFIG_NO_CARDBUS_SUPPORT
#include <device/cardbus.h>
#endif
#include <statictree.h>
u8 pci_moving_config8(struct device *dev, unsigned int reg)
{
u8 value, ones, zeroes;
value = pci_read_config8(dev, reg);
pci_write_config8(dev, reg, 0xff);
ones = pci_read_config8(dev, reg);
pci_write_config8(dev, reg, 0x00);
zeroes = pci_read_config8(dev, reg);
pci_write_config8(dev, reg, value);
return ones ^ zeroes;
}
u16 pci_moving_config16(struct device *dev, unsigned int reg)
{
u16 value, ones, zeroes;
value = pci_read_config16(dev, reg);
pci_write_config16(dev, reg, 0xffff);
ones = pci_read_config16(dev, reg);
pci_write_config16(dev, reg, 0x0000);
zeroes = pci_read_config16(dev, reg);
pci_write_config16(dev, reg, value);
return ones ^ zeroes;
}
u32 pci_moving_config32(struct device *dev, unsigned int reg)
{
u32 value, ones, zeroes;
value = pci_read_config32(dev, reg);
pci_write_config32(dev, reg, 0xffffffff);
ones = pci_read_config32(dev, reg);
pci_write_config32(dev, reg, 0x00000000);
zeroes = pci_read_config32(dev, reg);
pci_write_config32(dev, reg, value);
return ones ^ zeroes;
}
/**
* Given a device, a capability type, and a last position, return the next
* matching capability. Always start at the head of the list.
*
* @param dev Pointer to the device structure.
* @param cap_type PCI_CAP_LIST_ID of the PCI capability we're looking for.
* @param last_pos Location of the PCI capability register to start from.
*/
unsigned int pci_find_next_capability(struct device *dev, unsigned int cap_type,
unsigned int last_pos)
{
unsigned int pos;
unsigned int status;
unsigned int reps = 48;
pos = 0;
status = pci_read_config16(dev, PCI_STATUS);
if (!(status & PCI_STATUS_CAP_LIST)) {
return 0;
}
switch (dev->hdr_type & 0x7f) {
case PCI_HEADER_TYPE_NORMAL:
case PCI_HEADER_TYPE_BRIDGE:
pos = PCI_CAPABILITY_LIST;
break;
case PCI_HEADER_TYPE_CARDBUS:
pos = PCI_CB_CAPABILITY_LIST;
break;
default:
return 0;
}
pos = pci_read_config8(dev, pos);
while (reps-- && (pos >= 0x40)) { /* Loop through the linked list. */
int this_cap_type;
pos &= ~3;
this_cap_type = pci_read_config8(dev, pos + PCI_CAP_LIST_ID);
printk(BIOS_SPEW, "Capability: 0x%02x @ 0x%02x\n",
this_cap_type, pos);
if (this_cap_type == 0xff) {
break;
}
if (!last_pos && (this_cap_type == cap_type)) {
return pos;
}
if (last_pos == pos) { /* Return the next match. */
last_pos = 0;
}
pos = pci_read_config8(dev, pos + PCI_CAP_LIST_NEXT);
}
return 0;
}
/**
* Given a device, and a capability type, return the next matching
* capability. Always start at the head of the list.
*
* @param dev Pointer to the device structure.
* @param cap_type PCI_CAP_LIST_ID of the PCI capability we're looking for.
*/
unsigned int pci_find_capability(struct device *dev, unsigned int cap_type)
{
return pci_find_next_capability(dev, cap_type, 0);
}
/**
* Given a device and register, read the size of the BAR for that register.
*
* @param dev Pointer to the device structure.
* @param index Address of the PCI configuration register.
*/
struct resource *pci_get_resource(struct device *dev, unsigned long index)
{
struct resource *resource;
unsigned long value, attr;
resource_t moving, limit;
/* Initialize the resources to nothing. */
resource = new_resource(dev, index);
/* Get the initial value. */
value = pci_read_config32(dev, index);
/* See which bits move. */
moving = pci_moving_config32(dev, index);
/* Initialize attr to the bits that do not move. */
attr = value & ~moving;
/* If it is a 64bit resource look at the high half as well. */
if (((attr & PCI_BASE_ADDRESS_SPACE_IO) == 0) &&
((attr & PCI_BASE_ADDRESS_MEM_LIMIT_MASK) ==
PCI_BASE_ADDRESS_MEM_LIMIT_64)) {
/* Find the high bits that move. */
moving |=
((resource_t) pci_moving_config32(dev, index + 4)) << 32;
resource->flags |= IORESOURCE_PCI64;
}
/* Find the resource constraints.
* Start by finding the bits that move. From there:
* - Size is the least significant bit of the bits that move.
* - Limit is all of the bits that move plus all of the lower bits.
* See PCI Spec 6.2.5.1.
*/
limit = 0;
if (moving) {
resource->size = 1;
resource->align = resource->gran = 0;
while (!(moving & resource->size)) {
resource->size <<= 1;
resource->align += 1;
resource->gran += 1;
}
resource->limit = limit = moving | (resource->size - 1);
}
/* Some broken hardware has read-only registers that do not
* really size correctly.
* Example: the Acer M7229 has BARs 1-4 normally read-only.
* so BAR1 at offset 0x10 reads 0x1f1. If you size that register
* by writing 0xffffffff to it, it will read back as 0x1f1 -- a
* violation of the spec.
* We catch this case and ignore it by observing which bits move,
* This also catches the common case unimplemented registers
* that always read back as 0.
*/
if (moving == 0) {
if (value != 0) {
printk(BIOS_DEBUG,
"%s register %02lx(%08lx), read-only ignoring it\n",
dev_path(dev), index, value);
}
/* resource->flags = 0;
* Shouldn't zero because we'll get off with 64-bit BARs.
* Are there any others to save?
