#include //#include #include #include #include #include #include #include #include struct segment { struct segment *next; struct segment *prev; struct segment *phdr_next; struct segment *phdr_prev; unsigned long s_addr; unsigned long s_memsz; unsigned long s_offset; unsigned long s_filesz; }; struct verify_callback { struct verify_callback *next; int (*callback)(struct verify_callback *vcb, Elf_ehdr *ehdr, Elf_phdr *phdr, struct segment *head); unsigned long desc_offset; unsigned long desc_addr; }; struct ip_checksum_vcb { struct verify_callback data; unsigned short ip_checksum; }; /* we're trying to keep out of the way of elf segments, without requiring the * bounce buffer. This may fail, but it's worth the effort. */ static unsigned char *arena; int arenasize; static void setupmalloc(void *s, int size) { arena = s; arenasize = size; } static void *localmalloc(int nbytes) { char *ret; if (nbytes > arenasize) return NULL; arenasize -= nbytes; ret = arena; arena += nbytes; return ret; } /* streams are a nice way to abstract the pointer/size-based nature of the * memory away. The main good part is that we have a way to fail out if the * elfboot code is running off the end of the array for some reason. So we won't * rip it out just yet. */ static unsigned char *streambase = NULL; static int streamsize = -1; int stream_init(void){ return 0; } void stream_fini(void){ } int stream_skip(int bytes){ streamsize -= bytes; if (streamsize < 0) return -1; streambase += bytes; return bytes; } int stream_read(void *dest, int bytes) { if (streamsize < bytes) return -1; memcpy(dest, streambase, bytes); stream_skip(bytes); return bytes; } int verify_ip_checksum( struct verify_callback *vcb, Elf_ehdr *ehdr, Elf_phdr *phdr, struct segment *head) { struct ip_checksum_vcb *cb; struct segment *ptr; unsigned long bytes; unsigned long checksum; unsigned char buff[2], *n_desc; cb = (struct ip_checksum_vcb *)vcb; /* zero the checksum so it's value won't * get in the way of verifying the checksum. */ n_desc = 0; if (vcb->desc_addr) { n_desc = (unsigned char *)(vcb->desc_addr); memcpy(buff, n_desc, 2); memset(n_desc, 0, 2); } bytes = 0; checksum = compute_ip_checksum(ehdr, sizeof(*ehdr)); bytes += sizeof(*ehdr); checksum = add_ip_checksums(bytes, checksum, compute_ip_checksum(phdr, ehdr->e_phnum*sizeof(*phdr))); bytes += ehdr->e_phnum*sizeof(*phdr); for(ptr = head->phdr_next; ptr != head; ptr = ptr->phdr_next) { checksum = add_ip_checksums(bytes, checksum, compute_ip_checksum((void *)ptr->s_addr, ptr->s_memsz)); bytes += ptr->s_memsz; } if (n_desc != 0) { memcpy(n_desc, buff, 2); } if (checksum != cb->ip_checksum) { printk(BIOS_ERR, "Image checksum: %04x != computed checksum: %04x\n", cb->ip_checksum, checksum); } return checksum == cb->ip_checksum; } static struct verify_callback *process_elf_notes( unsigned char *header, unsigned long offset, unsigned long length) { struct verify_callback *cb_chain; unsigned char *note, *end; char *program, *version; cb_chain = 0; note = header + offset; end = note + length; program = version = 0; while(note < end) { Elf_Nhdr *hdr; unsigned char *n_name, *n_desc, *next; hdr = (Elf_Nhdr *)note; n_name = note + sizeof(*hdr); n_desc = n_name + ((hdr->n_namesz + 3) & ~3); next = n_desc + ((hdr->n_descsz + 3) & ~3); if (next > end) { break; } if ((hdr->n_namesz == sizeof(ELF_NOTE_BOOT)) && (memcmp(n_name, ELF_NOTE_BOOT, sizeof(ELF_NOTE_BOOT)) == 0)) { switch(hdr->n_type) { case EIN_PROGRAM_NAME: if (n_desc[hdr->n_descsz -1] == 0) { program = (char *) n_desc; } break; case EIN_PROGRAM_VERSION: if (n_desc[hdr->n_descsz -1] == 0) { version = (char *) n_desc; } break; case EIN_PROGRAM_CHECKSUM: { struct ip_checksum_vcb *cb; cb = localmalloc(sizeof(*cb)); cb->ip_checksum = *((uint16_t *)n_desc); cb->data.callback = verify_ip_checksum; cb->data.next = cb_chain; cb->data.desc_offset = n_desc - header; cb_chain = &cb->data; break; } } } printk(BIOS_SPEW, "n_type: %08x n_name(%d): %-*.*s n_desc(%d): %-*.*s\n", hdr->n_type, hdr->n_namesz, hdr->n_namesz, hdr->n_namesz, n_name, hdr->n_descsz,hdr->n_descsz, hdr->n_descsz, n_desc); note = next; } if (program && version) { printk(BIOS_INFO, "Loading %s version: %s\n", program, version); } return cb_chain; } static int valid_area(struct lb_memory *mem, unsigned long start, unsigned long len) { /* Check through all of the memory segments and ensure * the segment that was passed in is completely contained * in RAM. */ int i; unsigned long end = start + len; unsigned long mem_entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]); /* Walk through the table of valid memory ranges and see if I * have a match. */ for(i = 0; i < mem_entries; i++) { uint64_t mstart, mend; uint32_t mtype; mtype = mem->map[i].type; mstart = unpack_lb64(mem->map[i].start); mend = mstart + unpack_lb64(mem->map[i].size); if ((mtype == LB_MEM_RAM) && (start < mend) && (end > mstart)) { break; } } if (i == mem_entries) { printk(BIOS_ERR, "No matching ram area found for range:\n"); printk(BIOS_ERR, " [0x%016lx, 0x%016lx)\n", start, end); printk(BIOS_ERR, "Ram areas\n"); for(i = 0; i < mem_entries; i++) { uint64_t mstart, mend; uint32_t mtype; mtype = mem->map[i].type; mstart = unpack_lb64(mem->map[i].start); mend = mstart + unpack_lb64(mem->map[i].size); printk(BIOS_ERR, " [0x%016lx, 0x%016lx) %s\n", (unsigned long)mstart, (unsigned long)mend, (mtype == LB_MEM_RAM)?"RAM":"Reserved"); } return 0; } return 1; } static int build_elf_segment_list( struct segment *head, struct lb_memory *mem, Elf_phdr *phdr, int headers) { struct segment *ptr; int i; memset(head, 0, sizeof(*head)); head->phdr_next = head->phdr_prev = head; head->next = head->prev = head; for(i = 0; i < headers; i++) { struct segment *new; /* Ignore data that I don't need to handle */ if (phdr[i].p_type != PT_LOAD) { printk(BIOS_DEBUG, "Dropping non PT_LOAD segment\n"); continue; } if (phdr[i].p_memsz == 0) { printk(BIOS_DEBUG, "Dropping empty segment\n"); continue; } new = localmalloc(sizeof(*new)); new->s_addr = phdr[i].p_paddr; new->s_memsz = phdr[i].p_memsz; new->s_offset = phdr[i].p_offset; new->s_filesz = phdr[i].p_filesz; printk(BIOS_DEBUG, "New segment addr 0x%lx size 0x%lx offset 0x%lx filesize 0x%lx\n", new->s_addr, new->s_memsz, new->s_offset, new->s_filesz); /* Clean up the values */ if (new->s_filesz > new->s_memsz) { new->s_filesz = new->s_memsz; } printk(BIOS_DEBUG, "(cleaned up) New segment addr 0x%lx size 0x%lx offset 0x%lx filesize 0x%lx\n", new->s_addr, new->s_memsz, new->s_offset, new->s_filesz); for(ptr = head->next; ptr != head; ptr = ptr->next) { if (new->s_offset < ptr->s_offset) break; } /* Order by stream offset */ new->next = ptr; new->prev = ptr->prev; ptr->prev->next = new; ptr->prev = new; /* Order by original program header order */ new->phdr_next = head; new->phdr_prev = head->phdr_prev; head->phdr_prev->phdr_next = new; head->phdr_prev = new; /* Verify the memory addresses in the segment are valid */ if (!valid_area(mem, new->s_addr, new->s_memsz)) goto out; } return 1; out: return 0; } static int load_elf_segments( struct segment *head, unsigned char *header, unsigned long header_size) { unsigned long offset; struct segment *ptr; offset = 0; for(ptr = head->next; ptr != head; ptr = ptr->next) { unsigned long start_offset; unsigned long skip_bytes, read_bytes; unsigned char *dest, *middle, *end; unsigned long result; printk(BIOS_DEBUG, "Loading Segment: addr: 0x%016lx memsz: 0x%016lx filesz: 0x%016lx\n", ptr->s_addr, ptr->s_memsz, ptr->s_filesz); /* Compute the boundaries of the segment */ dest = (unsigned char *)(ptr->s_addr); end = dest + ptr->s_memsz; middle = dest + ptr->s_filesz; start_offset = ptr->s_offset; /* Ignore s_offset if I have a pure bss segment */ if (ptr->s_filesz == 0) { start_offset = offset; } printk(BIOS_SPEW, "[ 0x%016lx, %016lx, 0x%016lx) <- %016lx\n", (unsigned long)dest, (unsigned long)middle, (unsigned long)end, (unsigned long)start_offset); /* Skip intial buffer unused bytes */ if (offset < header_size) { if (start_offset < header_size) { offset = start_offset; } else { offset = header_size; } } /* Skip the unused bytes */ skip_bytes = start_offset - offset; if (skip_bytes && ((result = stream_skip(skip_bytes)) != skip_bytes)) { printk(BIOS_ERR, "ERROR: Skip of %ld bytes skipped %ld bytes\n", skip_bytes, result); goto out; } offset = start_offset; /* Copy data from the initial buffer */ if (offset < header_size) { size_t len; if ((ptr->s_filesz + start_offset) > header_size) { len = header_size - start_offset; } else { len = ptr->s_filesz; } memcpy(dest, &header[start_offset], len); dest += len; } /* Read the segment into memory */ read_bytes = middle - dest; if (read_bytes && ((result = stream_read(dest, read_bytes)) != read_bytes)) { printk(BIOS_ERR, "ERROR: Read of %ld bytes read %ld bytes...\n", read_bytes, result); goto out; } offset += ptr->s_filesz; /* Zero the extra bytes between middle & end */ if (middle < end) { printk(BIOS_DEBUG, "Clearing Segment: addr: 0x%016lx memsz: 0x%016lx\n", (unsigned long)middle, end - middle); /* Zero the extra bytes */ memset(middle, 0, end - middle); } } return 1; out: return 0; } static int verify_loaded_image( struct verify_callback *vcb, Elf_ehdr *ehdr, Elf_phdr *phdr, struct segment *head ) { struct segment *ptr; int ok; ok = 1; for(; ok && vcb ; vcb = vcb->next) { /* Find where the note is loaded */ /* The whole note must be loaded intact * so an address of 0 for the descriptor is impossible */ vcb->desc_addr = 0; for(ptr = head->next; ptr != head; ptr = ptr->next) { unsigned long desc_addr; desc_addr = ptr->s_addr + vcb->desc_offset - ptr->s_offset; if ((desc_addr >= ptr->s_addr) && (desc_addr < (ptr->s_addr + ptr->s_filesz))) { vcb->desc_addr = desc_addr; } } ok = vcb->callback(vcb, ehdr, phdr, head); } return ok; } int elfload(struct