/* * * Copyright (C) 200X FIXME * Copyright (C) 2007 coresystems GmbH * Copyright (C) 2007 Advanced Micro Devices, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA * */ #include #include #include #include #include #include #include /* * Why is this not a function? I assume the two io * operations are less overhead than a function call. */ #define CMOS_READ(addr) ({ \ outb((addr),RTC_PORT(0)); \ inb(RTC_PORT(1)); \ }) #define CMOS_WRITE(val, addr) ({ \ outb((addr),RTC_PORT(0)); \ outb((val),RTC_PORT(1)); \ }) #ifdef CONFIG_OPTION_TABLE static int rtc_checksum_valid(int range_start, int range_end, int cks_loc) { int i; unsigned sum, old_sum; sum = 0; for(i = range_start; i <= range_end; i++) { sum += CMOS_READ(i); } sum = (~sum)&0x0ffff; old_sum = ((CMOS_READ(cks_loc)<<8) | CMOS_READ(cks_loc+1))&0x0ffff; return sum == old_sum; } static void rtc_set_checksum(int range_start, int range_end, int cks_loc) { int i; unsigned sum; sum = 0; for(i = range_start; i <= range_end; i++) { sum += CMOS_READ(i); } sum = ~(sum & 0x0ffff); CMOS_WRITE(((sum >> 8) & 0x0ff), cks_loc); CMOS_WRITE(((sum >> 0) & 0x0ff), cks_loc+1); } #endif #define RTC_CONTROL_DEFAULT (RTC_24H) #define RTC_FREQ_SELECT_DEFAULT (RTC_REF_CLCK_32KHZ | RTC_RATE_1024HZ) void rtc_init(int invalid) { #ifdef CONFIG_OPTION_TABLE unsigned char x; int cmos_invalid, checksum_invalid; #endif printk(BIOS_DEBUG, "Initializing realtime clock.\n"); #ifdef CONFIG_OPTION_TABLE /* See if there has been a CMOS power problem. */ x = CMOS_READ(RTC_VALID); cmos_invalid = !(x & RTC_VRT); /* See if there is a CMOS checksum error */ checksum_invalid = !rtc_checksum_valid(PC_CKS_RANGE_START, PC_CKS_RANGE_END,PC_CKS_LOC); if (invalid || cmos_invalid || checksum_invalid) { printk(BIOS_WARNING, "RTC:%s%s%s zeroing cmos\n", invalid?" Clear requested":"", cmos_invalid?" Power Problem":"", checksum_invalid?" Checksum invalid":""); #if 0 CMOS_WRITE(0, 0x01); CMOS_WRITE(0, 0x03); CMOS_WRITE(0, 0x05); for(i = 10; i < 48; i++) { CMOS_WRITE(0, i); } if (cmos_invalid) { /* Now setup a default date of Sat 1 January 2000 */ CMOS_WRITE(0, 0x00); /* seconds */ CMOS_WRITE(0, 0x02); /* minutes */ CMOS_WRITE(1, 0x04); /* hours */ CMOS_WRITE(7, 0x06); /* day of week */ CMOS_WRITE(1, 0x07); /* day of month */ CMOS_WRITE(1, 0x08); /* month */ CMOS_WRITE(0, 0x09); /* year */ } #endif } #endif /* Setup the real time clock */ CMOS_WRITE(RTC_CONTROL_DEFAULT, RTC_CONTROL); /* Setup the frequency it operates at */ CMOS_WRITE(RTC_FREQ_SELECT_DEFAULT, RTC_FREQ_SELECT); #ifdef CONFIG_OPTION_TABLE /* See if there is a coreboot CMOS checksum error */ checksum_invalid = !rtc_checksum_valid(CB_CKS_RANGE_START, CB_CKS_RANGE_END,CB_CKS_LOC); if(checksum_invalid) printk(BIOS_WARNING, "Invalid coreboot CMOS checksum.\n"); /* Make certain we have a valid checksum */ rtc_set_checksum(PC_CKS_RANGE_START, PC_CKS_RANGE_END,PC_CKS_LOC); #endif /* Clear any pending interrupts */ (void) CMOS_READ(RTC_INTR_FLAGS); } /* This routine returns the value of the requested bits input bit = bit count from the beginning of the cmos image length = number of bits to include in the value ret = a character pointer to where the value is to be returned output the value placed in ret returns 0 = successful, -1 = an error occurred */ static int get_cmos_value(unsigned long bit, unsigned long length, void *vret) { unsigned char *ret; unsigned long byte,byte_bit; unsigned long i; unsigned char uchar; /* The table is checked when it is built to ensure all values are valid. */ ret = vret; byte=bit/8; /* find the byte where the data starts */ byte_bit=bit%8; /* find the bit in the byte where