*/
resource->flags &= IORESOURCE_PCI64;
} else if (attr & PCI_BASE_ADDRESS_SPACE_IO) {
/* An I/O mapped base address. */
attr &= PCI_BASE_ADDRESS_IO_ATTR_MASK;
resource->flags |= IORESOURCE_IO;
/* I don't want to deal with 32bit I/O resources. */
resource->limit = 0xffff;
} else {
/* A Memory mapped base address. */
attr &= PCI_BASE_ADDRESS_MEM_ATTR_MASK;
resource->flags |= IORESOURCE_MEM;
if (attr & PCI_BASE_ADDRESS_MEM_PREFETCH) {
resource->flags |= IORESOURCE_PREFETCH;
}
attr &= PCI_BASE_ADDRESS_MEM_LIMIT_MASK;
if (attr == PCI_BASE_ADDRESS_MEM_LIMIT_32) {
/* 32bit limit. */
resource->limit = 0xffffffffUL;
} else if (attr == PCI_BASE_ADDRESS_MEM_LIMIT_1M) {
/* 1MB limit. */
resource->limit = 0x000fffffUL;
} else if (attr == PCI_BASE_ADDRESS_MEM_LIMIT_64) {
/* 64bit limit. */
resource->limit = 0xffffffffffffffffULL;
} else {
/* Invalid value. */
printk(BIOS_ERR,"Broken BAR with value %lx\n",attr);
printk(BIOS_ERR," on dev %s at index %02lx\n",dev->dtsname,index);
resource->flags = 0;
}
}
/* Don't let the limit exceed which bits can move. */
if (resource->limit > limit) {
resource->limit = limit;
}
return resource;
}
/**
* Given a device and an index, read the size of the BAR for that register.
*
* @param dev Pointer to the device structure.
* @param index Address of the PCI configuration register.
*/
static void pci_get_rom_resource(struct device *dev, unsigned long index)
{
struct resource *resource;
unsigned long value;
resource_t moving, limit;
if ((dev->on_mainboard) && (dev->rom_address == 0)) {
// Skip it if rom_address is not set in the mainboard's dts.
return;
}
/* Initialize the resources to nothing. */
resource = new_resource(dev, index);
/* Get the initial value. */
value = pci_read_config32(dev, index);
/* See which bits move. */
moving = pci_moving_config32(dev, index);
/* Clear the Enable bit. */
moving = moving & ~PCI_ROM_ADDRESS_ENABLE;
/* Find the resource constraints.
* Start by finding the bits that move. From there:
* - Size is the least significant bit of the bits that move.
* - Limit is all of the bits that move plus all of the lower bits.
* See PCI Spec 6.2.5.1.
*/
limit = 0;
if (moving) {
resource->size = 1;
resource->align = resource->gran = 0;
while (!(moving & resource->size)) {
resource->size <<= 1;
resource->align += 1;
resource->gran += 1;
}
resource->limit = limit = moving | (resource->size - 1);
resource->flags |= IORESOURCE_MEM | IORESOURCE_READONLY;
} else {
if (value != 0) {
printk(BIOS_DEBUG,
"%s register %02lx(%08lx), read-only ignoring it\n",
dev_path(dev), index, value);
}
resource->flags = 0;
}
/* For on board device with embedded ROM image, the ROM image is at
* fixed address specified in the dts, the dev->rom_address is
* inited by driver_pci_onboard_ops::enable_dev() */
if ((dev->on_mainboard) && (dev->rom_address != 0)) {
resource->base = dev->rom_address;
resource->flags |= IORESOURCE_MEM | IORESOURCE_READONLY |
IORESOURCE_ASSIGNED | IORESOURCE_FIXED;
}
compact_resources(dev);
}
/**
* Read the base address registers for a given device.
*
* @param dev Pointer to the dev structure.
* @param howmany How many registers to read (6 for device, 2 for bridge).
*/
static void pci_read_bases(struct device *dev, unsigned int howmany)
{
unsigned long index;
for (index = PCI_BASE_ADDRESS_0;
(index < PCI_BASE_ADDRESS_0 + (howmany << 2));) {
struct resource *resource;
resource = pci_get_resource(dev, index);
index += (resource->flags & IORESOURCE_PCI64) ? 8 : 4;
}
compact_resources(dev);
}
static void pci_record_bridge_resource(struct device *dev, resource_t moving,
unsigned int index, unsigned long type)
{
/* Initialize the constraints on the current bus. */
struct resource *resource;
resource = NULL;
if (moving) {
unsigned long gran;
resource_t step;
resource = new_resource(dev, index);
resource->size = 0;
gran = 0;
step = 1;
while ((moving & step) == 0) {
gran += 1;
step <<= 1;
}
resource->gran = gran;
resource->align = gran;
resource->limit = moving | (step - 1);
resource->flags = type | IORESOURCE_PCI_BRIDGE | IORESOURCE_BRIDGE;
}
return;
}
static void pci_bridge_read_bases(struct device *dev)
{
resource_t moving_base, moving_limit, moving;
/* See if the bridge I/O resources are implemented. */
moving_base = ((u32) pci_moving_config8(dev, PCI_IO_BASE)) << 8;
moving_base |=
((u32) pci_moving_config16(dev, PCI_IO_BASE_UPPER16)) << 16;
moving_limit = ((u32) pci_moving_config8(dev, PCI_IO_LIMIT)) << 8;
moving_limit |=
((u32) pci_moving_config16(dev, PCI_IO_LIMIT_UPPER16)) << 16;
moving = moving_base & moving_limit;
/* Initialize the I/O space constraints on the current bus. */
pci_record_bridge_resource(dev, moving, PCI_IO_BASE, IORESOURCE_IO);
/* See if the bridge prefmem resources are implemented. */
moving_base =
((resource_t) pci_moving_config16(dev, PCI_PREF_MEMORY_BASE)) << 16;
moving_base |= ((resource_t) pci_moving_config32(dev, PCI_PREF_BASE_UPPER32)) << 32;
moving_limit = ((resource_t) pci_moving_config16(dev, PCI_PREF_MEMORY_LIMIT)) << 16;
moving_limit |= ((resource_t) pci_moving_config32(dev, PCI_PREF_LIMIT_UPPER32)) << 32;
moving = moving_base & moving_limit;
/* Initialize the prefetchable memory constraints on the current bus. */
pci_record_bridge_resource(dev, moving, PCI_PREF_MEMORY_BASE,
IORESOURCE_MEM | IORESOURCE_PREFETCH);
/* See if the bridge mem resources are implemented. */
moving_base = ((u32) pci_moving_config16(dev, PCI_MEMORY_BASE)) << 16;
moving_limit = ((u32) pci_moving_config16(dev, PCI_MEMORY_LIMIT)) << 16;
moving = moving_base & moving_limit;
/* Initialize the memory resources on the current bus. */
pci_record_bridge_resource(dev, moving, PCI_MEMORY_BASE,
IORESOURCE_MEM);
compact_resources(dev);
}
void pci_dev_read_resources(struct device *dev)
{
pci_read_bases(dev, 6);
pci_get_rom_resource(dev, PCI_ROM_ADDRESS);
}
void pci_bus_read_resources(struct device *dev)
{
struct device *child;
printk(BIOS_DEBUG, "%s: %s bus %s\n",
__func__, dev_path(dev), dev->bus? dev_path(dev->bus->dev):"NULL");
pci_bridge_read_bases(dev);
pci_read_bases(dev, 2);
pci_get_rom_resource(dev, PCI_ROM_ADDRESS1);
if (!dev->bus){
printk(BIOS_ERR, "%s: %s bus %s\n",
__func__, dev_path(dev), dev->bus? dev_path(dev->bus->dev):"NULL");
}
for (child = dev->link[0].children; child; child = child->sibling)
if (child->ops && child->ops->phase4_read_resources)
child->ops->phase4_read_resources(child);
else
printk(BIOS_ERR, "%s: %s missing Phase4\n",
__func__, dev_path(child));
}
/**
* Set resources for the PCI domain.