lb_memory *mem, unsigned char *header, unsigned long header_size) { Elf_ehdr *ehdr; Elf_phdr *phdr; void *entry; void (*v)(void); struct segment head; struct verify_callback *cb_chain; ehdr = (Elf_ehdr *)header; entry = (void *)(ehdr->e_entry); phdr = (Elf_phdr *)(&header[ehdr->e_phoff]); /* Digest elf note information... */ cb_chain = 0; if ((phdr[0].p_type == PT_NOTE) && ((phdr[0].p_offset + phdr[0].p_filesz) < header_size)) { cb_chain = process_elf_notes(header, phdr[0].p_offset, phdr[0].p_filesz); } /* Preprocess the elf segments */ if (!build_elf_segment_list(&head, mem, phdr, ehdr->e_phnum)) goto out; /* Load the segments */ if (!load_elf_segments(&head, header, header_size)) goto out; printk(BIOS_SPEW, "Loaded segments\n"); /* Verify the loaded image */ if (!verify_loaded_image(cb_chain, ehdr, phdr, &head)) goto out; printk(BIOS_SPEW, "verified segments\n"); /* Shutdown the stream device */ stream_fini(); printk(BIOS_SPEW, "closed down stream\n"); /* Reset to booting from this image as late as possible */ /* what the hell is boot_successful? */ //boot_successful(); printk(BIOS_DEBUG, "Jumping to boot code at 0x%x\n", entry); post_code(0xfe); /* Jump to kernel */ /* just call it as a function. If it wants to return, it will. */ v = entry; v(); return 1; out: return 0; } int elfboot(struct lb_memory *mem) { Elf_ehdr *ehdr; static unsigned char header[ELF_HEAD_SIZE]; int header_offset; int i, result; /* for stupid allocator which won't run into trouble with segments */ char alloc[256]; setupmalloc(alloc, sizeof(alloc)); result = 0; printk(BIOS_INFO, "\n"); printk(BIOS_INFO, "Welcome to %s, the open sourced starter.\n", BOOTLOADER); printk(BIOS_INFO, "Version %s\n", BOOTLOADER_VERSION); printk(BIOS_INFO, "\n"); post_code(0xf8); if (stream_init() < 0) { printk(BIOS_ERR, "Could not initialize driver...\n"); goto out; } /* Read in the initial ELF_HEAD_SIZE bytes */ if (stream_read(header, ELF_HEAD_SIZE) != ELF_HEAD_SIZE) { printk(BIOS_ERR, "Read failed...\n"); goto out; } /* Scan for an elf header */ header_offset = -1; for(i = 0; i < ELF_HEAD_SIZE - (sizeof(Elf_ehdr) + sizeof(Elf_phdr)); i+=16) { ehdr = (Elf_ehdr *)(&header[i]); if (memcmp(ehdr->e_ident, ELFMAG, 4) != 0) { printk(BIOS_SPEW, "NO header at %d\n", i); continue; } printk(BIOS_DEBUG, "Found ELF candidate at offset %d\n", i); /* Sanity check the elf header */ if ((ehdr->e_type == ET_EXEC) && elf_check_arch(ehdr) && (ehdr->e_ident[EI_VERSION] == EV_CURRENT) && (ehdr->e_version == EV_CURRENT) && (ehdr->e_ehsize == sizeof(Elf_ehdr)) && (ehdr->e_phentsize = sizeof(Elf_phdr)) && (ehdr->e_phoff < (ELF_HEAD_SIZE - i)) && ((ehdr->e_phoff + (ehdr->e_phentsize * ehdr->e_phnum)) <= (ELF_HEAD_SIZE - i))) { header_offset = i; break; } ehdr = 0; } printk(BIOS_SPEW, "header_offset is %d\n", header_offset); if (header_offset == -1) { goto out; } printk(BIOS_SPEW, "Try to load at offset 0x%x\n", header_offset); result = elfload(mem, header + header_offset , ELF_HEAD_SIZE - header_offset); out: if (!result) { /* Shutdown the stream device */ stream_fini(); printk(BIOS_ERR, "Cannot Load ELF Image\n"); post_code(0xff); } return 0; } int elfboot_mem(struct lb_memory *mem, void *where, int size) { streambase = where; streamsize = size; return elfboot(mem); }