the data starts */ if(length<9) { /* one byte or less */ uchar = CMOS_READ(byte); /* load the byte */ uchar >>= byte_bit; /* shift the bits to byte align */ /* clear unspecified bits */ ret[0] = uchar & ((1 << length) -1); } else { /* more that one byte so transfer the whole bytes */ for(i=0;length;i++,length-=8,byte++) { /* load the byte */ ret[i]=CMOS_READ(byte); } } return 0; } struct cmos_option_table *get_option_table(void) { struct mem_file result, archive; int ret; init_archive(&archive); ret = find_file(&archive, "normal/option_table", &result); if (ret) { printk(BIOS_ERR, "No such file '%s'.\n", "normal/option_table"); return (struct cmos_option_table *)NULL; } return (struct cmos_option_table *) result.start; } int get_option(void *dest, char *name) { // struct cmos_option_table *option_table; struct cmos_option_table *ct; struct cmos_entries *ce; size_t namelen; int found=0; /* Figure out how long name is */ namelen = strnlen(name, CMOS_MAX_NAME_LENGTH); /* find the requested entry record */ ct=get_option_table(); ce=(struct cmos_entries*)((unsigned char *)ct + ct->header_length); for(;ce->tag==LB_TAG_OPTION; ce=(struct cmos_entries*)((unsigned char *)ce + ce->size)) { if (memcmp(ce->name, name, namelen) == 0) { found=1; break; } } if(!found) { printk(BIOS_ERR, "ERROR: No cmos option '%s'\n", name); return(-2); } if(get_cmos_value(ce->bit, ce->length, dest)) return(-3); if(!rtc_checksum_valid(CB_CKS_RANGE_START, CB_CKS_RANGE_END,CB_CKS_LOC)) return(-4); #ifdef CONFIG_OPTION_TABLE return(0); #else return -2; #endif } /* -------------------------------------------------------------- */ // FIXME: Early starts here #ifndef MAX_REBOOT_CNT #define MAX_REBOOT_CNT 2 #endif static int cmos_error(void) { u8 reg_d; /* See if the cmos error condition has been flagged */ reg_d = CMOS_READ(RTC_REG_D); return (reg_d & RTC_VRT) == 0; } static int cmos_chksum_valid(void) { u8 addr; u32 sum, old_sum; sum = 0; /* Comput the cmos checksum */ for(addr = CB_CKS_RANGE_START; addr <= CB_CKS_RANGE_END; addr++) { sum += CMOS_READ(addr); } sum = (sum & 0xffff) ^ 0xffff; /* Read the stored checksum */ old_sum = CMOS_READ(CB_CKS_LOC) << 8; old_sum |= CMOS_READ(CB_CKS_LOC+1); return sum == old_sum; } int last_boot_normal(void) { u8 byte; byte = CMOS_READ(RTC_BOOT_BYTE); return (byte & RTC_LAST_BOOT_FLAG_SET); } /** * Check CMOS for normal or fallback boot mode. * Use lxbios to set normal mode once the system is operational. */ int check_normal_boot_flag(void) { u8 byte; if (cmos_error() || !cmos_chksum_valid()) { /* There are no impossible values, no cheksums so just * trust whatever value we have in the the cmos, * but clear the fallback bit. */ byte = CMOS_READ(RTC_BOOT_BYTE); byte &= ~(0x0f << RTC_BOOT_COUNT_SHIFT | RTC_LAST_BOOT_FLAG_SET | RTC_NORMAL_BOOT_FLAG_SET); byte |= MAX_REBOOT_CNT << RTC_BOOT_COUNT_SHIFT; CMOS_WRITE(byte, RTC_BOOT_BYTE); } /* The RTC_BOOT_BYTE is now o.k. see where to go. */ byte = CMOS_READ(RTC_BOOT_BYTE); /* Are we in normal mode? */ if (byte & RTC_NORMAL_BOOT_FLAG_SET) { byte &= ~(0x0f << RTC_BOOT_COUNT_SHIFT); /* yes, clear the boot count */ } /* Properly set the last boot flag */ byte &= ~(RTC_LAST_BOOT_FLAG_SET | RTC_NORMAL_BOOT_FLAG_SET); if ((byte >> 4) < MAX_REBOOT_CNT) { byte |= RTC_LAST_BOOT_FLAG_SET; } /* Are we already at the max count? */ if ((byte >> RTC_BOOT_COUNT_SHIFT) < MAX_REBOOT_CNT) { byte += 1 << RTC_BOOT_COUNT_SHIFT; /* No, add 1 to the count */ } else { byte &= ~RTC_NORMAL_BOOT_FLAG_SET; /* Yes, put in fallback mode */ } /* Save the boot byte */ CMOS_WRITE(byte, RTC_BOOT_BYTE); return (byte & RTC_NORMAL_BOOT_FLAG_SET); }