*
* A PCI domain contains the I/O and memory resource address space below it.
* Set up basic global ranges for I/O and memory. Allocation of sub-resources
* draws on these top-level resources in the usual hierarchical manner.
*
* @param dev The northbridge device.
*/
void pci_domain_read_resources(struct device *dev)
{
struct resource *res;
/* Initialize the system-wide I/O space constraints. */
res = new_resource(dev, IOINDEX_SUBTRACTIVE(0, 0));
res->limit = 0xffffUL;
res->flags = IORESOURCE_IO | IORESOURCE_SUBTRACTIVE |
IORESOURCE_ASSIGNED | IORESOURCE_BRIDGE;
/* Initialize the system-wide memory resources constraints. */
res = new_resource(dev, IOINDEX_SUBTRACTIVE(1, 0));
res->limit = 0xffffffffULL;
res->flags = IORESOURCE_MEM | IORESOURCE_SUBTRACTIVE |
IORESOURCE_ASSIGNED | IORESOURCE_BRIDGE;
}
static void pci_set_resource(struct device *dev, struct resource *resource)
{
resource_t base, end;
/* Make certain the resource has actually been assigned a value. */
if (!(resource->flags & IORESOURCE_ASSIGNED) && resource->size!=0) {
printk(BIOS_ERR,
"ERROR: %s %02lx %s size: 0x%010llx not assigned\n",
dev_path(dev), resource->index, resource_type(resource),
resource->size);
return;
}
/* If I have already stored this resource don't worry about it. */
if (resource->flags & IORESOURCE_STORED) {
return;
}
/* If the resource is subtractive don't worry about it. */
if (resource->flags & IORESOURCE_SUBTRACTIVE) {
return;
}
/* Only handle PCI memory and I/O resources for now. */
if (!(resource->flags & (IORESOURCE_MEM | IORESOURCE_IO)))
return;
/* Enable the resources in the command register. */
if (resource->size) {
if (resource->flags & IORESOURCE_MEM) {
dev->command |= PCI_COMMAND_MEMORY;
}
if (resource->flags & IORESOURCE_IO) {
dev->command |= PCI_COMMAND_IO;
}
if (resource->flags & IORESOURCE_PCI_BRIDGE) {
dev->command |= PCI_COMMAND_MASTER;
}
}
/* Get the base address. */
base = resource->base;
/* Get the end. */
end = resource_end(resource);
/* Now store the resource. */
resource->flags |= IORESOURCE_STORED;
/* PCI Bridges have no enable bit. They are disabled if the base of
* the range is greater than the limit. If the size is zero, disable
* by setting the base = limit and end = limit - 2^gran.
*/
if (resource->size == 0 && (resource->flags & IORESOURCE_PCI_BRIDGE)) {
base = resource->limit;
end = resource->limit - (1<<resource->gran);
resource->base = base;
}
if (!(resource->flags & IORESOURCE_PCI_BRIDGE)) {
unsigned long base_lo, base_hi;
/* Some chipsets allow us to set/clear the I/O bit
* (e.g. VIA 82c686a). So set it to be safe.
*/
base_lo = base & 0xffffffff;
base_hi = (base >> 32) & 0xffffffff;
if (resource->flags & IORESOURCE_IO) {
base_lo |= PCI_BASE_ADDRESS_SPACE_IO;
}
pci_write_config32(dev, resource->index, base_lo);
if (resource->flags & IORESOURCE_PCI64) {
pci_write_config32(dev, resource->index + 4, base_hi);
}
} else if (resource->index == PCI_IO_BASE) {
/* Set the I/O ranges. */
pci_write_config8(dev, PCI_IO_BASE, base >> 8);
pci_write_config16(dev, PCI_IO_BASE_UPPER16, base >> 16);
pci_write_config8(dev, PCI_IO_LIMIT, end >> 8);
pci_write_config16(dev, PCI_IO_LIMIT_UPPER16, end >> 16);
} else if (resource->index == PCI_MEMORY_BASE) {
/* Set the memory range. */
pci_write_config16(dev, PCI_MEMORY_BASE, base >> 16);
pci_write_config16(dev, PCI_MEMORY_LIMIT, end >> 16);
} else if (resource->index == PCI_PREF_MEMORY_BASE) {
/* Set the prefetchable memory range. */
pci_write_config16(dev, PCI_PREF_MEMORY_BASE, base >> 16);
pci_write_config32(dev, PCI_PREF_BASE_UPPER32, base >> 32);
pci_write_config16(dev, PCI_PREF_MEMORY_LIMIT, end >> 16);
pci_write_config32(dev, PCI_PREF_LIMIT_UPPER32, end >> 32);
} else {
/* Don't let me think I stored the resource. */
resource->flags &= ~IORESOURCE_STORED;
printk(BIOS_ERR, "ERROR: invalid resource->index %lx\n",
resource->index);
}
report_resource_stored(dev, resource, __func__);
return;
}
void pci_set_resources(struct device *dev)
{
struct resource *resource, *last;
unsigned int link;
u8 line;
last = &dev->resource[dev->resources];
for (resource = &dev->resource[0]; resource < last; resource++) {
pci_set_resource(dev, resource);
}
for (link = 0; link < dev->links; link++) {
struct bus *bus;
bus = &dev->link[link];
if (bus->children) {
phase4_set_resources(bus);
}
}
/* Set a default latency timer. */
pci_write_config8(dev, PCI_LATENCY_TIMER, 0x40);
/* Set a default secondary latency timer. */
if ((dev->hdr_type & 0x7f) == PCI_HEADER_TYPE_BRIDGE) {
pci_write_config8(dev, PCI_SEC_LATENCY_TIMER, 0x40);
}
/* Zero the IRQ settings. */
line = pci_read_config8(dev, PCI_INTERRUPT_PIN);
if (line) {
pci_write_config8(dev, PCI_INTERRUPT_LINE, 0);
}
/* Set the cache line size, so far 64 bytes is good for everyone. */
pci_write_config8(dev, PCI_CACHE_LINE_SIZE, 64 >> 2);
}
/**
* Create a RAM resource, by taking the passed-in size and creating
* a resource record.
*
* @param dev The device.
* @param index A resource index.
* @param basek Base memory address in KB.
* @param sizek Size of memory in KB.
*/
void ram_resource(struct device *dev, unsigned long index,
unsigned long basek, unsigned long sizek)
{
struct resource *res;
if (!sizek)
return;
res = new_resource(dev, index);
res->base = ((resource_t) basek) << 10; /* Convert to bytes. */
res->size = ((resource_t) sizek) << 10; /* Convert to bytes. */
res->flags = IORESOURCE_MEM | IORESOURCE_CACHEABLE |
IORESOURCE_FIXED | IORESOURCE_STORED | IORESOURCE_ASSIGNED;
printk(BIOS_SPEW, "Adding RAM resource (%lld bytes)\n", res->size);
}
void pci_dev_set_subsystem_wrapper(struct device *dev)
{
const struct pci_operations *ops;
u16 vendor = dev->id.pci.vendor;
u16 device = dev->id.pci.device;
ops = ops_pci(dev);
/* If either vendor or device is zero, we leave it as is. */
if (ops && ops->set_subsystem && vendor && device) {
/* If there's no explicit subsystem ID for this device and the
* device is onboard, use the board defaults. */
vendor = dev->subsystem_vendor;
device = dev->subsystem_device;
/* Set the subsystem vendor and device ID for mainboard devices. */
if (dev->on_mainboard) {
if (!vendor)
vendor = dev_root.subsystem_vendor;
if (!device)
device = dev_root.subsystem_device;
printk(BIOS_DEBUG,
"%s: Setting subsystem VID/DID to %02x/%02x\n",
dev_path(dev), vendor, device);
ops->set_subsystem(dev, vendor, device);
} else {
printk(BIOS_DEBUG, "%s: Device not on_mainboard\n",
dev_path(dev));
}
}
}
void pci_dev_enable_resources(struct device *dev)
{
u16 command;
pci_dev_set_subsystem_wrapper(dev);
command = pci_read_config16(dev, PCI_COMMAND);
command |= dev->command;
command |= (PCI_COMMAND_PARITY + PCI_COMMAND_SERR); // Error check.
printk(BIOS_DEBUG, "%s: %s (%s) cmd <- %02x\n", __func__, dev->dtsname,
dev_path(dev), command);
pci_write_config16(dev, PCI_COMMAND, command);
}
void pci_bus_enable_resources(struct device *dev)
{
u16 ctrl;
/* Enable I/O in command register if there is VGA card
* connected with (even it does not claim I/O resource).
*/
if (dev->link[0].bridge_ctrl & PCI_BRIDGE_CTL_VGA)
dev->command |= PCI_COMMAND_IO;
ctrl = pci_read_config16(dev, PCI_BRIDGE_CONTROL);
ctrl |= dev->link[0].bridge_ctrl;
ctrl |= (PCI_BRIDGE_CTL_PARITY + PCI_BRIDGE_CTL_SERR); // Error check.
printk(BIOS_DEBUG, "%s bridge ctrl <- %04x\n", dev_path(dev), ctrl);
pci_write_config16(dev, PCI_BRIDGE_CONTROL, ctrl);
pci_dev_enable_resources(dev);
enable_childrens_resources(dev);
}
void pci_bus_reset(struct bus *bus)
{
unsigned ctl;
ctl = pci_read_config16(bus->dev, PCI_BRIDGE_CONTROL);
ctl |= PCI_BRIDGE_CTL_BUS_RESET;
pci_write_config16(bus->dev, PCI_BRIDGE_CONTROL, ctl);
mdelay(10);
ctl &= ~PCI_BRIDGE_CTL_BUS_RESET;
pci_write_config16(bus->dev, PCI_BRIDGE_CONTROL, ctl);
delay(1);
}
void pci_dev_set_subsystem(struct device *dev, u16 vendor, u16 device)
{
pci_write_config32(dev, PCI_SUBSYSTEM_VENDOR_ID,
((device & 0xffff) << 16) | (vendor & 0xffff));
}
void pci_dev_init(struct device *dev)
{
printk(BIOS_SPEW, "PCI: pci_dev_init %s\n", dev->dtsname);
#ifdef CONFIG_PCI_OPTION_ROM_RUN
void run_bios(struct device *dev, unsigned long addr);
struct rom_header *rom, *ram;
printk(BIOS_INFO, "Probing for option ROM\n");
rom = pci_rom_probe(dev);
if (rom == NULL)
return;
ram = pci_rom_load(dev, rom);
if (ram == NULL)
return;
run_bios(dev, (unsigned long)ram);
#endif
}
/** Default device operation for PCI devices. */
const struct pci_operations pci_dev_ops_pci = {
.set_subsystem = pci_dev_set_subsystem,
};
const struct device_operations default_pci_ops_dev = {
.phase4_read_resources = pci_dev_read_resources,
.phase4_set_resources = pci_set_resources,
.phase5_enable_resources = pci_dev_enable_resources,
.phase6_init = pci_dev_init,
.phase3_scan = 0,
.ops_pci = &pci_dev_ops_pci,
};
/** Default device operations for PCI bridges. */
const struct pci_operations pci_bus_ops_pci = {
.set_subsystem = 0,
};
const struct device_operations default_pci_ops_bus = {
.phase3_scan = pci_scan_bridge,
.phase4_read_resources = pci_bus_read_resources,
.phase4_set_resources = pci_set_resources,
.phase5_enable_resources = pci_bus_enable_resources,
.phase6_init = 0,
.reset_bus = pci_bus_reset,
.ops_pci = &pci_bus_ops_pci,
};
/**
* Detect the type of downstream bridge.
*
* This function is a heuristic to detect which type of bus is downstream
* of a PCI-to-PCI bridge. This functions by looking for various capability
* blocks to figure out the type of downstream bridge. PCI-X, PCI-E, and
* Hypertransport all seem to have appropriate capabilities.
*
* When only a PCI-Express capability is found the type
* is examined to see which type of bridge we have.
*
* @param dev Pointer to the device structure of the bridge.
* @return Appropriate bridge operations.
*/
static const struct device_operations *get_pci_bridge_ops(struct device *dev)
{
#ifndef CONFIG_NO_PCIX_SUPPORT
unsigned int pcix_pos;
pcix_pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
if (pcix_pos) {
printk(BIOS_DEBUG, "%s subordinate bus PCI-X\n",
dev_path(dev));
return &default_pcix_ops_bus;
}
#endif
#ifndef CONFIG_NO_AGP_SUPPORT
/* How do I detect an PCI to AGP bridge? */
#warning AGP detection not implemented, so AGP bridge plugin not supported.
#endif
#ifdef CONFIG_HYPERTRANSPORT_SUPPORT
unsigned int ht_pos;
ht_pos = 0;
while ((ht_pos = pci_find_next_capability(dev, PCI_CAP_ID_HT, ht_pos))) {
unsigned int flags;
flags = pci_read_config16(dev, ht_pos + PCI_CAP_FLAGS);
if ((flags >> 13) == 1) {
/* Host or Secondary Interface. */
printk(BIOS_DEBUG,
"%s subordinate bus Hypertransport\n",
dev_path(dev));
return &default_ht_ops_bus;
}
}
#endif
#ifndef CONFIG_NO_PCIE_SUPPORT
unsigned int pcie_pos;
pcie_pos = pci_find_capability(dev, PCI_CAP_ID_PCIE);
if (pcie_pos) {
unsigned int flags;
flags = pci_read_config16(dev, pcie_pos + PCI_EXP_FLAGS);
switch ((flags & PCI_EXP_FLAGS_TYPE) >> 4) {
case PCI_EXP_TYPE_ROOT_PORT:
case PCI_EXP_TYPE_UPSTREAM:
case PCI_EXP_TYPE_DOWNSTREAM:
printk(BIOS_DEBUG, "%s subordinate bus PCI Express\n",
dev_path(dev));
return &default_pcie_ops_bus;
case PCI_EXP_TYPE_PCI_BRIDGE:
printk(BIOS_DEBUG, "%s subordinate PCI\n",
dev_path(dev));
return &default_pci_ops_bus;
default:
break;
}
}
#endif
return &default_pci_ops_bus;
}
/**
* Set up PCI device operation. Check if it already has a driver. If not, use
* find_device_operations, or set to a default based on type.
*
* @param dev Pointer to the device whose pci_ops you want to set.
* @see pci_drivers
*/
static void set_pci_ops(struct device *dev)
{
struct device_operations *c;
if (dev->ops) {
printk(BIOS_SPEW, "%s: dev %s already has ops of type %x\n",
__func__, dev->dtsname, dev->ops->id.type);
return;
}
/* Look through the list of setup drivers and find one for
* this PCI device.
*/
c = find_device_operations(&dev->id);
if (c) {
dev->ops = c;
printk(BIOS_SPEW, "%s id %s %sops\n",
dev_path(dev), dev_id_string(&dev->id),
(dev->ops->phase3_scan ? "bus " : ""));
return;
}
/* If I don't have a specific driver use the default operations. */
switch (dev->hdr_type & 0x7f) { /* Header type. */
case PCI_HEADER_TYPE_NORMAL: /* Standard header. */
if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI)
printk(BIOS_ERR,
"%s [%s] hdr_type %02x doesn't match"
"class %06x, ignoring.\n", dev_path(dev),
dev_id_string(&dev->id), dev->class >> 8,
dev->hdr_type);
else
dev->ops = &default_pci_ops_dev;
break;
case PCI_HEADER_TYPE_BRIDGE:
if ((dev->class >> 8) != PCI_CLASS_BRIDGE_PCI)
printk(BIOS_ERR,
"%s [%s] hdr_type %02x doesn't match"
"class %06x, ignoring.\n", dev_path(dev),
dev_id_string(&dev->id), dev->class >> 8,
dev->hdr_type);
else
dev->ops = get_pci_bridge_ops(dev);
break;
#ifndef CONFIG_NO_CARDBUS_SUPPORT
case PCI_HEADER_TYPE_CARDBUS:
dev->ops = &default_cardbus_ops_bus;
break;
#endif
default:
if (dev->enabled) {
printk(BIOS_ERR,
"%s [%s/%06x] has unknown header "
"type %02x, ignoring.\n", dev_path(dev),
dev_id_string(&dev->id), dev->class >> 8,
dev->hdr_type);
}
}
printk(BIOS_INFO, "%s: dev %s set ops to type %x\n", __func__,
dev->dtsname, dev->ops? dev->ops->id.type : 0);
return;
}
/**
* See if we have already allocated a device structure for a given devfn.
*
* Given a linked list of PCI device structures and a devfn number, find the
* device structure correspond to the devfn, if present. This function also
* removes the device structure from the linked list.
*
* @param list The device structure list.
* @param devfn A device/function number.
* @return Pointer to the device structure found or NULL of we have not
* allocated a device for this devfn yet.
*/
static struct device *pci_get_dev(struct device **list, unsigned int devfn)
{
struct device *dev;
dev = 0;
printk(BIOS_SPEW, "%s: list is %sNULL, *list is %sNULL\n", __func__,
list?"NOT ":"", *list?"NOT ":"");
for (; *list; list = &(*list)->sibling) {
printk(BIOS_SPEW, "%s: check dev %s \n", __func__,
(*list)->dtsname);
if ((*list)->path.type != DEVICE_PATH_PCI) {
printk(BIOS_NOTICE,
"%s: child %s(%s) not a pci device: it's type %d\n",
__func__, (*list)->dtsname, dev_path(*list),
(*list)->path.type);
continue;
}
printk(BIOS_SPEW, "%s: check dev %s it has devfn 0x%02x\n",
__func__, (*list)->dtsname, (*list)->path.pci.devfn);
if ((*list)->path.pci.devfn == devfn) {
/* Unlink from the list. */
dev = *list;
*list = (*list)->sibling;
dev->sibling = NULL;
break;
}
}
/* Just like alloc_dev() add the device to the list of devices on the
* bus. When the list of devices was formed we removed all of the
* parents children, and now we are interleaving static and dynamic
* devices in order on the bus.
*/
if (dev) {
struct device *child;
/* Find the last child of our parent. */
for (child = dev->bus->children; child && child->sibling;) {
child = child->sibling;
}
/* Place the device on the list of children of its parent. */
if (child) {
child->sibling = dev;
} else {
dev->bus->children = dev;
}
}
return dev;
}
/**
* Scan a PCI bus.
*
* Determine the existence of a given PCI device. Allocate a new struct device
* if dev==NULL was passed in and the device exists in hardware.
*
* @param dev Pointer to the device structure if it already is in the device
* tree, i.e. was specified in the dts. It may not exist on hardware,
* however. When looking for hardware not yet in the device tree, this
* parameter is NULL.
* @param bus Pointer to the bus structure.
* @param devfn A device/function number.
* @return The device structure for the device if it exists in hardware
* or the passed in device structure with enabled=0 if the device
* does not exist in hardware and only in the tree
* or NULL if no device is found and dev==NULL was passed in.
*/
struct device *pci_probe_dev(struct device *dev, struct bus *bus,
unsigned int devfn)
{
u32 id, class;
u8 hdr_type;
/* Detect if a device is present. */
if (!dev) {
struct device dummy;
struct device_id devid;
dummy.bus = bus;
dummy.path.type = DEVICE_PATH_PCI;
dummy.path.pci.devfn = devfn;
id = pci_read_config32(&dummy, PCI_VENDOR_ID);
/* Have we found something?
* Some broken boards return 0 if a slot is empty.
*/
if ((id == 0xffffffff) || (id == 0x00000000) ||
(id == 0x0000ffff) || (id == 0xffff0000)) {
printk(BIOS_SPEW, "PCI: devfn 0x%x, bad id 0x%x\n",
devfn, id);
return NULL;
}
devid.type = DEVICE_ID_PCI;
devid.pci.vendor = id & 0xffff;
devid.pci.device = id >> 16;
dev = alloc_dev(bus, &dummy.path, &devid);
} else {
/* Enable/disable the device. Once we have found the device
* specific operations this operations we will disable the
* device with those as well.
*
* This is geared toward devices that have subfunctions
* that do not show up by default.
*
* If a device is a stuff option on the motherboard
* it may be absent and enable_dev() must cope.
*/
/* Run the magic enable sequence for the device. */
if (dev->ops && dev->ops->phase3_chip_setup_dev) {
dev->ops->phase3_chip_setup_dev(dev);
}
/* Now read the vendor and device ID. */
id = pci_read_config32(dev, PCI_VENDOR_ID);
/* If the device does not have a PCI ID disable it. Possibly
* this is because we have already disabled the device. But
* this also handles optional devices that may not always
* show up.
*/
if ((id == 0xffffffff) || (id == 0x00000000) ||
(id == 0x0000ffff) || (id == 0xffff0000)) {
if (dev->enabled) {
printk(BIOS_INFO,
"Disabling static device: %s\n",
dev_path(dev));
dev->enabled = 0;
}
return dev;
}
}
/* Read the rest of the PCI configuration information. */
/* Store the interesting information in the device structure. */
hdr_type = pci_read_config8(dev, PCI_HEADER_TYPE);
class = pci_read_config32(dev, PCI_CLASS_REVISION);
dev->status = pci_read_config16(dev, PCI_STATUS);
dev->revision = pci_read_config8(dev, PCI_REVISION_ID);
dev->cache_line = pci_read_config8(dev, PCI_CACHE_LINE_SIZE);
dev->irq_line = pci_read_config8(dev, PCI_INTERRUPT_LINE);
dev->irq_pin = pci_read_config8(dev, PCI_INTERRUPT_PIN);
dev->min_gnt = pci_read_config8(dev, PCI_MIN_GNT);
dev->max_lat = pci_read_config8(dev, PCI_MAX_LAT);
/*Per-device subsystem ID should only be read from the device if none
* has been specified for the device in the dts.
*/
if (!dev->subsystem_vendor && !dev->subsystem_device) {
dev->subsystem_vendor =
pci_read_config16(dev, PCI_SUBSYSTEM_VENDOR_ID);
dev->subsystem_device =
pci_read_config16(dev, PCI_SUBSYSTEM_ID);
}
dev->id.type = DEVICE_ID_PCI;
dev->id.pci.vendor = id & 0xffff;
dev->id.pci.device = (id >> 16) & 0xffff;
dev->hdr_type = hdr_type;
/* Class code, the upper 3 bytes of PCI_CLASS_REVISION. */
dev->class = class >> 8;
/* Architectural/System devices always need to be bus masters. */
if ((dev->class >> 16) == PCI_BASE_CLASS_SYSTEM) {
dev->command |= PCI_COMMAND_MASTER;
}
/* Look at the vendor and device ID, or at least the header type and
* class and figure out which set of configuration methods to use.
* Unless we already have some PCI ops.
*/
set_pci_ops(dev);
/* Now run the magic enable/disable sequence for the device. */
if (dev->ops && dev->ops->phase3_enable) {
dev->ops->phase3_enable(dev);
}
/* Display the device. */
printk(BIOS_DEBUG, "%s [%s] %s%s\n",
dev_path(dev), dev_id_string(&dev->id),
dev->enabled ? "enabled" : "disabled",
dev->ops ? "" : " No operations");
return dev;
}
/**
* Scan a PCI bus.
*
* Determine the existence of devices and bridges on a PCI bus. If there are
* bridges on the bus, recursively scan the buses behind the bridges.
*
* This function is the default scan_bus() method for the root device
* 'dev_root'.
*
* @param bus Pointer to the bus structure.
* @param min_devfn Minimum devfn to look at in the scan usually 0x00.
* @param max_devfn Maximum devfn to look at in the scan usually 0xff.
* @param curr_bus Current bus number to be assigned.
* @return The new curr_bus, after scanning all subordinate buses.
*/
unsigned int pci_scan_bus(struct bus *bus, unsigned int min_devfn,
unsigned int max_devfn, unsigned int curr_bus)
{
unsigned int devfn;
struct device *old_devices;
struct device *child;
printk(BIOS_DEBUG, "%s start bus->dev %s bus %x\n", __func__,
bus->dev->dtsname, bus->link);
#warning This check needs checking.
if (bus->dev->path.type != DEVICE_PATH_PCI_BUS)
printk(BIOS_ERR, "ERROR: pci_scan_bus called with incorrect "
"bus->dev->path.type, path is %s\n", dev_path(bus->dev));
#if PCI_BUS_SEGN_BITS
printk(BIOS_DEBUG, "PCI: pci_scan_bus for bus %04x:%02x\n",
bus->secondary >> 8, bus->secondary & 0xff);
#else
printk(BIOS_DEBUG, "PCI: pci_scan_bus for bus %02x\n", bus->secondary);
#endif
/* Remove children of the bus, so the enumeration starts empty. */
old_devices = bus->children;
printk(BIOS_DEBUG, "%s: old_devices %s, dev for this bus %s\n",
__func__, old_devices?old_devices->dtsname:"NULL", bus->dev->dtsname);
bus->children = NULL;
post_code(POST_STAGE2_PCISCANBUS_ENTER);
printk(BIOS_SPEW, "PCI: scan devfn 0x%x to 0x%x\n", min_devfn,
max_devfn);
/* Probe all devices/functions on this bus with some optimization for
* non-existence and single function devices.
*/
for (devfn = min_devfn; devfn <= max_devfn; devfn++) {
struct device *dev;
printk(BIOS_SPEW, "PCI: devfn 0x%x\n", devfn);
/* First thing look in the device tree. */
dev = pci_get_dev(&old_devices, devfn);
printk(BIOS_SPEW,
"PCI: pci_scan_bus pci_get_dev returns dev %s\n",
dev ? dev->dtsname : "None (no dev in tree yet)");
/* See if a device is present and setup the device structure. */
dev = pci_probe_dev(dev, bus, devfn);
printk(BIOS_SPEW,
"PCI: pci_scan_bus pci_probe_dev returns dev %s\n",
dev ? dev->dtsname : "None (no response)");
/* If this is not a multi function device, or the device is
* not present don't waste time probing another function.
* Skip to next device.
*/
if ((PCI_FUNC(devfn) == 0x00) &&
(!dev
|| (dev->enabled && ((dev->hdr_type & 0x80) != 0x80)))) {
printk(BIOS_SPEW, "Not a multi function device, or the "
"device is not present. Skip to next device.\n");
devfn += 0x07;
}
}
printk(BIOS_SPEW, "PCI: Done for loop\n");
post_code(POST_STAGE2_PCISCANBUS_DONEFORLOOP);
/* Warn if any leftover static devices are are found.
* There's probably a problem in the device tree (dts).
*/
if (old_devices) {
struct device *left;
printk(BIOS_INFO, "PCI: Left over static devices:\n");
for (left = old_devices; left; left = left->sibling) {
printk(BIOS_INFO, "%s\n", left->dtsname);
}
printk(BIOS_INFO, "PCI: End of leftover list.\n");
}
/* For all children that implement scan_bus() (i.e. bridges)
* scan the bus behind that child.
*/
for (child = bus->children; child; child = child->sibling) {
curr_bus = dev_phase3_scan(child, curr_bus);
}
/* We've scanned the bus and so we know all about what's on the other
* side of any bridges that may be on this bus plus any devices.
* Return how far we've got finding sub-buses.
*/
printk(BIOS_DEBUG, "PCI: pci_scan_bus returning with curr_bus=%03x\n",
curr_bus);
post_code(POST_STAGE2_PCISCANBUS_EXIT);
return curr_bus;
}
/**
* Support for scan bus from the "tippy top" -- i.e. the PCI domain,
* not the 0:0.0 device.
*
* This function works for almost all chipsets (AMD K8 is the exception).
*
* @param dev The PCI domain device.
* @param max The current bus number to be assigned.
* @return The current bus number returned by pci_scan_bus.
*/
unsigned int pci_domain_scan_bus(struct device *dev, unsigned int curr_bus)
{
printk(BIOS_SPEW, "pci_domain_scan_bus: calling pci_scan_bus\n");
/* There is only one link on this device, and it is always link 0. */
return pci_scan_bus(&dev->link[0], PCI_DEVFN(0, 0), 0xff, curr_bus);
}
/**
* Scan a PCI bridge and the buses behind the bridge.
*
* Determine the existence of buses behind the bridge. Set up the bridge
* according to the result of the scan.
*
* This function is the default scan_bus() method for PCI bridge devices.
*
* @param dev Pointer to the bridge device.
* @param max The highest bus number assigned up to now.
* @return The maximum bus number found, after scanning all subordinate buses.
*/
unsigned int do_pci_scan_bridge(struct device *dev, unsigned int max,
unsigned int (*do_scan_bus) (struct bus * bus,
unsigned int min_devfn,
unsigned int max_devfn,
unsigned int max))
{
struct bus *bus;
u32 buses;
u16 cr;
printk(BIOS_SPEW, "%s for %s\n", __func__, dev_path(dev));
bus = &dev->link[0];
bus->dev = dev;
dev->links = 1;
/* Set up the primary, secondary and subordinate bus numbers. We have
* no idea how many buses are behind this bridge yet, so we set the
* subordinate bus number to 0xff for the moment.
*/
bus->secondary = ++max;
bus->subordinate = 0xff;
/* Clear all status bits and turn off memory, I/O and master enables. */
cr = pci_read_config16(dev, PCI_COMMAND);
pci_write_config16(dev, PCI_COMMAND, 0x0000);
pci_write_config16(dev, PCI_STATUS, 0xffff);
/* Read the existing primary/secondary/subordinate bus
* number configuration.
*/
buses = pci_read_config32(dev, PCI_PRIMARY_BUS);
/* Configure the bus numbers for this bridge: the configuration
* transactions will not be propagated by the bridge if it is not
* correctly configured.
*/
buses &= 0xff000000;
buses |= (((unsigned int)(dev->bus->secondary) << 0) |
((unsigned int)(bus->secondary) << 8) |
((unsigned int)(bus->subordinate) << 16));
pci_write_config32(dev, PCI_PRIMARY_BUS, buses);
/* Now we can scan all subordinate buses
* i.e. the bus behind the bridge.
*/
max = do_scan_bus(bus, 0x00, 0xff, max);
/* We know the number of buses behind this bridge. Set the subordinate
* bus number to its real value.
*/
bus->subordinate = max;
buses = (buses & 0xff00ffff) | ((unsigned int)(bus->subordinate) << 16);
pci_write_config32(dev, PCI_PRIMARY_BUS, buses);
pci_write_config16(dev, PCI_COMMAND, cr);
printk(BIOS_DEBUG, "%s DONE: [%x, %x, %x]\n", __func__,
dev->bus->secondary, bus->secondary, bus->subordinate);
printk(BIOS_SPEW, "%s returns max %d\n", __func__, max);
return max;
}
/**
* Scan a PCI bridge and the buses behind the bridge.
*
* Determine the existence of buses behind the bridge. Set up the bridge
* according to the result of the scan.
*
* This function is the default scan_bus() method for PCI bridge devices.
*
* @param dev Pointer to the bridge device.
* @param max The highest bus number assigned up to now.
* @return The maximum bus number found, after scanning all subordinate buses.
*/
unsigned int pci_scan_bridge(struct device *dev, unsigned int max)
{
printk(BIOS_SPEW, "pci_scan_bridge: calling pci_scan_bus\n");
return do_pci_scan_bridge(dev, max, pci_scan_bus);
}
/**
* Tell the EISA int controller this int must be level triggered.
*
* THIS IS A KLUDGE -- sorry, this needs to get cleaned up.
*
* @param intNum TODO
*/
void pci_level_irq(unsigned char intNum)
{
unsigned short intBits = inb(0x4d0) | (((unsigned)inb(0x4d1)) << 8);
printk(BIOS_SPEW, "%s: current ints are 0x%x\n", __func__, intBits);
intBits |= (1 << intNum);
printk(BIOS_SPEW, "%s: try to set ints 0x%x\n", __func__, intBits);
/* Write new values. */
outb((unsigned char)intBits, 0x4d0);
outb((unsigned char)(intBits >> 8), 0x4d1);
/* This seems like an error but is not. */
if (inb(0x4d0) != (intBits & 0xff)) {
printk(BIOS_ERR,
"%s: lower order bits are wrong: want 0x%x, got 0x%x\n",
__func__, intBits & 0xff, inb(0x4d0));
}
if (inb(0x4d1) != ((intBits >> 8) & 0xff)) {
printk(BIOS_ERR,
"%s: lower order bits are wrong: want 0x%x, got 0x%x\n",
__func__, (intBits >> 8) & 0xff, inb(0x4d1));
}
}
/**
* This function assigns IRQs for all functions contained within the
* indicated device address. If the device does not exist or does not
* require interrupts then this function has no effect.
*
* This function should be called for each PCI slot in your system.
*
* pIntAtoD is an array of IRQ #s that are assigned to PINTA through PINTD of
* this slot.
*
* The particular irq #s that are passed in depend on the routing inside
* your southbridge and on your motherboard.
*
* -kevinh@ispiri.com
*
* @param bus TODO
* @param slot TODO
* @param pIntAtoD TODO
*/
void pci_assign_irqs(unsigned int bus, unsigned int slot,
const unsigned char pIntAtoD[4])
{
unsigned int functNum;
struct device *pdev;
unsigned char line;
unsigned char irq;
unsigned char readback;
/* Each slot may contain up to eight functions. */
for (functNum = 0; functNum < 8; functNum++) {
pdev = dev_find_slot(bus, (slot << 3) + functNum);
if (pdev) {
line = pci_read_config8(pdev, PCI_INTERRUPT_PIN);
// PCI spec says all other values are reserved.
if ((line >= 1) && (line <= 4)) {
irq = pIntAtoD[line - 1];
printk(BIOS_DEBUG,
"Assigning IRQ %d to %d:%x.%d\n", irq,
bus, slot, functNum);
pci_write_config8(pdev, PCI_INTERRUPT_LINE,
pIntAtoD[line - 1]);
readback =
pci_read_config8(pdev, PCI_INTERRUPT_LINE);
printk(BIOS_DEBUG, " Readback = %d\n",
readback);
// Change to level triggered.
pci_level_irq(pIntAtoD[line - 1]);
}
}
}
}